1 180m g 10m/s 2 2 6 1 3 v 0 (t=0) z max t max t z = z max 1 2 g(t t max) 2 (6) 1.3 2 3 3 r = (x, y, z) e x, e y, e z r = xe x + ye y + ze z. (7) v =



Similar documents
ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

d (K + U) = v [ma F(r)] = (2.4.4) t = t r(t ) = r t 1 r(t 1 ) = r 1 U(r 1 ) U(r ) = t1 t du t1 = t F(r(t)) dr(t) r1 = F dr (2.4.5) r F 2 F ( F) r A r

1.1 ft t 2 ft = t 2 ft+ t = t+ t d t 2 t + t 2 t 2 = lim t 0 t = lim t 0 = lim t 0 t 2 + 2t t + t 2 t 2 t + t 2 t 2t t + t 2 t 2t + t = lim t 0

(w) F (3) (4) (5)??? p8 p1w Aさんの 背 中 が 壁 を 押 す 力 垂 直 抗 力 重 力 静 止 摩 擦 力 p8 p


Gmech08.dvi

2 (f4eki) ρ H A a g. v ( ) 2. H(t) ( ) Chapter 5 (f5meanfp) ( ( )? N [] σ e = 8π ( ) e mc 2 = cm 2 e m c (, Thomson cross secion). Cha

I 1

pdf

C:/KENAR/0p1.dvi

sec13.dvi

i

2 Chapter 4 (f4a). 2. (f4cone) ( θ) () g M. 2. (f4b) T M L P a θ (f4eki) ρ H A a g. v ( ) 2. H(t) ( )

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d

Gmech08.dvi

I ( ) 2019

dynamics-solution2.dvi

2 1 x 1.1: v mg x (t) = v(t) mv (t) = mg 0 x(0) = x 0 v(0) = v 0 x(t) = x 0 + v 0 t 1 2 gt2 v(t) = v 0 gt t x = x 0 + v2 0 2g v2 2g 1.1 (x, v) θ

2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n

A A. ω ν = ω/π E = hω. E


A


0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,,

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq


2 p T, Q


24.15章.微分方程式

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)


08-Note2-web

i ( ) PDF I +α II II III A: IV B: V C: III V I, II III IV V III IV krmt@sci.u-toyama.ac.jp

3 filename=quantum-3dim110705a.tex ,2 [1],[2],[3] [3] U(x, y, z; t), p x ˆp x = h i x, p y ˆp y = h i y, p z ˆp z = h

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

B ver B

i I

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

() (, y) E(, y) () E(, y) (3) q ( ) () E(, y) = k q q (, y) () E(, y) = k r r (3).3 [.7 ] f y = f y () f(, y) = y () f(, y) = tan y y ( ) () f y = f y

応力とひずみ.ppt

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1.

Part () () Γ Part ,

I.2 z x, y i z = x + iy. x, y z (real part), (imaginary part), x = Re(z), y = Im(z). () i. (2) 2 z = x + iy, z 2 = x 2 + iy 2,, z ± z 2 = (x ± x 2 ) +

x ( ) x dx = ax

/Volumes/NO NAME/gakujututosho/chap1.tex i

Part. 4. () 4.. () Part ,

K E N Z OU

Maxwell ( H ds = C S rot H = j + D j + D ) ds (13.5) (13.6) Maxwell Ampère-Maxwell (3) Gauss S B 0 B ds = 0 (13.7) S div B = 0 (13.8) (4) Farad

4 4. A p X A 1 X X A 1 A 4.3 X p X p X S(X) = E ((X p) ) X = X E(X) = E(X) p p 4.3p < p < 1 X X p f(i) = P (X = i) = p(1 p) i 1, i = 1,, r + r

genron-3

A B 5 C mm, 89 mm 7/89 = 3.4. π 3 6 π 6 6 = 6 π > 6, π > 3 : π > 3

Untitled

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP

Note.tex 2008/09/19( )

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

2.4 ( ) ( B ) A B F (1) W = B A F dr. A F q dr f(x,y,z) A B Γ( ) Minoru TANAKA (Osaka Univ.) I(2011), Sec p. 1/30

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

δ ij δ ij ˆx ˆx ŷ ŷ ẑ ẑ 0, ˆx ŷ ŷ ˆx ẑ, ŷ ẑ ẑ ŷ ẑ, ẑ ˆx ˆx ẑ ŷ, a b a x ˆx + a y ŷ + a z ẑ b x ˆx + b

2.2 ( y = y(x ( (x 0, y 0 y (x 0 (y 0 = y(x 0 y = y(x ( y (x 0 = F (x 0, y(x 0 = F (x 0, y 0 (x 0, y 0 ( (x 0, y 0 F (x 0, y 0 xy (x, y (, F (x, y ( (

untitled

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

96 7 1m = N 1A a C (1) I (2) A C I A A a A a A A a C C C 7.2: C A C A = = µ 0 2π (1) A C 7.2 AC C A 3 3 µ0 I 2 = 2πa. (2) A C C 7.2 A A

振動と波動

C : q i (t) C : q i (t) q i (t) q i(t) q i(t) q i (t)+δq i (t) (2) δq i (t) δq i (t) C, C δq i (t 0 )0, δq i (t 1 ) 0 (3) δs S[C ] S[C] t1 t 0 t1 t 0

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 -

Maxwell

77

II 2 II

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z

2011de.dvi

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

Gmech08.dvi

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt


Chap11.dvi

: =, >, < π dθ = dφ = K = 1/R 2 rdr + udu = 0 dr 2 + du 2 = dr 2 + r2 1 R 2 r 2 dr2 = 1 r 2 /R 2 = 1 1 Kr 2 (4.3) u iu,r ir K = 1/R 2 r R


/Volumes/NO NAME/gakujututosho/chap1.tex i

KENZOU

notekiso1_09.dvi


h = h/2π 3 V (x) E ψ = sin kxk = 2π/λ λ = h/p p = h/λ = kh/2π = k h 5 2 ψ = e ax2 ガウス 型 関 数 関 数 値

7) ẋt) =iaω expiωt) ibω exp iωt) 9) ẋ0) = iωa b) = 0 0) a = b a = b = A/ xt) = A expiωt) + exp iωt)) = A cosωt) ) ) vt) = Aω sinωt) ) ) 9) ) 9) E = mv

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

(1) D = [0, 1] [1, 2], (2x y)dxdy = D = = (2) D = [1, 2] [2, 3], (x 2 y + y 2 )dxdy = D = = (3) D = [0, 1] [ 1, 2], 1 {


高等学校学習指導要領

高等学校学習指導要領

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

untitled

II (1) log(1 + r/100) n = log 2 n log(1 + r/100) = log 2 n = log 2 log(1 + r/100) (2) y = f(x) = log(1 + x) x = 0 1 f (x) = 1/(1 + x) f (0) = 1

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2


30

Transcription:

1. 2. 3 3. 4. 5. 6. 7. 8. 9. I http://risu.lowtem.hokudai.ac.jp/ hidekazu/class.html 1 1.1 1 a = g, (1) v = g t + v 0, (2) z = 1 2 g t2 + v 0 t + z 0. (3) 1.2 v-t. z-t. z 1 z 0 = dz = v, t1 dv v(t), v 1 v 0 = t 0 1 = a, (4) t1 t 0 a(t). (5)

1 180m g 10m/s 2 2 6 1 3 v 0 (t=0) z max t max t z = z max 1 2 g(t t max) 2 (6) 1.3 2 3 3 r = (x, y, z) e x, e y, e z r = xe x + ye y + ze z. (7) v = dr (8) v = v x e x + v y e y + v z e z, (9) dr = dx e x + dy e y + dz e z. (10) a = dv = d2 r 2 (11) d 2 r 2 = d2 x 2 e x + d2 y 2 e y + d2 z 2 e z. (12) 1 2

x v x a x = 0, (13) v x = v x0, (14) x = v x0 t + x 0. (15) z a z = a z0 = g, (16) v z = a z0 t + v z0, (17) z = 1 2 a z0t 2 + v z0 t + z 0. (18) θ v 0 v x0 = v 0 cos θ, v z0 = v 0 sin θ. (19) (x max, z max ) t max 4 (23) x max = x 0 + v x0v z0, (20) g z max = z 0 + v2 z0 2g, (21) t max = v z0 g. (22) z = z max g 2v 2 x0 (x x max ) 2 (23) 5 x 1 z 1 θ tan α = z 1 /x 1 α θ = α/2 + π/4 3

2 3 2.1 1 2.2 2 F = ma. (24) N( ) = kg m /s 2. (24) (25) p = mv. (25) d p = F. (26) 2.3 3 (m 1, x 1, v 1 ) (m 2, x 2,v 2 ) m 1 d v 1 = F, m 2 d v 2 = F. (27) d (p 1 + p 2 ) = 0. (28) 4

p = m 0 v/ 1 (v 2 /c 2 ) p = h/λ p 1 p 2 p 1 p 2 t2 F (t) (= ), (29) p 1 p 1 = t 1 t2 p 2 p 2 = F (t). (30) t 1 p 1 + p 2 = p 1 + p 2. (31) 1 6 kv k g 1. 2. v t 3. ( v t 5

3 3.1. dr F dw dw = F dx cos θ = F dr. (32) W = r2 r 1 F dr. (33) (32) cos θ (33) dw = mgdz, W = mg(z 2 z 1 ). P = dw = F v. (34) 3.2 : K = 1 2 mv2 (35) ( ) d 1 2 mv2 = v d (mv) = v F (= ). (36) 1 2 mv(t)2 1 2 mv(0)2 = W (t) (37) du = F dr, U(r) = r F dr (38) 6

1. 2. gradient F x U x F y = U y. (39) F z U z F = grad U = U (40) 3. 3.3 ( ) d 1 2 mv2 = v d (mv) = v F = v gradu = d U(r(t)). (41) d (K + U) = 0. (42) 7 F = kx x k.) 8 k/ r k 1. 2. g = 9.8m/s 2 6400km 1kg k 7

y e θ e r 4 r θ x 4.1 2 2 2 r = θ = ωt (ω ( )). x = r cos θ, y = r sin θ. (43) r = r cos θe x + r sin θe y. (44) v = ωre θ, a = ω 2 r. (45) F = mω 2 r. (46) (45) v = dr = r sin θ dθ e x + r cos θ dθ e y e θ = sin θe x + cos θe y = ωr( sin θe x + cos θe y ). (47) v = ωre θ. (48) a = dv = ω2 r( cos θe x sin θe y ) = ω 2 r. (49) 4.2 k m : m d2 x = kx. (50) 2 8

x d 2 x/ 2 = ω 2 x x = A cos ωt, ω = k/m. (51) v = ωa sin ωt, K = 1 2 mv2 = 1 2 mω2 A 2 sin 2 ωt, U = 1 2 kx2 = 1 2 ka2 cos 2 ωt. K + U =. (52) 4.3 F = Gm 1m 2 r 2 r 1 2, U = Gm 1m 2 r 2 r 1. (53) (G = 6.7 10 11 N m 2 /kg 2 ) ρ(x, y, z) U(r 2 ) = V (ρ = ρ(r)) Gm 2 ρ(x, y, z) dxdydz. (54) r 2 r r, r 9 R m 0 1. r G M 2. r t 3. r GmM/R 9

5 A B A B sin θ (θ A B ) A B A A = 0, B A = A B. (55) e x e y = e z, e y e z = e x, e z e x = e y. (56) A B = (A y B z A z B y )e x + (A z B x A x B z )e y + (A x B y A y B z )e z. (57) L r p. dl = dr p + r dp = r F ( N). (58) (N r F ) (F (r) = f(r)e r ) N = 0, L =. (59) 10 (57) 6 4 2 (r, θ) (43) (ṙ 0) ( vx v y ) ( cos θ sin θ = sin θ cos θ ) ( ṙ r θ ). (60) 10

( ax a y ) ( cos θ sin θ = sin θ cos θ ) ( r r θ 2 r θ + 2ṙ θ ). (61) { er = cos θ e x + sin θ e y, e θ = sin θ e x + cos θ e y. r θ ( ) ( ) ( ) ( Ar A er cos θ sin θ Ax = = A θ A e θ sin θ cos θ A y (60) (61) ( ) ( ) vr ṙ = r θ, v θ ( ar a θ (62) ). (63) ) ( ) r r θ2 = r θ + 2ṙ θ. (64) F = f(r)e r m r = f(r)e r (64) θ ([66] ) m( r r θ 2 ) = f(r), (65) m(r θ + 2ṙ θ) = 0. (66) d dl z (mr2 θ) = = 0. (67) L z U(r) (65) f(r) = (du/dr) m r L2 z mr + du = 0. (68) 3 dr ṙ d ( ) 1 2 mṙ2 + L2 z 2mr + U(r) = 0. (69) 2 E = 1 ( 2 mṙ2 + L2 z 2mr + U(r) = 1 ) 2 2 m(v2 r + vθ) 2 + U(r) 11 L z = mr 2 θ (69) (70) 11

Y y a a 1- e 2 ae r θ x, X 7 7.1 3 1 x-y x (x + ae) 2 y 2 + a 2 a 2 (1 e 2 ) = 1. (71) a e a(1 e) a(1 + e) 3 (43) (71) r 12 (72) (71) r = a(1 e2 ) 1 + e cos θ. (72) 7.2 U = GMm/r 2 mr 2 θ = E, L z a, e U = GMm/r E = 1 2 mṙ2 + L2 z 2mr GMm 2 r (73) ṙ = 0 r 2 + GMm E r L2 z 2mE = 0. (74) 2 a(1 e) a(1 + e) E = GMm 2a, (75) L z = m GMa(1 e 2 ). (76) 12

T r 2 θ/2 = Lz /(2m) T = πa2 1 e 2 L z /(2m) = 2π a 3 GM. (77) (76) 3/2 (72) (68) r = θ u 1/r L2 z m 2 r GM 3 r. (78) 2 ṙ = dr θ dθ = L z dr mr 2 dθ = L z m du dθ. (79) r = d ( L z m (78) u = u GMm 2 /L 2 z ) du = L z dθ m θ d2 u dθ = L2 z d 2 u 2 m 2 r 2 dθ. (80) 2 d 2 u GMm2 = u +. (81) dθ2 L 2 z d 2 u dθ 2 = u. (82) u = u GMm2 L 2 z = A cos(θ θ 0 ). (83) L z (76) A = e/[a(1 e 2 )] θ 0 = 0 (72) 13 (75) (76) 14 (73) (72) (73) (79) (75) (76) (du/dθ) u a e (72) 13

8 8.1 2 2 2 F 12 2 1 F 21 = F 12. 2 r = r 2 r 1 m 1 d 2 r 1 2 = F 12, m 2 d 2 r 2 2 = F 21. (84) (84) 2 2 ( ) d dr 1 m 1 + m dr 2 2 = 0. (85) r G r G m 1r 1 + m 2 r 2 m 1 + m2. (86) M = m 1 + m 2 (85) d (Mṙ G) = 0. (87) r = r 2 r 1 (84) 2 2 1 F 21 = F 12 ( d 2 1 r = + 1 ) F 2 21 (r), µ d2 m 1 m 2 r = F 21(r). (88) 2 ( 1 µ = + 1 ) m 1 m 2 = m 1m 2 m 1 + m 2. (89) 15 ( M) ( m) U = GMm/r 2 14

8.2 N ( ) F ij f i (i, j = 1 N.) m i d 2 r i 2 N = F ij + f i. (90) j=1 j i r G = 1 M m i r i. m i ) (91) ( M = i i P (= i p i ) dp = M d2 r G 2 = i f i. (92) L (= i l i ) l i = r i p i dl i N = r i F ij + r i f i. (93) j i i (F ij / (r i r j )) r i F ij + r j F ji = (r i r j ) F ij = 0 (94) dl = i r i f i (95) E U ij (r ij ) U i (r i ) r ij = r i r j [ de = d 1 2 m i v i 2 + i i j<i U ij (r ij ) + i U i (r i ) ] = 0. (96) 16 (90) (96) 15

9 9.1 ( 2 9.2 z Ω v = Ω r e θ, v x = Ω y, v y = Ω x, v z = 0. (97) Ω = Ωe z v = Ω r. (98) i m i r i ( 8.2) L = i m i r i v i. (99) L = ( ) m i r i (Ω r i ) = m i ri 2 Ω e z i i = I z Ω e z. (100) Ω I z z I z = i m i r 2 i. (101) 16

E = i 1 2 m i v i 2 = i 1 2 m i (Ω r i ) 2 = 1 2 I z Ω 2. (102) 2 r G I G,z h I G,z + h 2 M M (101) ρ I z = (x 2 + y 2 )ρ(x, y, z)dxdydz (103) M = ρ dxdydz 2a I G,z = 1 3 a2 M (104) a I G,z = a 2 M (105) a I G,z = 1 2 a2 M (106) a I G,z = 2 5 a2 M (107) (100) (95) Ω N z N z 17 I z dω = N z (108) 18 (103) 19 17

9.3 2 9.2. r i = r G + r i, v i = v G + v i. (109) m i r i = 0, m i v i = 0. (110) i v i i v i = Ω r i = Ω r i e θ. (111) P P = Mv G (112) L L = i m i r i v i = Mr G v G + I G,z Ωe z. (113) E E = i 1 2 m i v i 2 = 1 2 M v G 2 + 1 2 I G,z Ω 2. (114) 2 2 Ω (108) M d2 x G 2 = F x, M d2 y G 2 = F y. (115) F x, F y F x y 18

20 α M I G a x y 1. ( Mg, F ) N) Ω 2. v G,x = aω 3. x F M I G a g α F 1. M d2 x G 2 = Mg sin α F, (116) M d2 y G 2 = Mg cos α N. (117) I g dω = af. (118) 2. θ aθ x v G,x = a θ = aω. (119) 3. (116) (118) (119) F Ω d 2 x G 2 = a2 M a 2 M + I G g sin α (120) F F = I G a 2 M + I G g sin α (121) I G 19