04-04 第 57 回土木計画学研究発表会 講演集 vs
|
|
|
- あつみね かいて
- 6 years ago
- Views:
Transcription
1 04-04 vs [email protected] [email protected] Fujita and Ogawa(1982) Fujita and Ogawa Key Words: agglomeration economy, multiple equilibria, urban subcenter formation, stochastic stability 1. Fujita and Ogawa 1) ( FO ) 2 Fujita and Thisse 2) FO Osawa and Akamatsu 3) FO FO (Sandholm 4) ) FO 5) (NEG) FO 1
2 FO 2 FO 3 4 FO FO (1) 1 K K 1,, K} S S S/K N M (2) i j j W j z U(s = S H, z) s S H > 0 1 W j T ij = S H R i + z (1) T ij R i i i j T ij = t i j (2) t > 0 i j where z ij = arg max z max z ij (3) i,j U(s = S H, z) =W j T ij S H R i (4) i j i j n ij (3) i Π i max i Π i (m) = maxa i (m) S F R i L W i } (5) i S F, L m [m i ] A i (m) ( ) m A i (m) = j D ij m j (6) D ij τ > 0 D ij = exp( τ i j ) (7) (4) FO a) z = W j T ij S H R i if n ij > 0 z W j T ij S H R i if n ij = 0 i, j K (8) z Π i Π = A i S F R i LW i if m i > 0 Π A i S F R i LW i if m i = 0 i K Π (9) 2
3 b) S = S H n ij + S F m i if R i > 0 j K S S H j K n ij + S F m i if R i = 0 i K (10) R i n ij = Lm i if W j > 0 i K n ij Lm i if W j = 0 i K j K (11) W j c) FO m i = M (12) i K n ij = N (13) 3. FO (1) 1 logit dynamics t m [m i ] i Π i K (m) m M t 1 i j ρ ij 1 FO m exp[θπ j (m e i + e j )] ρ ij (m) = k S exp[θπ k(m e i + e k )] i, j S (14) e i i 1 0 K θ θ = 0 θ t t + 1 m m m i p m m = M ρ ij m = m e i + e j 0 otherwise (15) t m π t m π t t + 1 m π t+1 = P π t P P [p m m ] (2) π = P π π m π m m 1 π θ π m > 0 (3) 2 Π [Π i ] Z Z(m) m j Z(m) m i = Π j Π i i, j S (16) Sandholm 4) (14) 3
4 πm Z πm = 1 M! H k K (Mm exp(θz(m)) (17) i)! H m M π m = 1 2 πm πm = k K(Mm k )! k K (Mm k)! exp[θ(z(m) Z(m ))] (18) θ 1 lim θ θ log π m πm = lim (Z(m) Z(m )) + 1θ log k K(Mm k )! } θ k K (Mm k)! =Z(m) Z(m ) m, m M (19) Z(m) > Z(m ) π m > π m 1 Z(m) m FO 4. FO FO (1) FO FO 1 FO m [m i ] n [n ij ] 2 max Z(m, n) = m 0,n 0 ZF (m) Z H (n) (20) s.t. n ij S H + m i S F S i K (21) j K Lm j i K n ij j K (22) n ij = N (23) m i = M (24) i K 1 2 Z F (m) = 1 m i D ij m j (25) 2 Z H (n) = n ij T ij (26) KKT FO ( I ) (2) (20) (24) Bendes decomposition 2 m [P] min n ij T ij (27) n 0 s.t. (21) (22) (23) [P] [D] max z,r,w ZH (z, R, W m) z N + (R i S F + W i L)m i S R i (28) i K i K s.t. z W j S H R i T ij i, j K (29) R i 0 i K (30) W j 0 j K (31) [P] [D] m ẐH (m) ẐH (m) ẐH (m) = ẐH (m) max m 0 ẐF (m) 1 m i D ij m j 2 ẐH (m) (32) s.t. (24) (20) (24) m ẐF (m) m i = Π i i S (33) ẐF (m) Π(m) FO ẐF (m) 4
5 1 5. (1) FO 1 S x [ S/2, S/2] x S 1 m, n m(x), n(x, y) z ij, Π i (m), R i, W j z(x, y), Π(x), R(x), W (x) A i (m) A[m(x)] = D(x, y)m(y)dy x S (34) S D(x, y) D(x, y) exp[ τ x y ] (35) x y 2 x, y i, j i j T (x, y) t x y (36) Z(m(x), n(x, y)) = Z F (m(x)) Z H (n(x, y)) (37) Z F (m(x)) = 1 D(x, y)m(x)m(y)dxdy (38) 2 S S Z H (n(x, y)) = T (x, y)n(x, y)dxdy (39) S S Z F (m(x)),z H (n(x, y)) (20) 1 2 (21),(22) S H n(x, y)dy + S F m(x) 1 x S (40) S n(x, y)dx L m(y) y S (41) S (40),(41) S H N + S F M S (42) N LM (43) 2 1 (N = LM) 2 (S H N + S F M = S) (2) 2 3 ( BA) ( RA) ( IA) m(x) m(x) BA RA IA ( BA/RA ) (e.g., 2 b 0, b 1, b 2 ) BA/RA BA RA 2 BA 4 N BA N 5 ( a) e)) a) 2 (a) BA/RA 5
6 3 4 e) 2 Z c b) 2 (b) IA BA RA IA RA BA BA/RA b (1) [b 0, b 1 ] T Z (1) c) 1 2 (c) 1 x [ b 0, b 0 ] BA BA/RA b 0 = MSF 2 Z m d) 2 BA 2J (J N) 3 x 0 x = 0 RA RA BA BA/RA b (2J) [b 0, b 1,..., b 2J 1 ] T Z (2J) 3 BA 2J + 1 (J N) 4 x 0 x = 0 BA RA BA BA/RA b (2J+1) [b 0, b 1,..., b 2J ] T Z (2J+1) 6. 2 BA/RA 1 BA/RA 2 1 (1) BA/RA b (i) BA/RA Z (i) (b (i) ) i BA/RA b (i) BA/RA Z(i) Z (i) = max b (i).z (i) (b (i) ) i (44) 6
7 (2) 1 Step 1 τ, t, M, L, S F, S H Step 2 Z (i) := max.z (i) (b (i) ) ( i) b (i) Step 3 Zc, Zm, Z(i) ( i) Step 4 maxz c, Z m, max i Z (i) }} Step τ, t τ, t 33 (M, L, S F, S H ) = (100, 1, 1, 1) (1) 5 (τ, t) t t t t 1, t 2 t < t 2 (e.g., t = ) τ 6 t = 0.05, τ = τ 6 τ 1 1 τ 1 2 τ 1 τ t < t 2 τ
8 7 1 6) Core-Periphery 7) SISC (2) FO 7 3 t t t < t τ 1 1 t 1 8. FO 3 Osawa and Akamatsu 3) 7 BA/RA 1 FO FO NEG FO 1 2 FO FO FO I 1 4.(1) KKT 2.(4) (20) (24) L(m, n, R, W, z ) = Z(m, n) + i + j W j (L m j i R i (S H n ij + S F m i S) j n ij ) + z ( i s.t. n ij, m i, R i, W j, z 0 n ij N) j (I.1) R i, W j, z 1 n ij n ij = 0 n ij 0, n ij 0 m i m i = 0 m i 0, m i 0 i, j i (I.2) (I.3) 8
9 R i S S H n ij S F m i = 0 j S S H n ij S F m i 0, R i 0 j i (1) Z F (τ) = m2 m [exp( τs) + τs 1] (τ) 2 ( ) W j n ij Lm j = 0 i n ij Lm j 0, W j 0 i N i n ij = 0 j j (I.4) (I.5) (I.6) (I.4) (10) (I.5) (11) (I.6) (13) n ij = T ij + R i S H W j + z i, j (I.7) (I.2) (8) m i = j D ij m j + R i S F LW i I, i (I.8) Π = 0 (I.3) (9) II (38),(39) BA/RA Z F (τ) Z H (t) Z(τ, t) = Z F (τ) Z H (t) m b = 1/S F x B m(x) = m r = 0 x R (II.1) m m = 1/(S F + LS H ) x I n b = 0 x B n(x) = n r = 1/S H x R (II.2) n m = L/(S F + LS H ) x I n(x, y)dy n(x) B, R, I S BA,RA,IA x (38),(39) Z H (t) = 0 (2) 1 b 0 b 1 b 1 = L 1 + L b 0 + M 2m b Z F (τ) = 2m2 m (τ) 2 τb 0 exp[ τb 0 ] sinh[τb 0 ]} + 2m2 b (τ) 2 τ(b 1 b 0 ) exp[ τb 1 ](sinh[τb 1 ] sinh[τb 0 ])} + 2m b (τ) 2 (m b 2m m ) sinh[τb 0 ](exp[ τb 1 ] exp[ τb 0 ])} y x x x ( b 1, b 1 ) b 1 b 0 y(x) = (x b 1 ) + b 0 x [b 1, S/2] S/2 b 1 b 1 b 0 (x + b 1 ) b 0 x [ S/2, b 1 ] S/2 b 1 Z H (t) = n r (S/2 b 1 )(S/2 b 0 )t (3) 1 Z F (τ) = m2 b (τ) 2 [exp ( b 0τ) + b 0 τ 1] y x b 0 (x b 0 ) x [b 0, S/2] S/2 b 0 y(x) = b 0 (x + b 0 ) x [ S/2, b 0 ] S/2 b 0 x otherwise Z H (t) = n r S/2(S/2 b 0 )t 9
10 (4) 2J J N [ J 1 Z F (τ) = 2m2 b (τ) 2 τ(b 2i+1 b 2i ) i=0 + sinh[τb 2i ](exp[ τb 2i+1 ] exp[ τb 2i ]) exp[ τb 2i+1 ](sinh[τb 2i+1 ] sinh[τb 2i ]) J 1 2(exp[ τb 2i+1 ] exp[ τb 2i ]) i=1 }] i 1 (sinh[τb 2j+1 ] sinh[τb 2j ]) j=0 } (II.3) 2 (II.3) 4,5 b 2k,2k+1 = nr Lm b (b 2k b 2k 1,2k ) + b 2k b 2k+1,2k+2 = Lm b n r (b 2k+1 b 2k,2k+1 ) + b 2k+1 where k = 0, 1,..., J 1 b 2k,2k+1 b 2k (x b 2k 1,2k ) + b 2k b 2k b 2k 1,2k x [b 2k 1,2k, b 2k ] y(x) = b 2k+1 b 2k,2k+1 (x b 2k+1 ) + b 2k,2k+1 b 2k+1,2k+2 b 2k+1 x [b 2k+1, b 2k+1,2k+2 ] where k = 0, 1,..., J 1 J 1 Z H (t) =tn r [(b 2k b 2k 1,2k )(b 2k,2k+1 b 2k 1,2k ) k=0 + (b 2k+1,2k+2 b 2k+1 )(b 2k+1,2k+2 b 2k,2k+1 )] (5) 2J + 1 J N [ J Z F (τ) = 2m2 b (τ) 2 τ(b 2i b 2i 1 ) i=1 + (sinh[τb 2i 1 ] sinh[τb 0 ])(exp[ τb 2i ] exp[ τb 2i 1 ]) exp[ τb 2i ](sinh[τb 2i ] sinh[τb 2i 1 ]) } sinh[τb 0 ](exp[ τb 2i ] exp[ τb 2i 1 ]) J 2[(exp[ τb 2i ] exp[ τb 2i 1 ]) i=2 } i 1 (sinh[τb 2j ] sinh[τb 2j 1 ]) j=1 + τb 0 exp[ τb 0 ] sinh[τb 0 ] ] (II.4) 3 (II.4) 5,6 b 2k,2k+1 = Lm b (b 2k b 2k 1,2k ) + b 2k b 2k+1,2k+2 = n r nr Lm b (b 2k+1 b 2k,2k+1 ) + b 2k+1 where k = 0, 1,..., J 1 b 0 (x b 0 ) b 0,1 b 0 y(x) = x [b 0, b 0,1 ] b 2k 1,2k b 2k 1 (x b 2k 2,2k 1 ) + b 2k 1 b 2k 1 b 2k 2,2k 1 x [b 2k 2,2k 1, b 2k 1 ] b 2k b 2k 1,2k (x b 2k ) + b 2k 1,2k b 2k,2k+1 b 2k where k = 1, 2,..., J x [b 2k, b 2k+1 ] Z H (t) = tn r [b 0,1 (b 0,1 b 0 ) J + (b 2k 1 b 2k 2,2k 1 )(b 2k 1,2k b 2k 2,2k 1 ) k=1 + (b 2k,2k+1 b 2k )(b 2k,2k+1 b 2k 1,2k )}] 1) Fujita, M., Ogawa, H. : Multiple equilibria and structural transition of non-monocentric urban configurations, Regional science and urban economics, Vol. 12, No.2, pp , ) Fujita, M. and Thisse, J.-F., Economics of Agglomeration: Cities, Industrial Location, and Globalization (2nd Edition), Cambridge University Press, ) Osawa, M.,Akamatsu, T.: Stochastically stablity analysis of a model of endogenous urban subcenter formation, (CD-ROM), Vol.54, ) Sandholm, W. H.: Population games and evolutionary dynamics, MIT press, ) Reza Sobhaninejad D3() Vol.69, No.1, pp.53-63, ) 1 D Vol. 66, No. 4, pp , ) Social Interaction D3( ) Vol.67 No.1 pp ( ) 10
11 STOCHASTIC STABILITY ANALYSIS OF A MODEL OF POLYCENTRIC URBAN CONFIGURATIONS: LINEAR CITY VS. CIRCULAR CITY Shuhei YAMAGUCHI and Takashi AKAMATSU 11
II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2
II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh
II 2 II
II 2 II 2005 [email protected] 2005 4 1 1 2 5 2.1.................................... 5 2.2................................. 6 2.3............................. 6 2.4.................................
‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í
Markov 2009 10 2 Markov 2009 10 2 1 / 25 1 (GA) 2 GA 3 4 Markov 2009 10 2 2 / 25 (GA) (GA) L ( 1) I := {0, 1} L f : I (0, ) M( 2) S := I M GA (GA) f (i) i I Markov 2009 10 2 3 / 25 (GA) ρ(i, j), i, j I
x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s
... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z
i
i 3 4 4 7 5 6 3 ( ).. () 3 () (3) (4) /. 3. 4/3 7. /e 8. a > a, a = /, > a >. () a >, a =, > a > () a > b, a = b, a < b. c c n a n + b n + c n 3c n..... () /3 () + (3) / (4) /4 (5) m > n, a b >, m > n,
微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.
微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)
() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (
3 n nc k+ k + 3 () n C r n C n r nc r C r + C r ( r n ) () n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (4) n C n n C + n C + n C + + n C n (5) k k n C k n C k (6) n C + nc
..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A
.. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.
量子力学 問題
3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,
1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0
1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx
V 0 = + r pv (H) + qv (T ) = + r ps (H) + qs (T ) = S 0 X n+ (T ) = n S n+ (T ) + ( + r)(x n n S n ) = ( + r)x n + n (d r)s n = ( + r)v n + V n+(h) V
I (..2) (0 < d < + r < u) X 0, X X = 0 S + ( + r)(x 0 0 S 0 ) () X 0 = 0, P (X 0) =, P (X > 0) > 0 0 H, T () X 0 = 0, X (H) = 0 us 0 ( + r) 0 S 0 = 0 S 0 (u r) X (T ) = 0 ds 0 ( + r) 0 S 0 = 0 S 0 (d r)
() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)
0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()
IA [email protected] Last updated: January,......................................................................................................................................................................................
II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (
II (1 4 ) 1. p.13 1 (x, y) (a, b) ε(x, y; a, b) f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a x a A = f x (a, b) y x 3 3y 3 (x, y) (, ) f (x, y) = x + y (x, y) = (, )
(2004 ) 2 (A) (B) (C) 3 (1987) (1988) Shimono and Tachibanaki(1985) (2008) , % 2 (1999) (2005) 3 (2005) (2006) (2008)
,, 23 4 30 (i) (ii) (i) (ii) Negishi (1960) 2010 (2010) ( ) ( ) (2010) E-mail:[email protected] E-mail:[email protected] E-mail:[email protected] 1 1 16 (2004 ) 2 (A) (B) (C) 3 (1987)
(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y
[ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)
211 [email protected] 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,
Jacobi, Stieltjes, Gauss : :
Jacobi, Stieltjes, Gauss : : 28 2 0 894 T. J. Stieltjes [St94a] Recherches sur les fractions continues Stieltjes 0 f(u)du, z + u f(u) > 0, z C z + + a a 2 z + a 3 +..., a p > 0 (a) Vitali (a) Stieltjes
131 はじめに エコノミア 第 64 巻第 1 号 (2013 年 5 月 ), 頁 [Economia Vol. 64 No.1(May 2013),pp ]
131 はじめに 2011 3 11 2 3.11 3.11 3.11 2 3.11 3.11 3.11 エコノミア 第 64 巻第 1 号 (2013 年 5 月 ),131--143 頁 [Economia Vol. 64 No.1(May 2013),pp.131-143] 132 1. 地域経済学研究と現実からの乖離 (1)2 つの地域経済学 NAFTA EU 2 1990 2007 2008
(1) (2) (1) (2) 2 3 {a n } a 2 + a 4 + a a n S n S n = n = S n
. 99 () 0 0 0 () 0 00 0 350 300 () 5 0 () 3 {a n } a + a 4 + a 6 + + a 40 30 53 47 77 95 30 83 4 n S n S n = n = S n 303 9 k d 9 45 k =, d = 99 a d n a n d n a n = a + (n )d a n a n S n S n = n(a + a n
液晶の物理1:連続体理論(弾性,粘性)
The Physics of Liquid Crystals P. G. de Gennes and J. Prost (Oxford University Press, 1993) Liquid crystals are beautiful and mysterious; I am fond of them for both reasons. My hope is that some readers
y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =
[ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =
2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n
. X {x, x 2, x 3,... x n } X X {, 2, 3, 4, 5, 6} X x i P i. 0 P i 2. n P i = 3. P (i ω) = i ω P i P 3 {x, x 2, x 3,... x n } ω P i = 6 X f(x) f(x) X n n f(x i )P i n x n i P i X n 2 G(k) e ikx = (ik) n
PowerPoint プレゼンテーション
二次元空間 Fujita-Ogawa モデルの数値解法の開発 第 56 回土木計画学研究発表会 秋本克哉, 赤松隆 東北大学 情報科学研究科 1 研究の背景 (1) 中心市街地空洞化の問題 中心市街地の活性化が求められる 都心形成現象を説明する理論が必要 Fujita and Ogawa [FO] (1982) モデル 企業と消費者が立地競争する 企業が複数の都心に集積する立地パターンが均衡解となるメカニズムを示した
I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )
I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17
II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re
II 29 7 29-7-27 ( ) (7/31) II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I Euler Navier
: : : : ) ) 1. d ij f i e i x i v j m a ij m f ij n x i =
1 1980 1) 1 2 3 19721960 1965 2) 1999 1 69 1980 1972: 55 1999: 179 2041999: 210 211 1999: 211 3 2003 1987 92 97 3) 1960 1965 1970 1985 1990 1995 4) 1. d ij f i e i x i v j m a ij m f ij n x i = n d ij
v er.1/ c /(21)
12 -- 1 1 2009 1 17 1-1 1-2 1-3 1-4 2 2 2 1-5 1 1-6 1 1-7 1-1 1-2 1-3 1-4 1-5 1-6 1-7 c 2011 1/(21) 12 -- 1 -- 1 1--1 1--1--1 1 2009 1 n n α { n } α α { n } lim n = α, n α n n ε n > N n α < ε N {1, 1,
() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.
() 6 f(x) [, b] 6. Riemnn [, b] f(x) S f(x) [, b] (Riemnn) = x 0 < x < x < < x n = b. I = [, b] = {x,, x n } mx(x i x i ) =. i [x i, x i ] ξ i n (f) = f(ξ i )(x i x i ) i=. (ξ i ) (f) 0( ), ξ i, S, ε >
6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4
35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m
2011de.dvi
211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37
No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2
No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j
(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z
B 4 24 7 9 ( ) :,..,,.,. 4 4. f(z): D C: D a C, 2πi C f(z) dz = f(a). z a a C, ( ). (ii), a D, a U a,r D f. f(z) = A n (z a) n, z U a,r, n= A n := 2πi C f(ζ) dζ, n =,,..., (ζ a) n+, C a D. (iii) U a,r
(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0
1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45
, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,
6,,3,4,, 3 4 8 6 6................................. 6.................................. , 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p,
1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1
1/5 ( ) Taylor ( 7.1) (x, y) f(x, y) f(x, y) x + y, xy, e x y,... 1 R {(x, y) x, y R} f(x, y) x y,xy e y log x,... R {(x, y, z) (x, y),z f(x, y)} R 3 z 1 (x + y ) z ax + by + c x 1 z ax + by + c y x +
1. 1 BASIC PC BASIC BASIC BASIC Fortran WS PC (1.3) 1 + x 1 x = x = (1.1) 1 + x = (1.2) 1 + x 1 = (1.
Section Title Pages Id 1 3 7239 2 4 7239 3 10 7239 4 8 7244 5 13 7276 6 14 7338 7 8 7338 8 7 7445 9 11 7580 10 10 7590 11 8 7580 12 6 7395 13 z 11 7746 14 13 7753 15 7 7859 16 8 7942 17 8 Id URL http://km.int.oyo.co.jp/showdocumentdetailspage.jsp?documentid=
「産業上利用することができる発明」の審査の運用指針(案)
1 1.... 2 1.1... 2 2.... 4 2.1... 4 3.... 6 4.... 6 1 1 29 1 29 1 1 1. 2 1 1.1 (1) (2) (3) 1 (4) 2 4 1 2 2 3 4 31 12 5 7 2.2 (5) ( a ) ( b ) 1 3 2 ( c ) (6) 2. 2.1 2.1 (1) 4 ( i ) ( ii ) ( iii ) ( iv)
(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi
II (Basics of Probability Theory ad Radom Walks) (Preface),.,,,.,,,...,,.,.,,.,,. (Basics of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios, Meas).............................
A S hara/lectures/lectures-j.html ϵ-n 1 ϵ-n lim n a n = α n a n α 2 lim a n = 0 1 n a k n n k= ϵ
A S1-20 http://www2.mth.kyushu-u.c.jp/ hr/lectures/lectures-j.html 1 1 1.1 ϵ-n 1 ϵ-n lim n n = α n n α 2 lim n = 0 1 n k n n k=1 0 1.1.7 ϵ-n 1.1.1 n α n n α lim n n = α ϵ N(ϵ) n > N(ϵ) n α < ϵ (1.1.1)
(MIRU2008) HOG Histograms of Oriented Gradients (HOG)
(MIRU2008) 2008 7 HOG - - E-mail: [email protected], {takigu,ariki}@kobe-u.ac.jp Histograms of Oriented Gradients (HOG) HOG Shape Contexts HOG 5.5 Histograms of Oriented Gradients D Human
Untitled
II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j
TOP URL 1
TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7
II 1 3 2 5 3 7 4 8 5 11 6 13 7 16 8 18 2 1 1. x 2 + xy x y (1 lim (x,y (1,1 x 1 x 3 + y 3 (2 lim (x,y (, x 2 + y 2 x 2 (3 lim (x,y (, x 2 + y 2 xy (4 lim (x,y (, x 2 + y 2 x y (5 lim (x,y (, x + y x 3y
統計学のポイント整理
.. September 17, 2012 1 / 55 n! = n (n 1) (n 2) 1 0! = 1 10! = 10 9 8 1 = 3628800 n k np k np k = n! (n k)! (1) 5 3 5 P 3 = 5! = 5 4 3 = 60 (5 3)! n k n C k nc k = npk k! = n! k!(n k)! (2) 5 3 5C 3 = 5!
1996 2000 2004 1984 2005 7150 000 9 500 9 4 13 10 95 11 11 12 20002004 9 70
14 2006 1 Key Words 2002 3 1 2 3 3 1 2 3 1969 1987 69 1996 2000 2004 1984 2005 7150 000 9 500 9 4 13 10 95 11 11 12 20002004 9 70 14 2006 1 15 71 72 1 22 6 32 9 200 6 3 1 2 2000 10 1 2003 10 2005 6 5 4
立命館21_川端先生.indd
21 119-132 2010 ( ) ' Key Words 119 21 2010 7 1962 2001 2001 2007 1982 1988 1997 2007 1997 1998 1863 1880 1 1998 1998 2001 1599 120 121 1599 1695 8 1695 1714 4 1714 1715 5 1715 100 1812 9 1812 1864 2001
note4.dvi
10 016 6 0 4 (quantum wire) 4.1 4.1.1.6.1, 4.1(a) V Q N dep ( ) 4.1(b) w σ E z (d) E z (d) = σ [ ( ) ( )] x w/ x+w/ π+arctan arctan πǫǫ 0 d d (4.1) à ƒq [ƒg w ó R w d V( x) QŽŸŒ³ džq x (a) (b) 4.1 (a)
Z: Q: R: C:
0 Z: Q: R: C: 3 4 4 4................................ 4 4.................................. 7 5 3 5...................... 3 5......................... 40 5.3 snz) z)........................... 4 6 46 x
M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 -
M3............................................................................................ 3.3................................................... 3 6........................................... 6..........................................
2 1,2, , 2 ( ) (1) (2) (3) (4) Cameron and Trivedi(1998) , (1987) (1982) Agresti(2003)
3 1 1 1 2 1 2 1,2,3 1 0 50 3000, 2 ( ) 1 3 1 0 4 3 (1) (2) (3) (4) 1 1 1 2 3 Cameron and Trivedi(1998) 4 1974, (1987) (1982) Agresti(2003) 3 (1)-(4) AAA, AA+,A (1) (2) (3) (4) (5) (1)-(5) 1 2 5 3 5 (DI)
29
9 .,,, 3 () C k k C k C + C + C + + C 8 + C 9 + C k C + C + C + C 3 + C 4 + C 5 + + 45 + + + 5 + + 9 + 4 + 4 + 5 4 C k k k ( + ) 4 C k k ( k) 3 n( ) n n n ( ) n ( ) n 3 ( ) 3 3 3 n 4 ( ) 4 4 4 ( ) n n
2 3 5 5 5 5 6 6 7 7 8 10 10 10 10 11 11 12 12 13 16 16 16 16 17 19 21 21 22 5
1D000425-2 1 2 3 5 5 5 5 6 6 7 7 8 10 10 10 10 11 11 12 12 13 16 16 16 16 17 19 21 21 22 5 3 29 29 29 30 31 31 32 35 35 35 36 41 41 41 46 48 48 48 52 57 4 700 13 1988 4 5 4 5 21 1 1 3 4 5 6 21 10 1888
経済論集 46‐2(よこ)(P)☆/2.三崎
1 2 1869 11 17 5 10 1 3 1914 5 15 5 1872 9 12 3 1870 1 26 14 1881 11 11 12 6 11 1878 5 9 13 1880 6 17 1 15 1882 1 2 3 11 1828 2 26 24 1891 4 22 2 1849 12 1 3 1856 pp 20 21. 1971 p.429. 1973 1, pp.440 444.
I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%
1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: [email protected], http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n
