16 June 2004 2 RAW Fig. 2 High resolution color image reconstruction from RAW data. u(i 1,i 2 )= p(i 1 x, i 2 y)i(x, y)dxdy (1) 1 demosaicking Fig. 1



Similar documents
4 4 2 RAW (PCA) RAW RAW [5] 4 RAW 4 Park [12] Park 2 RAW RAW 2 RAW y = Mx + n. (1) y RAW x RGB M CFA n.. R G B σr 2, σ2 G, σ2 B D n ( )

258 5) GPS 1 GPS 6) GPS DP 7) 8) 10) GPS GPS ) GPS Global Positioning System

1 Fig. 1 Extraction of motion,.,,, 4,,, 3., 1, 2. 2.,. CHLAC,. 2.1,. (256 ).,., CHLAC. CHLAC, HLAC. 2.3 (HLAC ) r,.,. HLAC. N. 2 HLAC Fig. 2

4. C i k = 2 k-means C 1 i, C 2 i 5. C i x i p [ f(θ i ; x) = (2π) p 2 Vi 1 2 exp (x µ ] i) t V 1 i (x µ i ) 2 BIC BIC = 2 log L( ˆθ i ; x i C i ) + q

(a) 1 (b) 3. Gilbert Pernicka[2] Treibitz Schechner[3] Narasimhan [4] Kim [5] Nayar [6] [7][8][9] 2. X X X [10] [11] L L t L s L = L t + L s

& Vol.5 No (Oct. 2015) TV 1,2,a) , Augmented TV TV AR Augmented Reality 3DCG TV Estimation of TV Screen Position and Ro

(MIRU2008) HOG Histograms of Oriented Gradients (HOG)

2007/8 Vol. J90 D No. 8 Stauffer [7] 2 2 I 1 I 2 2 (I 1(x),I 2(x)) 2 [13] I 2 = CI 1 (C >0) (I 1,I 2) (I 1,I 2) Field Monitoring Server

IPSJ SIG Technical Report 1, Instrument Separation in Reverberant Environments Using Crystal Microphone Arrays Nobutaka ITO, 1, 2 Yu KITANO, 1

Vol. 44 No. SIG 9(CVIM 7) ) 2) 1) 1 2) 3 7) 1) 2) 3 3) 4) 5) (a) (d) (g) (b) (e) (h) No Convergence? End (f) (c) Yes * ** * ** 1

Abstract This paper concerns with a method of dynamic image cognition. Our image cognition method has two distinguished features. One is that the imag

(4) ω t(x) = 1 ω min Ω ( (I C (y))) min 0 < ω < C A C = 1 (5) ω (5) t transmission map tmap 1 4(a) t 4(a) t tmap RGB 2 (a) RGB (A), (B), (C)

1 Kinect for Windows M = [X Y Z] T M = [X Y Z ] T f (u,v) w 3.2 [11] [7] u = f X +u Z 0 δ u (X,Y,Z ) (5) v = f Y Z +v 0 δ v (X,Y,Z ) (6) w = Z +

2.2 (a) = 1, M = 9, p i 1 = p i = p i+1 = 0 (b) = 1, M = 9, p i 1 = 0, p i = 1, p i+1 = 1 1: M 2 M 2 w i [j] w i [j] = 1 j= w i w i = (w i [ ],, w i [

IPSJ SIG Technical Report Vol.2010-CVIM-170 No /1/ Visual Recognition of Wire Harnesses for Automated Wiring Masaki Yoneda, 1 Ta

本文6(599) (Page 601)

xx/xx Vol. Jxx A No. xx 1 Fig. 1 PAL(Panoramic Annular Lens) PAL(Panoramic Annular Lens) PAL (2) PAL PAL 2 PAL 3 2 PAL 1 PAL 3 PAL PAL 2. 1 PAL

1 Table 1: Identification by color of voxel Voxel Mode of expression Nothing Other 1 Orange 2 Blue 3 Yellow 4 SSL Humanoid SSL-Vision 3 3 [, 21] 8 325

28 Horizontal angle correction using straight line detection in an equirectangular image

2003/3 Vol. J86 D II No Fig. 1 An exterior view of eye scanner. CCD [7] CCD PC USB PC PC USB RS-232C PC

IPSJ SIG Technical Report Vol.2009-BIO-17 No /5/26 DNA 1 1 DNA DNA DNA DNA Correcting read errors on DNA sequences determined by Pyrosequencing

Input image Initialize variables Loop for period of oscillation Update height map Make shade image Change property of image Output image Change time L

スライド 1

IPSJ SIG Technical Report iphone iphone,,., OpenGl ES 2.0 GLSL(OpenGL Shading Language), iphone GPGPU(General-Purpose Computing on Graphics Proc

Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels).

スライド 1

Vol1-CVIM-172 No.7 21/5/ Shan 1) 2 2)3) Yuan 4) Ancuti 5) Agrawal 6) 2.4 Ben-Ezra 7)8) Raskar 9) Image domain Blur image l PSF b / = F(

IPSJ SIG Technical Report Vol.2015-MUS-107 No /5/23 HARK-Binaural Raspberry Pi 2 1,a) ( ) HARK 2 HARK-Binaural A/D Raspberry Pi 2 1.

Optical Flow t t + δt 1 Motion Field 3 3 1) 2) 3) Lucas-Kanade 4) 1 t (x, y) I(x, y, t)


H(ω) = ( G H (ω)g(ω) ) 1 G H (ω) (6) 2 H 11 (ω) H 1N (ω) H(ω)= (2) H M1 (ω) H MN (ω) [ X(ω)= X 1 (ω) X 2 (ω) X N (ω) ] T (3)

1., 1 COOKPAD 2, Web.,,,,,,.,, [1]., 5.,, [2].,,.,.,, 5, [3].,,,.,, [4], 33,.,,.,,.. 2.,, 3.., 4., 5., ,. 1.,,., 2.,. 1,,

IPSJ SIG Technical Report Vol.2012-CG-149 No.13 Vol.2012-CVIM-184 No /12/4 3 1,a) ( ) DB 3D DB 2D,,,, PnP(Perspective n-point), Ransa

THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE.

"Moir6 Patterns on Video Pictures Taken by Solid State Image Sensors" by Okio Yoshida and Akito Iwamoto (Toshiba Research and Development Center, Tosh

Silhouette on Image Object Silhouette on Images Object 1 Fig. 1 Visual cone Fig. 2 2 Volume intersection method Fig. 3 3 Background subtraction Fig. 4

(a) (b) (c) Canny (d) 1 ( x α, y α ) 3 (x α, y α ) (a) A 2 + B 2 + C 2 + D 2 + E 2 + F 2 = 1 (3) u ξ α u (A, B, C, D, E, F ) (4) ξ α (x 2 α, 2x α y α,

図 2: 高周波成分を用いた超解像 解像度度画像とそれらを低解像度化して得られる 低解像度画像との差により低解像度の高周波成分 を得る 高解像度と低解像度の高周波成分から位 置関係を保ったままパッチ領域をそれぞれ切り出 し 高解像度パッチ画像と低解像度パッチ画像の ペアとしてデータベースに登録する

IS1-09 第 回画像センシングシンポジウム, 横浜,14 年 6 月 2 Hough Forest Hough Forest[6] Random Forest( [5]) Random Forest Hough Forest Hough Forest 2.1 Hough Forest 1 2.2

撮 影

2. CABAC CABAC CABAC 1 1 CABAC Figure 1 Overview of CABAC 2 DCT 2 0/ /1 CABAC [3] 3. 2 値化部 コンテキスト計算部 2 値算術符号化部 CABAC CABAC

1611 原著 論文受付 2009 年 6 月 2 日 論文受理 2009 年 9 月 18 日 Code No. 733 ピクセル開口率の向上による医用画像表示用カラー液晶モニタの物理特性の変化 澤田道人 石川晃則 1) 松永沙代子 1) 1) 石川陽子 有限会社ムツダ商会 1) 安城更生病院放射

untitled

Summary 3D cinemas are becoming real thanks to digital image processing technology. The most feasible and stable technology based on the binocular dis

Microsoft PowerPoint - SSII_harada pptx

A Feasibility Study of Direct-Mapping-Type Parallel Processing Method to Solve Linear Equations in Load Flow Calculations Hiroaki Inayoshi, Non-member

DPA,, ShareLog 3) 4) 2.2 Strino Strino STRain-based user Interface with tacticle of elastic Natural ObjectsStrino 1 Strino ) PC Log-Log (2007 6)

Sobel Canny i

[12] [5, 6, 7] [5, 6] [7] 1 [8] 1 1 [9] 1 [10, 11] [10] [11] 1 [13, 14] [13] [14] [13, 14] [10, 11, 13, 14] 1 [12]

(MIRU2010) Geometric Context Randomized Trees Geometric Context Rand

,,.,.,,.,.,.,.,,.,..,,,, i

(a) (b) 2 2 (Bosch, IR Illuminator 850 nm, UFLED30-8BD) ( 7[m] 6[m]) 3 (PointGrey Research Inc.Grasshopper2 M/C) Hz (a) (b

11) 13) 11),12) 13) Y c Z c Image plane Y m iy O m Z m Marker coordinate system T, d X m f O c X c Camera coordinate system 1 Coordinates and problem

IPSJ SIG Technical Report Secret Tap Secret Tap Secret Flick 1 An Examination of Icon-based User Authentication Method Using Flick Input for

1(a) (b),(c) - [5], [6] Itti [12] [13] gaze eyeball head 2: [time] [7] Stahl [8], [9] Fang [1], [11] 3 -

2.2 6).,.,.,. Yang, 7).,,.,,. 2.3 SIFT SIFT (Scale-Invariant Feature Transform) 8).,. SIFT,,. SIFT, Mean-Shift 9)., SIFT,., SIFT,. 3.,.,,,,,.,,,., 1,

IPSJ SIG Technical Report Vol.2012-CVIM-182 No /5/ RGB [1], [2], [3], [4], [5] [6], [7], [8], [9] 1 (MSFA: Multi-Spectrum Filt

1. HNS [1] HNS HNS HNS [2] HNS [3] [4] [5] HNS 16ch SNR [6] 1 16ch 1 3 SNR [4] [5] 2. 2 HNS API HNS CS27-HNS [1] (SOA) [7] API Web 2

20 Method for Recognizing Expression Considering Fuzzy Based on Optical Flow

Rate of Oxidation of Liquid Iron by Pure Oxygen Shiro BAN-YA and Jae-Dong SHIM Synopsis: The rate of oxidation of liquid iron by oxygen gas has been s

10_08.dvi

1 Web [2] Web [3] [4] [5], [6] [7] [8] S.W. [9] 3. MeetingShelf Web MeetingShelf MeetingShelf (1) (2) (3) (4) (5) Web MeetingShelf

IPSJ SIG Technical Report Vol.2014-GN-90 No.16 Vol.2014-CDS-9 No.16 Vol.2014-DCC-6 No /1/24 1,a) 2,b) 2,c) 1,d) QUMARION QUMARION Kinect Kinect

2 Fig D human model. 1 Fig. 1 The flow of proposed method )9)10) 2.2 3)4)7) 5)11)12)13)14) TOF 1 3 TOF 3 2 c 2011 Information

2013 M

(3.6 ) (4.6 ) 2. [3], [6], [12] [7] [2], [5], [11] [14] [9] [8] [10] (1) Voodoo 3 : 3 Voodoo[1] 3 ( 3D ) (2) : Voodoo 3D (3) : 3D (Welc

日本感性工学会論文誌

季報2010C_P _3-3.indd

14 2 5

特-3.indd

pp d 2 * Hz Hz 3 10 db Wind-induced noise, Noise reduction, Microphone array, Beamforming 1

Duplicate Near Duplicate Intact Partial Copy Original Image Near Partial Copy Near Partial Copy with a background (a) (b) 2 1 [6] SIFT SIFT SIF

知能と情報, Vol.30, No.5, pp

EGunGPU

08_研究速報_3校_1002.indd

IPSJ SIG Technical Report Vol.2012-IS-119 No /3/ Web A Multi-story e-picture Book with the Degree-of-interest Extraction Function

Journal of Geography 116 (6) Configuration of Rapid Digital Mapping System Using Tablet PC and its Application to Obtaining Ground Truth

2). 3) 4) 1.2 NICTNICT DCRA Dihedral Corner Reflector micro-arraysdcra DCRA DCRA DCRA 3D DCRA PC USB PC PC ON / OFF Velleman K8055 K8055 K8055

第 55 回自動制御連合講演会 2012 年 11 月 17 日,18 日京都大学 1K403 ( ) Interpolation for the Gas Source Detection using the Parameter Estimation in a Sensor Network S. T



ICT a) Caption Presentation Method with Speech Expression Utilizing Speech Bubble Shapes for Video Content Yuko KONYA a) and Itiro SIIO 1. Graduate Sc

IPSJ SIG Technical Report Vol.2009-CVIM-167 No /6/10 Real AdaBoost HOG 1 1 1, 2 1 Real AdaBoost HOG HOG Real AdaBoost HOG A Method for Reducing

h(n) x(n) s(n) S (ω) = H(ω)X(ω) (5 1) H(ω) H(ω) = F[h(n)] (5 2) F X(ω) x(n) X(ω) = F[x(n)] (5 3) S (ω) s(n) S (ω) = F[s(n)] (5

塗装深み感の要因解析

情報処理学会研究報告 IPSJ SIG Technical Report Vol.2011-MBL-57 No.27 Vol.2011-UBI-29 No /3/ A Consideration of Features for Fatigue Es

28 TCG SURF Card recognition using SURF in TCG play video


Vol. 42 No MUC-6 6) 90% 2) MUC-6 MET-1 7),8) 7 90% 1 MUC IREX-NE 9) 10),11) 1) MUCMET 12) IREX-NE 13) ARPA 1987 MUC 1992 TREC IREX-N

Table 1. Assumed performance of a water electrol ysis plant. Fig. 1. Structure of a proposed power generation system utilizing waste heat from factori

IPSJ SIG Technical Report Vol.2014-CG-155 No /6/28 1,a) 1,2,3 1 3,4 CG An Interpolation Method of Different Flow Fields using Polar Inter

光学

自動車ボディ寸法検査

IPSJ SIG Technical Report Vol.2012-CG-148 No /8/29 3DCG 1,a) On rigid body animation taking into account the 3D computer graphics came

UWB a) Accuracy of Relative Distance Measurement with Ultra Wideband System Yuichiro SHIMIZU a) and Yukitoshi SANADA (Ultra Wideband; UWB) UWB GHz DLL

光学

TCP/IP IEEE Bluetooth LAN TCP TCP BEC FEC M T M R M T 2. 2 [5] AODV [4]DSR [3] 1 MS 100m 5 /100m 2 MD 2 c 2009 Information Processing Society of

IPSJ SIG Technical Report Vol.2010-MPS-77 No /3/5 VR SIFT Virtual View Generation in Hallway of Cybercity Buildings from Video Sequen

kiyo5_1-masuzawa.indd

DEIM Forum 2017 E Netflix (Video on Demand) IP 4K [1] Video on D

Transcription:

Vol. 45 No. SIG 8(CVIM 9) June 2004 RAW, RAW demosaicking High Resolution Color Image Reconstruction Using Raw Data of a Single Imaging Chip Tomomasa Gotoh, and Masatoshi Okutomi The limited resolution of image sensors has motivated the enhancement of image resolution. Super-resolution has been applied mainly to grayscale images, but producing a high-resolution color image using a single-chip imaging device has not been investigated thoroughly. This work aims at producing a high-resolution color image directly from raw data obtained by a single imaging chip employing a color filter array. This method is based on a generalized formulation of super-resolution that simultaneously performs both resolution enhancement and demosaicing. The proposed method is verified through experiments using synthetic and real images. 1. CFA: Color Filter Array RAW demosaicking demosaicking demosaicking 1),2) demosaicking Graduate School, Tokyo Institute of Technology Presently with Sony Corporation 3) 7) RAW RAW demosaicking 1 2 2 15

16 June 2004 2 RAW Fig. 2 High resolution color image reconstruction from RAW data. u(i 1,i 2 )= p(i 1 x, i 2 y)i(x, y)dxdy (1) 1 demosaicking Fig. 1 Demosaicking and super-resolution. RAW 2 2 3 4 5 2. u(i 1,i 2 ) I(x, y) p(x, y) CCD 2 3 (x, y) (ξ, η) (x, y) =s(ξ, η) (2) (1) u(i 1,i 2 )= p((i 1,i 2 ) s(ξ, η))i(x, y) s (ξ, η) dξdη (3) s (ξ, η) (j 1,j 2 ) [j 1 1/2,j 1 +1/2] [j 2 1/2,j 2 +1/2] I(x, y) z(j 1,j 2 ) (3) u(i 1,i 2 )= z(j 1,j 2 )h(i 1,i 2,j 1,j 2 ; s)(4) j 1 j 2

Vol. 45 No. SIG 8(CVIM 9) RAW 17 3 Fig. 3 Definition of the coordinate system. j1 +1/2 j2 +1/2 h(i 1,i 2,j 1,j 2 ; s) = j 1 1/2 j 2 1/2 s p((i 1,i 2 ) s(ξ, η)) (ξ, η) dξdη (5) c {R, G, B} c (4) u c (i 1,i 2 )= z c (j 1,j 2 )h(i 1,i 2,j 1,j 2 ; s) j 1 j 2 (6) CFA (i 1,i 2 ) 1 c y c (i 1,i 2 ) y c (i 1,i 2 )=m c (i 1,i 2 )u c (i 1,i 2 ) = m c (i 1,i 2 ) z c (j 1,j 2 )h(i 1,i 2,j 1,j 2 ; s) j 1 j 2 (7) m c (i 1,i 2 ) (i 1,i 2 ) c m c (i 1,i 2 )=1 m c (i 1,i 2 )=0 5 5 Bayer 10) 0 1 0 1 0 0 0 0 0 0 m R (i 1,i 2 ): 0 1 0 1 0 (8) 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 m G (i 1,i 2 ): 1 0 1 0 1 (9) 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 1 0 1 0 1 m B (i 1,i 2 ): 0 0 0 0 0 (10) 1 0 1 0 1 0 0 0 0 0 (7) M y c,k (i 1,i 2 )k =1,...M s k k =1,...M y c,k (i 1,i 2 )= m c (i 1,i 2 ) z c (j 1,j 2 )h(i 1,i 2,j 1,j 2 ; s k ) j 1 j 2 (11) y k = A k z (12) y k y R,k (i 1,i 2 )y G,k (i 1,i 2 )y B,k (i 1,i 2 ) m c (i 1,i 2 )=1 z = [ z T R, z T G, zb] T T zr (j 1,j 2 )z G (j 1,j 2 ) z B (j 1,j 2 ) A k h(i 1,i 2,j 1,j 2 ; s k ) m c (i 1,i 2 ) (12) z RAW k y k 3. 3.1 (12) ẑ

18 June 2004 (a) (b) 4 (a) RAW (b) Fig. 4 Artifact in reconstructed image. High resolution reference image (a) is used to simulate raw data. Image reconstruction with independent regularization gives (b). ẑ = arg min{f 1 (z)+f p (z)} (13) z 1 M f 1 (z) = y k A k z 2 (14) k=1 2 RGB f p (z) RGB 4 (b) demosaicking RGB RAW (14) y 1,..., y M, (M >2) (14) overdetermined (14) over-determined s k RGB f p (z) RGB YCbCr z Y =0.299z R +0.587z G +0.114z B z Cb = 0.1687z R 0.3313z G +0.5z B z Cr =0.5z R 0.4187z G 0.0813z B (15) f p (z) =f 2 (z Y )+f 3 (z Cb, z Cr ) (16) 8) D : { 2 } P d,d D f 2 (z Y )= Λ d P d z Y 2 (17) d D Λ d z Y d (14) under-determined H f 3 (z Cb, z Cr )=λ c ( Hz Cb 2 + Hz Cr 2 ) (18)

Vol. 45 No. SIG 8(CVIM 9) RAW 19 5 R G B Fig. 5 Edge model for red (solid line), green (dashed line), and blue (dotted line) signals. λ c (14) over-determined H (14) over-determined H RGB 2 1 RGB z R (j) =erf(j)+2, z G (j) =a 1 z R (j Dg)+b 1, z B (j) =a 2 z R (j Db)+b 2 (19) erf( ) a 1 a 2 b 1 b 2 DgDb R G B 5RGB Dg = Db =0 2 H(u, v) =1 exp( (u 2 + v 2 )/2σc 2 ) erf(ξ) = 2 π ξ 0 exp( t2 )dt 6 Fig. 6 Chrominance energy function characteristic. Dg 0Db 0 (19) DgDb f 3 (z Cb, z Cr ) 6 (a 1,a 2,b 1,b 2 )=(1.2, 0.8, 0.1, 0.1) 6 a 1 a 2 > 0 a 1 a 2 b 1 b 2 3.2 (13) s k k =1,...M 9) 2 y k z f [ ] [ s k (ξ, η) = 1 ξ + f η d xk d yk ] (20) d k = RGB

20 June 2004 [d xk,d yk ] T RAW y 1,..., y M demosaickingrg B 11) 13) 1 y 1 d 1 =[0, 0] T de-aliasing Bayer 2 [d x1,d y1 ] T,..., [d xm,d ym ] T A = [ A T 1,...AM] T T [dx1 + 2K 1,d y1 +2L 1 ] T,..., [d xm +2K M,d ym +2L M ] T K k, L k (k =1,..., M) A A 2 mod(d 1, 2), mod(d 2, 2),..., mod(d M, 2) (21) z [0, 2) [0, 2) A (12) RAW RAW-to-RAW registration 15) 3.3 (1) RAW y 1,..., y M (2) CFA m c (i 1,i 2 ) RG B (3) RAW demosaicking d k =[d xk,d yk ] T (4) f (13) (5) n =0 1 z (0) (6) z (n) 8) f 2 (z Y ) Λ d (7) z (n) [ ] z (n+1) = z (n) 3 α f m (z) (22) z m=1 z=z (n) f 1 (z) M = A T k (A k z (n) y k ) (23) z z=z (n) f 2 (z Y ) z z=z (n) = f 3 (z Cb, z Cr ) z k=1 T T Y P T d Λ T d Λ d P d T Y z (n) d D z=z (n) = λ c C {Cb,Cr} (24) T T CH T HT C z (n) (25) α T T T Cb T Cr RGB Y CbCr (8) n = n +1(6) (9)

Vol. 45 No. SIG 8(CVIM 9) RAW 21 4. 4.1 7 (a) 7 (b) (a) s k 7 (c) 1 demosaicking (d) (c) (e) 8 demosaicking 5) 1 (f) 1 demosaicking 2) (g) (f) (h) 8 demosaicking 2) 5) (d)(e)(g)(h) 2 (d)(g) RAW (e)(h) 2 1 7 (i)(j)(k) 7 (k) 8 2 (e)(h) (k) 8 2 (k) 1 7 (i)(j) 1 1 2 8 (a)(b)(c) 8 (a) (b) (c) (a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) 7 (a) (b) (c) demosaicking(d) demosaicking (e) demosaicking 5) (f) Demosaicking 2) (g) Demosaicking 2) (h) Demosaicking 2) 5) (i) f =1M =1(j) f =2M =1(k) f =2M =8 Fig. 7 Reconstructed images. (a) Reference. (b) Input. (c) Linear demosaicking. (d) Linear demosaicking and interpolation. (e) Linear demosaicking and conventional super-resolution 5). (f) Demosaicking 2). (g) Demosaicking 2) and bi-cubic interpolation. (h) Demosaicking 2) and conventional super-resolution 5). (i) Proposed, f = 1, M = 1. (j) Proposed, f = 2, M = 1. (k) Proposed, f =2,M =8. (d) (a)(b)(c) (d) Root Mean Square: RMS 9 RMS 1 2 demosaicking 2) 5)

22 June 2004 (a) (c) 8 (a) (b) (c) (d) f =2M =8 Fig. 8 Reconstructed images. (a) Nearest neighbor interpolation (multi-frame). (b) Linear interpolation (multi-frame). (c) Cubic interpolation (multiframe). (d) Proposed, f =2, M =8. (b) (d) 9 RMS 5) demosaicking 2) 5) Fig. 9 RMS error. Dotted line: linear interpolation, dashed line: demosaicking 2) and bi-cubic interpolation, solid line: proposed. RMS 7 (k) 8 2 8 1 00.250.50.751[] 10 0.25 Pentium 3 933 MHz PC 30 30 2 CPU 8 2.10 sec 1 0.79 sec Demosaicking 2) 1 0.31 sec 1 0.13 sec 1 4.2 Point Grey Research Dragonfly CFA Bayer 3.2 11 (a) 1 4 11 (b)(c) demosaicking 2) 11 (d) 64 4.3 3CCD Bayer RAW 12 (1)(2) 12 (3) 2

Vol. 45 No. SIG 8(CVIM 9) RAW 23 (a) (b) (c) (d) (e) 10 (a) 0 (b) 0.25 (c) 0.5 (d) 0.75 (e) 1 Fig. 10 Motion estimation error affecting the image estimate. (a) 0 pixels, (b) 0.25 pixels, (c) 0.5 pixels, (d) 0.75 pixels, (e) 1 pixels. (a) (b) (c) (d) 11 (a) (b) demosaicking (c) Demosaicking 2) (d) f =4M =64 Fig. 11 Reconstructed high-resolution images. (a) Observed color mosaic. (b) Linear demosaicking and interpolation. (c) Demosaicking 2) and bi-cubic interpolation. (d) Proposed, f =4, M = 64. mod(d 1, 2), mod(d 2, 2),..., mod(d M, 2) [0, 2) [0, 2) SSDSAD 12 (1)(2) 4 12 (3) 2 12 (b) (c) demosaicking 2) (d) (1)(2) 64 (3) 16 5. RAW CFA Bayer RAW 1) Cok, D.R.: Signal processing method and apparatus for producing interpolated chrominance values in a sampled color image signal, United States Patent 4,642,678 (1987). 2) Laroche, C.A, and Prescott, M.A.: Apparatus and method for adaptively interpolating a full color image utilizing chrominance gradients, United States Patent 5,373,322 (1994). 3) Huang, T.S. and Tsay, R.Y.: Multiple frame image restoration and registration, Advances in Computer Vision and Image Processing, Vol.1, Huang, T.S. (Ed)., pp.317 339, JAI Press Inc, Greenwich (1984). 4) Irani, M. and Peleg, S.: Improving resolution by Image Registration, CVGIP: Graph. Models Image Process., Vol.53, pp.231 239 (Mar. 1991).

24 June 2004 (1) (2) (3) (a) (b) (c) (d) 12 (a) (b) demosaicking (c) Demosaicking 2) (d) (1)f =4M =64(2)f =4M =64 (3)f =2M =16 Fig. 12 Reconstructed high-resolution images. (a) Observed color mosaic. (b) Linear demosaicking and interpolation. (c) Demosaicking 2) and bi-cubic interpolation. (d) Proposed ((1): f = 4, M = 64, (2): f =4,M = 64, (3): f =2,M =16). 5) Hardie, R.C., Barnard, K.J. and Amstrong, E.E.: Joint MAP Registration and High- Resolution Image Estimation using a Sequence of Undersampled Images, IEEE Trans. Image Processing, Vol.6, pp.1621 1633 (1997). 6) Tekalp, A.M., Ozkan, M.K. and Sezan, M.I.: High-resolution image reconstruction from lower-resolution image sequences and space varying image restoration, IEEE Int. Conf. Acoustics, Speech and Signal Processing (ICASSP), San Francisco, CA., Vol.III, pp.169 172 (Mar. 1992). 7) Schultz, R.R. and Stevenson, R.L.: Improved definition video frame enhancement, IEEE Int. Conf. Acoustics, Speech and Signal Processing (ICASSP), Detroit, MI., Vol.IV, pp.2169 2172 (May 1995). 8) Shin, J., Paik, J., Price, J.R. and Abidi, M.A.: Adaptive regularized image interpolation using data fusion and steerable constraints, SPIE Visual Communications and Image Processing, Vol.4310 (Jan. 2001). 9) Capel, D. and Zisserman, A.: Automated Mosaicing with Super-resolution Zoom, Proc. IEEE Conference on Computer Vision and Pattern Recognition (1998). 10) Bayer, B.E.: Color Imaging Array, United States Patent 3,971,065 (1976). 11) Shimizu, M. and Okutomi, M.: Precise subpixel estimation on area-based matching, Proc. 8th International Conference on Computer Vision, pp.90 97 (Jul. 2001). 12) Shimizu, M. and Okutomi, M.: An Analysis of Sub-Pixel Estimation Error on Area-Based Image Matching, Proc. 14th International Conference on Digital Signal Processing (DSP2002), Vol.II, pp.1239 1242 (W3B.4) (Jul. 2002). 13) Shimizu, M. and Okutomi, M.: Two-Dimensional Simultaneous Sub-Pixel Estimation on Area-Based Image Matching, Proc. Asian Con-

Vol. 45 No. SIG 8(CVIM 9) RAW 25 ference on Computer Vision (ACCV2004 ), pp.854 859 (P-93) (Jan. 2004). 14) Gotoh, T. and Okutomi, M.: Color Super Resolution from a Single-CCD, CD-ROM Proc. IEEE Workshop on Color and Photometric Method in Computer Vision (CPMCV, in conjunction with ICCV ) (Oct. 2003). 15) Gotoh, T. and Okutomi, M.: Direct Super- Resolution and Registration Using Raw CFA Images, Proc. IEEE International Conference on Computer Vision and Pattern Recognition (CVPR2004) (Jun. 2004). ( 16 1 15 ) ( 16 3 4 ) 2001 2003 TLO 1981 1983 1987 1990 1994 2002 IEEE