preface.pdf

Similar documents
untitled

µ ½ ½ ¾¼¼¼ ½¼ Ì Ò ½ µ ¾ ½ ½ ½ ¾¼¼¼ ½ ½ ¼ ½ ½ ½ ¾¼¼¼ ¾ ¼ µ ½¼ ½ ½ ¾¼¼ Ñ ½ µ ½ µ Ì Ò ½ µ ½ ½ ¼ ½¼ ½ ˼ µ ½ µ ½ ½ ½ ˽ Ë Ì Ò ½ µ µ µ ½ µ ½ µ

untitled

knakayama2.dvi

untitled

untitled

untitled

main2.dvi

jps03.dvi

½ ¾ ½ ¾º½ ½ ¾º¾ ¾º¾º½ ¾º¾º¾ ½¾ ¾º¾º ½ ¾º¾º ½ ¾º ¾¼ ¾º º½ ¾½ ¾º º¾ ¾ ¾º ¾ ¾

ron0223.dvi

dicomo_reika.dvi

jsai06mixi_2nd.dvi

BSVbaProgramming.dvi

総研大「大学共同利用機関の歴史とアーカイブズ」プロジェクト全体会(2008年度)

may-fest.dvi

¾ Ã

untitled

ÊÆ ½ Ì Î ÄÀ ¾¼¼ ÌÄ Ë ÄÀ À Ì Ò Ô Ñ Ö Ì ÌÄ Ë Ì ½¼¼¼ Ì Ã Ã Ì

ÅÅ˵ ÒØÖ Ð Þ Ñ Ö Ø ½º ¾º à ÝÏÓÖ

ÙÖ ¾ Ç̽ Ç̾ ½º º¾ ½º º ¾ º¾ Ç̽ Ç̾ ½µ ¾µ µ µ ¼º ¼º µ ½ Ç̽ Ç̾ Ç̽ Ç̾ º¾ Ç̽ Ç̾ Ç̽ Ç̽ Ç̾ º¾ ¾ ¼½¾¼ º½¼ Ç̽ º½¼ Ç̽ е оµ нµ

CharacterSets.book Japanese

nl61.dvi

¾ ¾¼½ ¾ º½ ¾ ÖÜ Ì Ü Ä Ù Å Ù Ü Ì Æ Þµ Þµ Þ ÞµÈ Ç ½ ¾ Ü Ì Ü Ì Þµ Ù Ö Ü Þ Ì Æ Þµ Þµ ÙÅ ÔÐÒØ Ü Ä Ü Ì Ç º½ ¾

Ç ÆÌÌ


± ± ± ¾ ½ Ö Ò µ ± ¾ ± ± Ã ½ Ë Û Ò ¼µ Ã Ã ½¼ ½¾µ ½ Þ Ò µ ¾ ± ¾¾± ½ ± ± ½ ¾ µ ± ½ ÀÓÛ ÐÐ µ ½ ½ ¾½µ ¾µ ÅÊÁ ÅÊÁ Ì ¾ Ì ¾ ¾½ ¾¾µ ¾¼ ¾½µ ½ µ ¾ ½ µ ¾¼ ¾½µ Ã ¼

thesis2004-feb.dvi


Input image Initialize variables Loop for period of oscillation Update height map Make shade image Change property of image Output image Change time L

untitled

Abstract This paper concerns with a method of dynamic image cognition. Our image cognition method has two distinguished features. One is that the imag

a) Extraction of Similarities and Differences in Human Behavior Using Singular Value Decomposition Kenichi MISHIMA, Sayaka KANATA, Hiroaki NAKANISHI a

000Dthesis.dvi

4. C i k = 2 k-means C 1 i, C 2 i 5. C i x i p [ f(θ i ; x) = (2π) p 2 Vi 1 2 exp (x µ ] i) t V 1 i (x µ i ) 2 BIC BIC = 2 log L( ˆθ i ; x i C i ) + q


I (linear transformation) (matrix) (vector) (column

1 Fig. 1 Extraction of motion,.,,, 4,,, 3., 1, 2. 2.,. CHLAC,. 2.1,. (256 ).,., CHLAC. CHLAC, HLAC. 2.3 (HLAC ) r,.,. HLAC. N. 2 HLAC Fig. 2

Î ¾¼¼ ½¾ ÀÞ ¾ ¼¼¼ ÀÞ ½¼¼ ÀÞ ½ ¾

main.dvi

main.dvi

ÊÌÇË ¾¼¼

untitled

A Feasibility Study of Direct-Mapping-Type Parallel Processing Method to Solve Linear Equations in Load Flow Calculations Hiroaki Inayoshi, Non-member

RIMS98R2.dvi

三石貴志.indd

(Masatake MORI) 1., $I= \int_{-1}^{1}\frac{dx}{\mathrm{r}_{2-x})(1-\mathcal{i}1}.$ (1.1) $\overline{(2-x)(1-\mathcal{i})^{1}/4(1

,,, 2 ( ), $[2, 4]$, $[21, 25]$, $V$,, 31, 2, $V$, $V$ $V$, 2, (b) $-$,,, (1) : (2) : (3) : $r$ $R$ $r/r$, (4) : 3

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

Fig. 2 Signal plane divided into cell of DWT Fig. 1 Schematic diagram for the monitoring system

DPA,, ShareLog 3) 4) 2.2 Strino Strino STRain-based user Interface with tacticle of elastic Natural ObjectsStrino 1 Strino ) PC Log-Log (2007 6)

28 Horizontal angle correction using straight line detection in an equirectangular image

Mechanics dvi

J. JAPANESE ASSOC. PETROL. TECHNOL. Vol. 62, No. 2 (1997)

A Study on Throw Simulation for Baseball Pitching Machine with Rollers and Its Optimization Shinobu SAKAI*5, Yuichiro KITAGAWA, Ryo KANAI and Juhachi

Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels).

第5章 偏微分方程式の境界値問題

318 T. SICE Vol.52 No.6 June 2016 (a) (b) (c) (a) (c) ) 11) (1) (2) 1 5) 6) 7), 8) 5) 20 11) (1

(a) S D 1 D 2 (b) barrier 1 barrier 2 barrier 3 emitter well 1 well 2 collector z z ½¼ µ ¾ µ ¾ µ ÖÖÖ ½ ÖÖÖ ¾ ÛÐÐ ½ ¾ ¾ ½¼ µ ÖÖÖ ½ ÖÖÖ ¾ ½ µ ÛÐÐ ½ Þ ÛÐ

csj-report.pdf

163 KdV KP Lax pair L, B L L L 1/2 W 1 LW = ( / x W t 1, t 2, t 3, ψ t n ψ/ t n = B nψ (KdV B n = L n/2 KP B n = L n KdV KP Lax W Lax τ KP L ψ τ τ Cha

,.,. NP,., ,.,,.,.,,, (PCA)...,,. Tipping and Bishop (1999) PCA. (PPCA)., (Ilin and Raiko, 2010). PPCA EM., , tatsukaw

SCMJ Biocomp Net SCMJ

1 Web [2] Web [3] [4] [5], [6] [7] [8] S.W. [9] 3. MeetingShelf Web MeetingShelf MeetingShelf (1) (2) (3) (4) (5) Web MeetingShelf

kut-paper-template.dvi

FIT2010-minato.dvi

149 (Newell [5]) Newell [5], [1], [1], [11] Li,Ryu, and Song [2], [11] Li,Ryu, and Song [2], [1] 1) 2) ( ) ( ) 3) T : 2 a : 3 a 1 :

音響問題における差分法を用いたインパルス応答解析予測手法の検討 (非線形波動現象の数理と応用)

浜松医科大学紀要

200708_LesHouches_02.ppt

IPSJ SIG Technical Report 1,a) 1,b) 1,c) 1,d) 2,e) 2,f) 2,g) 1. [1] [2] 2 [3] Osaka Prefecture University 1 1, Gakuencho, Naka, Sakai,

1. R n Ω ε G ε 0 Ω ε B n 2 Ωε = with Bu = 0 on Ω ε i=1 x 2 i ε +0 B Bu = u (Dirichlet, D Ω ε ), Bu = u ν (Neumann, N Ω ε ), Ω ε G ( ) / 25

258 5) GPS 1 GPS 6) GPS DP 7) 8) 10) GPS GPS ) GPS Global Positioning System

thesis.dvi

Microsoft Word - toyoshima-deim2011.doc

xx/xx Vol. Jxx A No. xx 1 Fig. 1 PAL(Panoramic Annular Lens) PAL(Panoramic Annular Lens) PAL (2) PAL PAL 2 PAL 3 2 PAL 1 PAL 3 PAL PAL 2. 1 PAL

& Vol.5 No (Oct. 2015) TV 1,2,a) , Augmented TV TV AR Augmented Reality 3DCG TV Estimation of TV Screen Position and Ro

Stress Singularity Analysis at an Interfacial Corner Between Anisotropic Bimaterials Under Thermal Stress Yoshiaki NOMURA, Toru IKEDA*4 and Noriyuki M

! " # Engineering First

untitled

Vol. 23 No. 4 Oct Kitchen of the Future 1 Kitchen of the Future 1 1 Kitchen of the Future LCD [7], [8] (Kitchen of the Future ) WWW [7], [3

14 2 5

II

(MIRU2008) HOG Histograms of Oriented Gradients (HOG)

128号新

J. Jpn. Inst. Light Met. 65(6): (2015)

ばらつき抑制のための確率最適制御

2007/8 Vol. J90 D No. 8 Stauffer [7] 2 2 I 1 I 2 2 (I 1(x),I 2(x)) 2 [13] I 2 = CI 1 (C >0) (I 1,I 2) (I 1,I 2) Field Monitoring Server

Studies of Foot Form for Footwear Design (Part 9) : Characteristics of the Foot Form of Young and Elder Women Based on their Sizes of Ball Joint Girth

空力騒音シミュレータの開発

Gelfand 3 L 2 () ix M : ϕ(x) ixϕ(x) M : σ(m) = i (λ M) λ (L 2 () ) ( 0 ) L 2 () ϕ, ψ L 2 () ((λ M) ϕ, ψ) ((λ M) ϕ, ψ) = λ ix ϕ(x)ψ(x)dx. λ /(λ ix) ϕ,

Å Ö ÓÚ

00−ìfic„h-flO“Z.ec6

HASC2012corpus HASC Challenge 2010,2011 HASC2011corpus( 116, 4898), HASC2012corpus( 136, 7668) HASC2012corpus HASC2012corpus

& 3 3 ' ' (., (Pixel), (Light Intensity) (Random Variable). (Joint Probability). V., V = {,,, V }. i x i x = (x, x,, x V ) T. x i i (State Variable),

xia2.dvi

¾¼¼

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2

IPSJ SIG Technical Report 1, Instrument Separation in Reverberant Environments Using Crystal Microphone Arrays Nobutaka ITO, 1, 2 Yu KITANO, 1

Ú ½ ½ ½ ¾ ¾ µ µ ½ ½ ½ ½ µ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ¾½ ¾¾

Transcription:

Proceedings of the MEXT & OKU 2013 Workshop on Wavelet Theory and its Applications to Engineering 1

2 Proceedings of the MEXT & OKU 2013 Workshop on Wavelet Theory and its Applications to Engineering 3 543-0054 4-88 (06)6775-6611 JR 10 JR 5 http://osaka-kyoiku.ac.jp/ http://www.mext.go.jp/a_menu/math/index.htm e-mail: morimoto@cc.osaka-kyoiku.ac.jp tel: 072-978-3665 http://www.osaka-kyoiku.ac.jp/~ashino/ws2013/

Proceedings of the MEXT & OKU 2013 Workshop on Wavelet Theory and its Applications to Engineering 3 25 11 22 23 3 25 11 22 13:00 18:00 13:00 13:10 13:10 14:10 (A-RMW) DWT P-DWT P-DWT 14:25 15:25 Crystal Wavelet Crystal Wavelet Crystal Wavelet 15:40 16:40 16:55 17:55

4 Proceedings of the MEXT & OKU 2013 Workshop on Wavelet Theory and its Applications to Engineering 25 11 23 10:00 16:15 10:00 11:00 2 11:15 12:15 1 2 2 1 2 12:15 14:00 14:00 15:00 1 2 1 2 ( ) 3 GPS 15:15 16:15

Proceedings of the MEXT & OKU 2013 Workshop on Wavelet Theory and its Applications to Engineering 5 Ý º ¹ÊÅϵ ÏÌ È¹ ÏÌ È¹ ÏÌ È Ö Ø Ö Ø Ï Ú Ð Ø ÌÖ Ò ÓÖÑ Ò Ø ÈÖÓ Ð Ñ ÓÒ Ò Ì ÁÑ ÑÙÖ Ì Ø ÙÓ Å Ý À ÖÓ ÌÓ ÌÓÝÓ ÍÒ Ú Ö ØÝ Ó Ì ÒÓÐÓ Ý Ý Ö Ù Ø Ë ÓÓÐ Ó ÌÓÝÓ ÍÒ Ú Ö ØÝ Ó Ì ÒÓÐÓ Ý ØÖ Øº ÁÑÔ Ø ÓÙÒ ÐÐ Ö ØØÐ ÒÓ ÓÙÖ Ø Ø Ð ØÖ ÈÓÛ Ö ËØ Ö Ò Ý ¹ Ø Ñ È˵ ÓÒ ÖÓ º ÀÓÛ Ú Ö Ù Ò ÐÝ ÆÙÐØ Ù Ó Ø ÓÑÔÐ Ü ØÝ Ó Ñ Ò Ð ØÖ Ò Ö Ô Ø º Á ÒØ Ø ÓÒ Ø Ò ÕÙ Ù Ò Û Ú Ð Ø ÓÒ ØÖÙØ Ö Ð ¹ Ò Ð ÑÓØ Ö Û Ú Ð Ø ÊÅϵ «Ø Ú Ò ÓÖ Ö ØØÐ ÒÓ Ò ÐÝ ÓÒ Ó ÔÔÐ Ø ÓÒ Ó Ø Ñ ¹ Ö ÕÙ ÒÝ Ò ÐÝ Ù Ò Ï Ú Ð Ø ÌÖ Ò ÓÖÑ Û Ø Ò Û ÓÒ ÔØ Ó Ò Ø ÒØ Ò ÓÙ ÓÖÖ Ð Ø ÓÒ ØÓÖ ÏÁ µº ÀÓÛ Ú Ö Ø ÔÖÓ Ò Ø Ñ Ó ÏÁ ÓÒ ÏÌ ÒÖ ÓÖ Ò ØÓ Ø Ø Ð Ò Ø Ó ÊÅÏ ÒÖ º Ï Ú ÐÓÔ Ô Ö Ø Ø Ö Ø Û Ú Ð Ø ØÖ Ò ÓÖÑ È¹ Ï̵ ÓÖ Ô ÔÖÓ Ò Û Ø Ð ÐÙÐ Ø ÓÒ Ó Øº Ò Ø È¹ ÏÌ ÔÔÐ ØÓ ÔÖ Ø Ð Ù Ò Ö Ð¹Ø Ñ Ò ÐÝ Ý Ø Ñ ØÓ ÒØ Ý Ø ÖÖ Ò Ö ØØÐ ÒÓ ÓÙÖ Ò ÓÖ Ö ØÓ ÓÒ ÖÑ Ø Ú Ð Øݺ ½º ÓÐÙÑÒµ ÓÐÙÑÒ¹ØÝÔ Ð ØÖ ÈÓÛ Ö ËØ Ö Ò ¹ È˵ ¹ ÈË ËØ Ö Ò Û Ðµ ¹ ÈË ½

6 Proceedings of the MEXT & OKU 2013 Workshop on Wavelet Theory and its Applications to Engineering ÁÒØ ÖÑ Ø Ó Òص ÅË Öµ ½ Ì ¾ ÓÒ¹ Ø ÒÙ Ò Ï Ú Ð Ø ÌÖ Ò ÓÖÑ ÏÌ Ï Ú Ð Ø ÁÒ Ø ÒØ Ò ÓÙ ÓÖÖ Ð Ø ÓÒ ÏÁ æ ÅÓØ Ö Ï Ú Ð Ø Åϵ ÅÏ ÊÅÏ ÏÁ ÊÅÏ ÊÅÏ ÅÏ ÏÌ ÏÌ ÅÏ ÏÌ ÏÌ È Ö Ø Ö Ø Û Ú Ð Ø ØÖ Ò ÓÖÑ È¹ Ï̵ Ø Û Ú Ð Ø Ò Ø ÒØ Ò ÓÙ ÓÖÖ Ð Ø ÓÒ ¹ÏÁ ¾

Proceedings of the MEXT & OKU 2013 Workshop on Wavelet Theory and its Applications to Engineering 7 ¾º ÊÅÏ Øµ ÏÌ ¾º½µ Û µ ½ ¾ ½ ½ ص Ø ¼µ ½» ص ص ص ÅÏ Ñ Ð ØÝ ÓÒ Ø ÓÒµ ص ½ ¾º¾µ ½ ص Ø ¼ ÅÏ ÏÌ ¾º½µ ÏÌ ½» ¾ ÅÏ ÊÅÏ ÏÌ ½ Û ½ µ ÏÁ µ Ê µ µ Ø ¾º µ Ê µ Û ½ µ ÊÅÏ ½µ ¾µ ÊÅÏ Ê Øµ Ê ½ ¾º µ Ê ½ ½ Ê Øµ ¾ Ø ½ ¾ ½ µ Ê Øµ Ê µ µ ¼ Ê µ ¼ Ê µ ¾ Ê µ º

8 Proceedings of the MEXT & OKU 2013 Workshop on Wavelet Theory and its Applications to Engineering c 0,k DWT c 1,k d 1,k DWT R u k c 2,k I u k DWT d 2,k c 3,k d 3,k Parasitism filter º ½º ÓÑÔÓ Ø ÓÒ ØÖ Ó Ø Ô Ö Ø Ö Ø Û Ú Ð Ø ØÖ Ò ÓÖÑ È¹ Ï̵ Ò Ø Ô Ö Ø ÐØ Ö R x k I x k µ µ Ö µ µ Õ ¾º µ Ö µ Ê Ö µµ¾ Ê µµ¾ µ µ µ ص Ö Øµ ص ÊÅÏ Ö Øµ ص ÊÅÏ ÊÅÏ ËÝÑÑ ØÖ ÓÑÔÐ Ü Ö Ð¹ Ò Ð ÑÓØ Ö Û Ú Ð Ø Ë ¹ÊÅϵ ¾ Ë ¹ÊÅÏ ÊÅÏ ¹ÊÅϵ ÊÅÏ ÊÅÏ ÏÁ º º½ ÏÌ ÅÏ µ ÊÅÏ ÏÌ ÊÅÏ ÏÌ ÊÅÏ ÏÌ È¹ Ï̵ º ½ ȹ ÏÌ µ ÅÏ ÏÌ È Ö Ø ÌÖ Ò Ð Ø ÓÒ ÁÒÒ Ö Ò ÓÑÔÐ Ü

Proceedings of the MEXT & OKU 2013 Workshop on Wavelet Theory and its Applications to Engineering 9 c j, k (RMW) DWT c j 1, k x k d, + u k DWT xout j 1 k (a) Decomposition (b) Reconstruction º ¾º Ò Ñ Ø Ó Ó Ø Ô Ö Ø ÐØ Ö Ö Ø Ï Ú Ð Ø ÌÖ Ò ÓÖÑ ÈÌÁ¹ Ï̵ ½¼ ÏÌ ÈÌÁ¹ ÏÌ ÏÌ ÊÅÏ ÏÌ ÅÏ ÅÏ ÏÌ µ µ Ü Ê ÜÁ ÙÊ Ù Á ÊÅÏ º½ ¾ º½ ȹ ÏÌ ÏÌ È¹ ÏÌ ÏÌ ÏÌ µ º¾ ½µ ¾µ ¾ ÊÅÏ ÏÌ ½ Ù µ º¾ ½ ¼ ½ ¼ Ü Æ ¼ ÃÖÓÒ Ö ÐØ µ Ü ÓÙØ µ Ö Ñ Ò Ü ÓÙØ ÊÅÏ Ù ÊÅÏ Ù µ ÊÅÏ Øµ Ö Øµ ص ÊÅÏ Ù Ê ÙÁ º½µ ¼ ÀÞ ½¼¼ ÀÞ ¾¼¼ ÀÞ

10 Proceedings of the MEXT & OKU 2013 Workshop on Wavelet Theory and its Applications to Engineering Amplitude Amplitude º º 0 10 0.2 0.0 0.2 0.4 0 50 100 Data Number u 0.2 0.1 0.0 0.1 (a) Parasitic filter } { I k 0.2 0 100 200 300 400 500 Data Number (d) Imaginary component of RMW Ü ÑÔÐ Ó Ø Ò Ô Ö Ø ÐØ Ö R I X ( f ) ix ( f ) ˆ ( f ) out out Power [db] 20 30 A( f ) Aliasing elements 40 50 0 400 800 1200 1600 Frequency [Hz] º º Ü ÑÔÐ Ó Ø Ö ÕÙ ÒÝ Ö Ø Ö Ø Ó Ø ÊÅÏ µ Ò Ê ÓÙØ µ Á ÓÙØ µ º º½µ ص Ò ½¼¼ ص ¼ Ò ¾¼¼ ص ¼ Ò ¼¼ ص ¼¼ ÀÞ ÊÅÏ ½¾ ¾ Ë ¹ÊÅÏ ÅÏ ËÝÑÐ Ø ÊÅÏ ¾ º µ ÊÅÏ Ù Á ÊÅÏ º µ ÊÅÏ Øµ µ Ü Ê ÓÙØ ÜÁ ÓÙØ Ê ÓÙØ µ Á ÓÙØ µ º º ÅÏ µ º µ ÓÙØ Ê µ Á ÓÙØ µ ÊÅÏ µ Ê µ Á µ Ù Ê ÙÁ º ¼ ÀÞ ½½¼¼ ÀÞ

Proceedings of the MEXT & OKU 2013 Workshop on Wavelet Theory and its Applications to Engineering 11 Amplitude R(b), R(k) 0.10 0.00 0.10 0 0.05 0.1 0.15 0.2 0.25 0.3 Time [s] (a) Analysis signal 1.2 0.8 0.4 R(k) R(b) º º 0.0 0 0.05 0.1 0.15 0.2 0.25 0.3 Time [s] (b) R (b) and R(k) Ü ÑÔÐ Ó Ê µ Ó Ø Ò ÖÓÑ Ø È¹ ÏÌ Ò Ê µ Ó Ø Ò ÖÓÑ Ø ÏÌ ¼ ¾¼¼ ÀÞ ¾¼ º¾ Ø Û Ú Ð Ø Ò Ø ÒØ Ò ÓÙ ÓÖÖ Ð Ø ÓÒ ¹ÏÁ µ Õ º¾µ Ê µ Ü Ê µ¾ Ü Á µ¾ Ø Ø ¾ Ê µ Ø ÏÌ Ê µ Ê µ Ü Ê Ü Á Ê µ ÊÅÏ ÊÅÏ ÊÅÏ Ä º µ º µ Ä ½¼ ÐÓ ½¼ ¼ È È µ ¾ ص ¾ º µ º½ ½µ ½ ½

12 Proceedings of the MEXT & OKU 2013 Workshop on Wavelet Theory and its Applications to Engineering 0,k discrete data 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,253 0,254 0,255 0,256 0,257 0,258 0,259 0,260 j= -1-1,1-1,2-1,3-1,4-1,127-1,128-1,129-1,130 j= -2 RMW length = 256 Parastic level = -2 º º -2,1-2,2-2,64-2,65 -{u k } R x 1 -{u k } length = 64 R x 2 ÓÒ ÔØ Ó ¹ÏÁ ÔÖÓ Ò º µ Ù Á ÙÊ º µ ÊÅÏ Ê µ ÊÅÏ Ä ¾ ÊÅÏ º µ ÏÌ Ê µ º º µ µ Ê µ Ê µ º µ Ê µ Ê µ Ê µ Ê µ Ê µ Ê µ È Ê µ Ê µ ¾ Æ ÅË µ ¾ ½ ȹ ÏÌ ¹ÏÁ Ù Ê ÙÁ ÊÅÏ ÏÌ ÏÁ º º½ ÏÌ ¼ Ò Òµ ¼ Ò ¼ ¹ÏÁ Ê µ º ÊÅÏ Ä ¾ ¾ ¼ ¾ ¾ ¾ ¼ ¾ Ä º¾µ ½ ¹ÏÁ

Proceedings of the MEXT & OKU 2013 Workshop on Wavelet Theory and its Applications to Engineering 13 Ì Ð ½º ÆÙÑ Ö Ó ÑÙÐØ ÔÐ Ø ÓÒ ÊÅÏ Ð Ò Ø Ð Ú Ð ½¾ ¾ ½¾ ½¼¾ ¹½ ½ ¾ ¾ ¼ ¾ ½¼ ¹¾ ½ ¾ ¾ ¼ ¹ ¼ ½¼ ½ ¾¼¾ ¼ ¹ ½ ¾ ½ ¼ ½ ¾½ ¾ ¾ ÏÌ ½ ¾ ¼ ½ ½¼¾ ¾¼ ¾ º¾µ ¾ ¼ ¼ ¾ ¼ ½ ¾ Ê µ ¼ ¹ÏÁ ¹ÏÁ º¾ ¹ÏÁ Ê µ ½ º½µ É ½¼ ½ Ô ¾ ½ ¾ Ô ½ Ä Ô Ô ¼ µ Ä ÊÅÏ º½µ ½ ÏÌ ¾ ¹ÏÁ ÏÌ ÏÁ º¾µ É ¾Ä Ì Ð ½ ȹ ÏÌ ¹ÏÁ Ê µ ÏÌ ÏÁ Ê µ Ì Ð ½ ÊÅÏ ÏÁ ¹ÏÁ ȹ ÏÌ ¹ÏÁ Ê µ ÏÌ

14 Proceedings of the MEXT & OKU 2013 Workshop on Wavelet Theory and its Applications to Engineering Ì Ð ¾º ÌÖ Ò Ø ÓÒ Ø Ñ ÓÖ Ê µ Ò Ê µ ÊÅÏ Ð Ò Ø Ð Ú Ð ½¾ ¾ ½¾ ½¼¾ ¾¼ ¼ ¹½ ¾º¼ ½¼ º¼ ½¼ º¾ ½¼ º¾ ½¼ ½ º ½¼ º ½¼ ¹¾ ½º ½¼ ¾º ½¼ º ½¼ º ½¼ º ½¼ ½ º ½¼ ¹ ½º ½¼ ¾º½ ½¼ º¾ ½¼ º½ ½¼ º¼ ½¼ ½¼º ½¼ ¹ ¾º ½¼ ¾º ½¼ º ½¼ º ½¼ º ½¼ º ½¼ ÏÌ ¾º ½¼ º ½¼ º ½¼ ½ º ½¼ º ½¼ º ½¼ º º½ Ï Ò ÓÛ ÇË ÊÅÏ Ä ¹ÏÁ ÏÌ ¾ ½ ÈÍ ÓÖ ¾º ÀÞ Ê Å º¼ Ì Ð ¾ ÊÅÏ Ä ¾ ¹¾ ȹ ÏÌ ¹ÏÁ ¾º ½¼¹ ÏÌ ÏÁ º ½¼¹ ¹ÏÁ ÏÌ ¾ ÊÅÏ Ä È¹ ÏÌ ¹ÏÁ ½ º½µ º º½ Ä ÎÁ Ï ¹ÏÁ º ¹ÏÁ º½ º ÊÅÏ Ä ¾ ¹¾ ¾ ¹ÏÁ ½¼

Proceedings of the MEXT & OKU 2013 Workshop on Wavelet Theory and its Applications to Engineering 15 LabVIEW discrete data RMW data length: 256 time Calculation part [C language] C C 2,1 2,64 x out put Calculation Down sampling { u k } filter length : 64 º º ÐÓÛ Ó ¹ÏÁ ØÖ Ò Ø ÓÒ Ì Ð º ÌÖ Ò Ø ÓÒ Ø Ñ ÓÖ Ê µ ØÊÅÏÄ ¾ Ä Ú Ð ÌÖ Ò º Ø Ñ ÐÙÐ Ø ÓÒ Ø Ñ Ù«Ö Ò Ø Ñ ½ ¼º¼¼ ¼ ½¼ ½¾ ½¼ ½¾ ¾ ¼º¼¼ ¾ ½¼ º ½¼ ¼º¼¼¾ ½ ½¼ ¾ º ½¼ ¾ ¼º¼¼½¾ ½ ¼ ½¼ ¼ ½ º ½¼ ½ ÏÁ ¼º¼½ ½¼ ¾ º ½¼ ¾ Ä ÎÁ Ï ÏÁ ÊÅÏ ÊÅÏ Ì Ð ¾ Ì Ð ¾ ÊÅÏ Ì Ð Ì Ð Ê µ Ê µ ÊÅÏ ½½

16 Proceedings of the MEXT & OKU 2013 Workshop on Wavelet Theory and its Applications to Engineering (a) (b) (c) º º Ì Ñ Ò ÖØ Ò Ø Ö º¾ Ä ÎÁ Ï ÈÍ º Ø Ø ½¾ ÀÞ ÊÅÏ Ä ¾ Ø Ø Ä ¼º¼¾ ½ ¼º¼¼ Ø Ø ½» ÏÌ ¼º¼½ Ø ¹ÏÁ ½¾

Proceedings of the MEXT & OKU 2013 Workshop on Wavelet Theory and its Applications to Engineering 17 º º Ö Ñ Ó Ñ ÙÖ Ñ ÒØ Ý Ø Ñ º º½ º¾ º ÆÁ ÓÑÔ Ø É È È Ä ÎÁ Ï ÓÑÔ Ø É ÆÁ ÍË È Ä ÎÁ Ï ÊÅÏ È ÊÅÏ ½¾ ¼ ½¾ ¾ ¾ ½ ÀÞ ½¼ ÀÞ ¾ º ÀÞ ½

18 Proceedings of the MEXT & OKU 2013 Workshop on Wavelet Theory and its Applications to Engineering Ì Ð º Ê ÙÐØ Ó Ê Ð¹Ø Ñ Ô Ö ÓÖÑ Ò Ë ÑÔÐ Ò ÊÅÏ Ð Ò Ø Ø Ð Ò Ø Ø Ì Ñ ÀÞ ½ ¾ ¼ ¼ ¼º½ ¾¼ ¾¼ ¼º¼ ½¼¾ ½¼¾ ¼º¼ ¾ º ½¾ ½¾ ¼º¼¾ ¾ ¾ ¼º¼½ ½¾ ½¾ ¼º¼¼ ½ ½ Ä ÎÁ Ï Ì Ð ¾ º ÀÞ ÊÅÏ Ø Ø Ø Ø Ø ½ ¾ Ì Ð ¾ ¾ Ø ¼º¼½ ½¾ Ø ¾ ÆÁ ÓÑÔ Ø Õ È Á Ä ÎÁ Ï Î Öº º ½¼¼ ÀÞ ¼ ÀÞ È Ï Ò ÓÛ È ÓÖ ¾º ÀÞ ½¼ ÀÞ»½ ¹ÏÁ µ ÝØ ÓÑÔ Ø É È º½¼ È ÓÑÔ Ø É ÍË ÓÑÔ Ø É ¾ ÊÅÏ ¹ÏÁ ½

Proceedings of the MEXT & OKU 2013 Workshop on Wavelet Theory and its Applications to Engineering 19 º ½¼º Ú Ö Ð¹Ø Ñ ÒÓ Ý Ø Ñ º ½½º ËØ Ö Ò Ý Ø Ñ Û Ø Ø ÈË Ò ÜÔ Ö Ñ ÒØ Ð ØÙÔ Û Ö Ò ÓÖ Ö ¹ Ñ Ò ÓÒ Ð Ð Ö Ø ÓÒ Ò ÓÖ º ½¼ ½ Ñ» ÊÅÏ ½ ¹ÏÁ ÏÌ ÏÁ ¹ ÈË ÅË º½½ ÅË Ü Ý Þ º½¾ µ ½

20 Proceedings of the MEXT & OKU 2013 Workshop on Wavelet Theory and its Applications to Engineering (a) Example of sound signal on bad road º ½¾º (b) CWT of sound signal using the Gabor function Ü ÑÔÐ Ó Ø ÏÌ Ó ÓÙÒ Ò Ð Ù Ò Ø ÓÖ ÙÒØ ÓÒ º ½ º Ü ÑÔÐ Ó Ø Ê µ Ó Ú Ö Ø ÓÒ Ò Ð º½¾ µ ÓÖ ÏÌ ÊÅÏ º½¾ µ ÅÏ Ú Ö ¹ÊÅÏ º½ ¹ÏÁ ÏÌ º½ ½ ¹ÏÁ ÏÌ ÏÁ ÅË ÅË ¹ÏÁ ½

Proceedings of the MEXT & OKU 2013 Workshop on Wavelet Theory and its Applications to Engineering 21 º ½ º (a) R(k) of MS gear measured from sensor A (b) R(k) of intermediate joint measured from sensor B (c) R(k) of column measured from sensor C ÓÑÔ Ö ÓÒ ØÛ Ò ¹ÏÁ Ð Ú Ð ¹½ Ò Ç«¹Ð Ò ÏÌ Ö ÙÐØ º ȹ ÏÌ ¹ÏÁ Ä ÎÁ Ï ½µ ¹ÏÁ ÊÅÏ Ä ¾ ¹¾ ¹ÏÁ ÏÁ ¾ ÊÅÏ Ä ¹ÏÁ ¾µ Ä ÎÁ Ï ¾ ½ µ ½

22 Proceedings of the MEXT & OKU 2013 Workshop on Wavelet Theory and its Applications to Engineering À¾¾ Ä ÎÁ Ï ½ ½¹ ½½ ¾¼¼ µ ÔÔº ¹ º ¾ ¾ ÎÓк ÆÓº½¾ ½ µ Ôº½ ¹½ ½¹ ½ µ ÔÔº½ ¹½ ÎÓк ¼ ÆÓº ¾¼¼ µ ÔÔº¾ ¼æ¾ º µ ¹ ¼ ¾¼¼ º µ ÔÔº½ ¹½ º ½¼¹ ¾¼½½ µ ÔÔº ¹ ½ º ÎÓк ÆÓº ¾¼¼ º µ ÔÔº¾ ¾ ¹¾ º Å ÐÐ Ø Ëº º Û Ú Ð Ø ØÓÙÖ Ó Ò Ð ÔÖÓ Ò Ñ ÈÖ ½ µ Ôº¾ º ½¼ ÂÓÙÖÒ Ð Ó Ë Ò Ð ÈÖÓ Ò ÎÓк½¾ ÆÓº ¾¼¼ µ ½ æ½ º µ ½¹ ¼ ½¹½ ¹Ñ Ð Þ Ò ºÑ ºØÙغ º Ô µ ½

Proceedings of the MEXT & OKU 2013 Workshop on Wavelet Theory and its Applications to Engineering 23 ½¹ ¼ ½¹½ ¹Ñ Ð Ñ ºÑ ºØÙغ º Ô µ ½¹ ¼ ½¹½ ¹Ñ Ð Ñ Ý ºÑ ºØÙغ º Ô µ ½¹ ¼ ½¹½ ¹Ñ Ð ÔÜؼ¼½ Ò ØݺÓÑ ½

24 Proceedings of the MEXT & OKU 2013 Workshop on Wavelet Theory and its Applications to Engineering

Proceedings of the MEXT & OKU 2013 Workshop on Wavelet Theory and its Applications to Engineering 25. Crystal Wavelet Application to microcrystalline structure of the signal processing Tomoko Endo Naoki Mukawa Tokyo Denki University Abstract. The authors have proposed methods that extract crystal grain boundaries from three-dimensional (3D) crystal structure data using 3D Fourier analysis of the orthogonal coordinate system and 3D wavelet analysis of oblique coordinate system. For method using 3D Fourier analysis, we contrive an objective method based on frequencydomain processing to resolve the problem presuming that crystals have highly periodic structures and grain boundaries are disruptions of the repetitive structure, On the other hand, we introduce 3D wavelet defined on crystal lattice based on crystal structure theory. In this paper we first compare with Fourier and wavelet analysis, and then consider two coordinate systems, e.g. oblique and orthogonal. Next, we will discuss advantages and disadvantages of the systems. Finally, we summarize future works for analysis of microcrystalline structures. 1. [1] 1

26 Proceedings of the MEXT & OKU 2013 Workshop on Wavelet Theory and its Applications to Engineering [2 4] [5] [6] Crystal wavelets [7] [8] Crystal wavelets Crystal wavelets 2

Proceedings of the MEXT & OKU 2013 Workshop on Wavelet Theory and its Applications to Engineering 27 Fig. 1. Fig. 2. A θ A ϕ A Crystal wavelets J. Kovačević [9] 2. 2.1 3 2 Fig.1 A B B A z 1. 3

28 Proceedings of the MEXT & OKU 2013 Workshop on Wavelet Theory and its Applications to Engineering A B Fig.3(a) 0 2 2. 0 3. Fig.3(b) 1 A B 4. A 1 θ A ϕ A Fig.2 A 5. A Fig.4(a) B 6. Fig.4(b) 1 7. B θ B ϕ B 2 1. A A A A A 2. A t(i, j, z) 3. 3 f(x, y, z) A t(i, j, z) A R(x, y, z) (2.1) R(x, y, z) = a i ai bj c k f(x + i, y + j, z + k) t(i, j, k) bj c k f(x + i, y + j, z + ai bj c k)2 k t(i, j, k)2 4. 1 A 1 A B 2 4

Proceedings of the MEXT & OKU 2013 Workshop on Wavelet Theory and its Applications to Engineering 29 Fig. 3. A B a b Fig. 4. B a b 2.2 2.2.1 a 0.287nm 128 128 128 0.1μm TEM 10nm [10] 10 6 2.2.2 A B C A α 0,0,0 B β 0,45,0 C γ 45, 45,45 3 α β A B 3 δ 3 5

30 Proceedings of the MEXT & OKU 2013 Workshop on Wavelet Theory and its Applications to Engineering Fig. 5. α β 3 a a b 2 α β Fig.5 a α β 128 128 128 64 128 128 β α 45 128 128 128 10 8 m Fig.5(b) 128 128 128 64 128 128 δ 128 δ 6

Proceedings of the MEXT & OKU 2013 Workshop on Wavelet Theory and its Applications to Engineering 31 3. Crystal wavelets 1 [11,12] 3 Crystal wavelets 3.1 Crystal wavelets (3.1) Λ={t : t = 3 n i t i n i Z, i = 1, 2, 3} i=1 [6] 2 j {c j [t]} t Λ Λ 8 Λ m (3.2) Λ m = {t : t = 2(n 1 t 1 + n 2 t 2 + n 3 t 3 ) + t m n i Z, i = 1, 2, 3}, m = 0, 1,, 7 (3.2) {c j [t]} t Λ Λ m 8 ĉ m, j (ω) = c j [2t + t m ]e iω t, ω R 3 t Λ ω t ω t 1 ĉ j 1 (ω) ĉ 0, j (ω) ˆd 1, j 1 (ω) ĉ 1, j (ω) ˆd 2, j 1 (ω) ĉ 2, j (ω) ˆd (3.3) 3, j 1 (ω) = P(ω) ˆd 4, j 1 (ω) ĉ 3, j (ω) ĉ 4, j (ω) ˆd 5, j 1 (ω) ĉ 5, j (ω) ˆd 6, j 1 (ω) ĉ 6, j (ω) ˆd 7, j 1 (ω) ĉ 7, j (ω) P(ω) 8 8 7

32 Proceedings of the MEXT & OKU 2013 Workshop on Wavelet Theory and its Applications to Engineering (3.4) 2 2 0 0 0 0 0 0 0 1 0 2 0 0 0 0 0 0 2 1 0 0 2 0 0 0 0 0 2 1 0 0 0 P(ω) 2 = 0 0 0 0 2 1 0 0 0 0 2 0 0 0 2 1 0 0 0 0 0 2 0 0 2 1 0 0 0 0 0 0 2 0 2 1 0 0 0 0 0 0 0 2 2 1 û 1 (ω) û 2 (ω) û 3 (ω) û 4 (ω) û 5 (ω) û 6 (ω) û 7 (ω) 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 ˆp 1 (ω) 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 ˆp 2 (ω) 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 ˆp 3 (ω) 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 ˆp 4 (ω) 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 ˆp 5 (ω) 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 ˆp 6 (ω) 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 ˆp 7 (ω) 0 0 0 0 0 0 1 P(ω) 7 predictor ˆp m (ω) updater û m (ω), m = 1, 2,...,7 3.3 ĉ j 1 (ω) ˆd m, j 1 (ω), m = 1, 2,...7 P(ω) = P(ω) 1 (3.5) P(ω) P(ω) = I LP HP Λ B Z Λ B 3 Λ B = {t : t = n i t i n i B, i = 1, 2, 3} i=1 LP {h[t]} t ΛB ĥ(ω) = h[t]e iω t, ω R 3 t Λ B ĥ(ω) ω ω + 2πλ λ 8

Proceedings of the MEXT & OKU 2013 Workshop on Wavelet Theory and its Applications to Engineering 33 P(ω) 3.1 ĥ(ω) 1 ĝ 1 (ω) e iω t 1 ĝ 2 (ω) e iω t 2 ĝ (3.6) 3 (ω) = P(ω) ĝ 4 (ω) e iω t 3 e iω t 4 ĝ 5 (ω) e iω t 5 ĝ 6 (ω) e iω t 6 ĝ 7 (ω) e iω t 7 φ L 2 (R 3 ) MRA φ(r) = t Λ B 2 2h[t]φ(2r t), r R 3 r = xt 1 + yt 2 + zt 3 R 3 (3.7) ˆφ(ω) = 1 2 ĥ( ω 2 2 ) ˆφ( ω ), ω R3 2 ĥ(ω/2) ˆφ(ω) = 1 2 ĥ( ω 2 2 j ), ˆφ(0) = 1 j=1 ψ m (r), m = 1, 2,...,7, r R 3 ˆψ m (ω) = 1 2 ω 2ĝm( 2 ) ˆφ( ω ), ω R3 2 3.2 crystal wavelets crystal wavelets Haar crystal wavelets 3.2.1 Haar crystal wavelets Haar crystal wavelets 3.4 ˆp m (ω) = 1, û m (ω) = 1, m = 1, 2,...,7 8 9

34 Proceedings of the MEXT & OKU 2013 Workshop on Wavelet Theory and its Applications to Engineering 3.6 (3.8) ĥ(ω) ĝ 1 (ω) ĝ 2 (ω) ĝ 3 (ω) ĝ 4 (ω) ĝ 5 (ω) ĝ 6 (ω) ĝ 7 (ω) = 1 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 e iω t 1 e iω t 2 e iω t 3 e iω t 4 e iω t 5 e iω t 6 e iω t 7 Haar crystal wavelets e iω t m, m = 1, 2,...,7, t m crystal wavelets 3.2.2 Crystal wavelets Crystal wavelets 2.21 a 1 Fig.6 3.8 Haar x y z ζ η ξ a ζ η ξ ζ = 0 η ξ 2 b η = 0 c ξ = 0 2 3 Crystal wavelets Crystal wavelets Crystal wavelets 10

Proceedings of the MEXT & OKU 2013 Workshop on Wavelet Theory and its Applications to Engineering 35 Fig. 6. Haar a ξ = 0 b η = 0 c ζ = 0 Crystal wavelets 4. Crystal wavelets Crystal wavelets Crystal wavelets 11

36 Proceedings of the MEXT & OKU 2013 Workshop on Wavelet Theory and its Applications to Engineering δ [13] [14] 2011 Al-Cu-Fe 10 12

Proceedings of the MEXT & OKU 2013 Workshop on Wavelet Theory and its Applications to Engineering 37 Crystal wavelets 5. Crystal wavelets [1], 2003. [2] H. Jinnai, K. Yasuda and T. Nishi, Three-Dimensional Observations of Grain Boundary Morphologies in a Cylinder-Forming Block Copolymer, Macromolecular Symposia, 245-246, pp.170 174, 2006. [3] K. Inoke, K. Kaneko, M. Weyland, P.A. Midgley, K. Hogashida and Z. Horita, Severe local strain and the plastic deformation of Guinier-Preston zones in the Al-Ag system revealed by three-dimensional electron tomography, Acta Materialia, vol.54, pp2957 2963, 2006. [4] K. Kaneko, R. Nagayama, K. Inoke, E. Noguchi and Z. Horita, Application of threedimensional electron tomography using bright-field imaging Two types of Si-phases in Al-Si alloy, Science and Technology of Advanced Materials, vol.7, pp726 731, 2006. [5] [6] G. Grosso and G. P. Parravicini, Solid State Physics, Elsevier Academic Press, 2000. [7]. A, J92-A(8), pp.540 550, 2009. 13

38 Proceedings of the MEXT & OKU 2013 Workshop on Wavelet Theory and its Applications to Engineering [8] S. Mallat: A Wavelet Tour of Signal Processing, 2nd ed., Academic Press, 2001. [9] J. Kovačević and W. Sweldens, Wavelet Families of Increasing Order in Arbitrary Dimensions, IEEE Trans. On Image Processing, vol.9, no.3, pp.480 496, Mar. 2000. [10],, 2004. [11] W. Sweldens, The lifting scheme: a custom-design construction of biorthogonal wavelets, J. Appl. Comput. Harmonic Analysis, vol.3, no.2, pp.186 200, 1996. [12] G. Uytterhoeven, D. Roose, and A. Bultheel, Wavelet transforms using the Lifting Scheme, ITA-Wavelets Report WP 1.1, Department of Computer Science, Katholieke Universiteit Leuven, Belgium, November 1996. [13] Gunther D. Schaaf, Ralf Mikulla, Johannes Roth, H.-R. Trebin, Numerical simulation of dislocation motion in an icosahedral quasicrystal, Materials Science and Engineering 294 296, pp.799 803, 2000. [14], 2008. ( ) 270-1382 2-1200 E-mail: tomoko.endo.yamagishi@gmail ( ) 270-1382 2-1200 E-mail: mukawa@sie.dendai.ac.jp 14

Proceedings of the MEXT & OKU 2013 Workshop on Wavelet Theory and its Applications to Engineering 39. The theory of reproducing kernels and its applications Tsutomu Matsuura Gunma University Abstract. The theory of reproducing kernels is grand and beautiufl in itself. But recently we and some other researchers have tried to apply this theory to some concrete problems (especially to inverse problems ). Here we describe the outline of this theory. And I submit a method to apply this theory to real inversion of the Laplace transform. Furthermore I would like to discuss the applicability of the theory of reproducing kernels to real inversion of the Laplace transform. 1. S. Bergman G. Szegö 1922 1921 Szegö Bergman 1950 Aronszajn [6] Schwartz 1964 140 [76] Schwartz 1983 [43] Bergman Szegö 1983 2004 ([68]) Tikhonov 1

40 Proceedings of the MEXT & OKU 2013 Workshop on Wavelet Theory and its Applications to Engineering 2 3, 4 Tikhonov 5,6 2. (cf. [23]) F (E) E H (, ) H. h : E H H E., f H F (E) L : (2.1) f (p) = (L f)(p) = ( f, h(p)) H. (2.1) f (p) H f f (p) 2

Proceedings of the MEXT & OKU 2013 Workshop on Wavelet Theory and its Applications to Engineering 41 E E (2.2) K(p, q) = (h(q), h(p)) H R(L) L H E (2.3) f R(L) = inf{ f H ; f = L f} 1 (2.3) R(L) [R(L), (, ) R(L) ] (2.2) K(p, q) (i) q E, K(p, q) p R(L), (ii) f R(L) q E, f (q) = ( f ( ), K(, q)) R(L). (i) (ii) K(p, q) R(L). L H R(L) {h(p); p E} H. K(p, q) (i) (ii) R(L) K(p, q) K(p, q) ii f RKHS (reproducing kernel Hilbert space). 1 (2.2) K(p, q) K(p, q) H K (2.1) (2.2) R(L) = H K 1 2 (2.1) H { f (p)} (2.2) K(p, q) H K. f HK f H f H K H f E f (p) = ( f, h(p)) H f HK = f H. 2 H 2 (2.2) K(p, q) 3

42 Proceedings of the MEXT & OKU 2013 Workshop on Wavelet Theory and its Applications to Engineering (2.1) H H K T E : H = L 2 (T, dm), H K L 2 (E, dμ). ( dm, dμ T, E dm, dμ L 2. (2.4) f (p) = F(t)h(t, p)dm(t) T h(t, p) T E h(, p) L 2 (T, dm) F F L 2 (T, dm). K(p, q) = h(t, q)h(t, p)dm(t) on E E. T H K L 2 (E, dμ). 3 E {E N } N=1 : (a) E 1 E 2, (b) N=1 E N = E, (c) K(p, p)dμ(p) <. E N, f H K N f (p)h(t, p)dμ(p) L E 2 (T, dm) N { } (2.5) f (p)h(t, p)dμ(p) E N N=1 (2.4) 2 F L 2 (T, dm). L 2 (T, dm) 2, L E K(p, q) H K H L (2.6) g L (q) = LK(, q) L 4

Proceedings of the MEXT & OKU 2013 Workshop on Wavelet Theory and its Applications to Engineering 43 4 (2.7) f (p) = ( f, g L (p)) H, for f H f HK = f H. (2.7) L {g L (p); p E} H. (2.4) H K H f. (2.1) ill-posed problem 3 2.6,,. ([79]). 5 E { f (p)} H, q E, f f (q) H 5

44 Proceedings of the MEXT & OKU 2013 Workshop on Wavelet Theory and its Applications to Engineering { f n } f H K E K(p, p) E E E k(p, q) E E E X(p) p,q X(p)X(q)k(p, q) 0. K(p, q) E, 6 E K(p, q), H K 7 E H K(p, q) H {v j (p)} j E E K(p, q) = j v j (p)v j (q). H K H K -. E K(p, q), K(p, q) H K E K(p, q) E E 1, E 1 E 1 K (1) (p, q) = K(p, q) E1 E 1 K (1) (p, q) K (1) (p, q) H K (1) H K (1) H K 8 f (1) H K (1) H K f f (1) = f E1 H K (1) f (1) HK (1) = min { f HK ; f } E1 = f (1), f H K. E K (1) (p, q) K (2) (p, q), E E K(p, q) = K (1) (p, q) + K (2) (p, q) E H K, H K (1) H K (2) 6

Proceedings of the MEXT & OKU 2013 Workshop on Wavelet Theory and its Applications to Engineering 45 9 f H K f (1) H K (1) f (2) H K (2) f (p) = f (1) (p) + f (2) (p) on E H K : f 2 H K = min { f (1) 2 H K (1) + f (2) 2 H K (2) ; f (p) = f (1) (p) + f (2) (p) on E, f (1) H K (1), f (2) H K (2)}. E K (1) (p, q) K (2) (p, q), K(p, q) = K (1) (p, q)k (2) (p, q) Schur E H K H K (1) H K (2), 8 10 { f (1) j } j { f (2) j } j H K (1) H K (2), H K E (2.8) f (p) = α i, j f (1) i (p) f (2) j (p) on E, α i, j 2 <. i, j i, j H K (8) {α i, j } f 2 H K = min i, j α i, j 2. ([52]) 3. 2. (1) ([48]). 1-3. (2) ([60]). 3.. (3) ([56]).. (4) ([45]). (2) Paley-Wiener. (5) ([49],[52]).. (6) ([52])... (7) ([57]).. ([25]). 7

46 Proceedings of the MEXT & OKU 2013 Workshop on Wavelet Theory and its Applications to Engineering (8) ([57]).. (9) ([12],[13]).. (10) ([50]).,.. [64]. (11) ([53])... ([58,63,65]). (12) ([51], 4,2 )... (13) ([46]).. Pick ([4]). (14) ([47],[59],[62]).. ([21]). (15) ([66]).. (16) ([61])... 4. L H K H. H d (4.1) inf f H K Lf d H. Moore-Penrose, 8

Proceedings of the MEXT & OKU 2013 Workshop on Wavelet Theory and its Applications to Engineering 47 11 ([13]) H d, (4.2) inf Lf d H = L f d H f H K H K f k(p, q) = (L LK(, q), L LK(, p)) HK H k (4.3) L d H k. (4.2) f H K f d (4.4) f d (p) = (L d, L LK(, p)) Hk on E. L L (L d)(p) = (L d, K(, p)) HK = (d, LK(, p)) H d, L, K(p, q) H. 11 (4.1).. f d Lf = d Moore-Penrose L d 11 Moore-Penrose d. Tikhonov [17] L [20] {E λ } L L. L L 1 (L L) 1 = λ de λ. Moore-Penrose (4.4) f d (p) = 1 λ de λl d. R(L) d D(L ), Lf = d Moore-Penrose α >0 1 f d,α (p) = λ + α de λl d 9

48 Proceedings of the MEXT & OKU 2013 Workshop on Wavelet Theory and its Applications to Engineering. d d δ H δ d δ f d,α f δ d,α (p) = 1 λ + α de λl d δ 12 D(L ) d (4.5) lim α 0 (L L + αi) 1 L d = lim α 0 f d,α = f d. Lf d,α Lf δ d,α H δ, f d,α f δ d,α H K δ α. 13 d d δ H δ D(L ) d δ f δ d,α (4.6) inf f H K {α f 2 H K + d δ Lf 2 H }. α = α(δ) lim α(δ) = 0, lim δ 0 δ 0 δ 2 α(δ) = 0 (4.7) lim δ 0 f δ d,α = f d = L (d).. Tikhonov Tikhonov f d,α f δ d,α. L.. K L (, p; α) = (L L + αi) 1 K(, p) α>0 : (4.8) ( f, g) HK (L;α) = α( f, g) HK + (Lf, Lg) H. H K H K (L; α). 10

Proceedings of the MEXT & OKU 2013 Workshop on Wavelet Theory and its Applications to Engineering 49 14 ([68]) Tikhonov (4.9) inf f H K {α f 2 H K + d Lf 2 H } f d,α (p) K L (p, q; α) (4.10) f d,α (p) = (d, LK L (, p; α)) H. K L (p, q; α) H K (L; α) (4.11) K(p, q; α) + 1 α (L K q, LK p ) H = 1 K(p, q) α K(p, q; α). K q = K(, q; α) H K for q E, K p = K(, p) for p E. (4.10), d. 15 ([35],[25]). (4.10) f d,α (p) 1 α K(p, p) d H. α d H.. α. α α α α ([17],[20]). ([7,29-37,66-71]). 5.. L 2 (R n ) F } 1 ξ x 2 (5.1) u F (x, t) = (L t F)(x) = F(ξ)exp { dξ (4πt) n/2 R n 4t 11

50 Proceedings of the MEXT & OKU 2013 Workshop on Wavelet Theory and its Applications to Engineering. u(x, 0) = F(x) u t (x, t) = u xx (x, t) u(x, t). [77]. n = 1 [44] 2 3, u F (x, t) ([62]).. F t = 1 e D2 [(L 1 F)(x)] = F(x) pointwisely on R ([26], p. 182). 5 Sobolev [68,33], [35], Paley-Wiener. Paley-Wiener Stenger[74] sampling theory. sinc method. L 2 (R n, ( π/h, +π/h) n ), (h > 0) g f (z) = 1 (2π) n χ h (t)g(t)e iz t dt R n. z = (z 1, z 2,..., z n ), t = (t 1, t 2,..., t n ), dt = dt 1 dt 2 dt n, z t = z 1 t 1 + +z n t n ( π/h, +π/h) χ χ h (t) =Π n ν=1 χ(t ν). K h (z, u) = 1 (2π) n χ h (t)e iz t e iu t dt =Π n ν R n 1 π(z ν u ν ) sin π h (z ν u ν ) Paley-Wiener W h ν C ν z ν ( ) π zν f (z 1,..., z ν, z ν+1,..., z n ) C ν exp, f (x) 2 dx < h R n. j = ( j 1, j 2,..., j n ) Z n 1 (2π) n g(t) 2 dt = h n f ( jh) 2 = f (x) 2 dx R n j R n. f (x) = ( f ( ), K h (, x)) HKh = h n j f ( jh)k h ( jh, x) = R n f (ξ)k h (ξ, x)dξ 12

Proceedings of the MEXT & OKU 2013 Workshop on Wavelet Theory and its Applications to Engineering 51 f (x) { f ( jh)} j sampling theorem). {hj} j [23,45]. 16 ([35]) L 2 (R n ) g α>0, { } inf α F 2 HKh + g u F (, t) 2 F H L 2 (R n ) Kh (5.2) = α F t,α,h,g 2 H Kh + g u F t,α,h,g (, t) 2 L 2 (R n ) F t,α,h,g (5.3) F t,α,h,g (x) = R n g(ξ)q t,α,h (ξ x)dξ. Q t,α,h (ξ x) = 1 (2π) n R n χ h (p)e ip (ξ x) dp αe p 2 t. + e p 2 t H Kh F u F (x, t) g u F (ξ, t) α 0 Ft,α,h,g F. Sobolev, α = 0 (5.3) ([68],[33]), Paley-Wiener W h α = 0 (5.3). 16, α = 0. Tikhonov (L t Ft,0,h,g )(x) = (g( ), K h(, x)) L2 (R n ) (L t Ft,0,h,g )(x) g Paley-Wiener W h, Ft,0,h,g g L t Ft,0,h,g g L 2 (R n ) Ft,0,h,g L 2(R) g W h F L t F = g Moore-Penrose Paley-Wiener W h Tikhonov Moore-Penrose Tikhonov Ft,α,h,g α = 0. Sobolev H S Paley-Wiener W h α 0 h 0 30 h 0. [33,35]. L 2 (R) g. 13

52 Proceedings of the MEXT & OKU 2013 Workshop on Wavelet Theory and its Applications to Engineering 6. F (LF)(p) = f (p) = 0 e pt F(t)dt, p > 0.. ( 1) n ( n ) n+1 ( lim f (n) n ) ( = F(t), lim Π n n n! t t n k=1 1 + t ) d [ n ( n )] k dt t f = F(t) t ([40,80]). [11,36] [84,85] [27,28]. [36]. R + { F (t) 2 1 } 1/2 t et dt 0 F(0) = 0 F H K. (6.1) K(t, t ) =. min(t,t ) 0 ξe ξ dξ (6.2) 0 (LF)(p)p 2 dp 1 2 F 2 H K ; H K L 2 (R +, dp) = L 2 (R + ) (LF)(p)p. ([86]). 17 ([36]). g L 2 (R + ) α>0, { α inf F H K 0 F (t) 2 1 t et dt + (LF)(p)p g 2 L 2 (R + ) 14 }

Proceedings of the MEXT & OKU 2013 Workshop on Wavelet Theory and its Applications to Engineering 53 (6.3) = α Fα,g(t) 2 1 0 t et dt + (LFα,g)(p)p g 2 L 2 (R + ) F α,g (6.4) F α,g(t) = 0 g(ξ) (LK α (, t)) (ξ)ξdξ. K α (, t) K α,t = K α (, t ), K t = K(, t) (6.5) K α (t, t ) = 1 α K(t, t ) 1 α ((LK α,t )(p)p, (LK t)(p)p) L2 (R + ). F α,g(t) (6.4). (6.5) t t t (6.6) (LK α (, t))(ξ) = 1 α (LK(, t))(ξ) 1 α ((LK α,t)(p)p, (L(LK )(p)p))(ξ)) L2 (R + ). { te K(t, t t e t + 1 for t t ) = t e t e t + 1 for t t. (LK(, t ))(p) = e t p e t [ t p(p + 1) + 0 e qt (LK(, t ))(p)dt = 1 ] 1 + p(p + 1) 2 p(p + 1). 2 1 pq(p + q + 1) 2. (LK α (, t))(ξ)ξ = H α (ξ, t) αh α (ξ, t) + 0 1 e tξ H α (p, t) (p + ξ + 1) dp = e t 2 ξ + 1 ( t + 1 ) + ξ + 1 1 (ξ + 1) 2. ([37]) sinc method ([38]) ([3,28]) [19]) DE formula ([89]) Kryzhniy. (6.3) H K 15

54 Proceedings of the MEXT & OKU 2013 Workshop on Wavelet Theory and its Applications to Engineering. α 10 22 Paley-Wiener h 1/300 α 10 400 15... 4.11. H ([36]) ([34]). ([3,28]) 7. [8,18,22] D.A. Hejhal[22] J.D. Fay[18] [6,45]. [55] S. Smale[15] ([83]) [78], Support Vector Machines, MIT [14] ([87-88]). [5] 16

Proceedings of the MEXT & OKU 2013 Workshop on Wavelet Theory and its Applications to Engineering 55 8. (C)(No. 24540113, No. 23540121, No.211540111, No. 20540105, No. 19540164, No. 18540110) 36,, No. 20 (2005-2006). [1], II -, (1976). [2],, (2002). [3],,,,, 55(2003), 316-325. [4] J. Agler and J. E. McCarthy, Pick Interpolation and Hilbert Function Spaces, Graduate Studies in Mathematics, Vol. 44 (2002). [5] D. Alpay, The Schur Algorithm, Reproducing Kernel Spaces and System Theory, American Mathematical Society (1998). [6] N. Aronszajn, Theory of reproducing kernels, Trans. Amer. Math. Soc., 68 (1950), 337 404. [7] M. Asaduzzaman, T. Matsuura, and S. Saitoh, Constructions of approximate solutions for linear differential equations by reproducing kernels and inverse problems, Advances in Analysis, Proceedings of the 4th International ISAAC Congress (2005), 335-344. (World Scientific). [8] S. Bergman, The kernel function and conformal mapping, Amer. Math. Soc. Providence, R. I. (1950, 1970). [9] A. Berlinet and C. Thomas-Agnan, Reproducing kernel Hilbert spaces in probability and statistics, Kluwer Akademic Publishers, Boston/Dordrecht/London (2004). 17

56 Proceedings of the MEXT & OKU 2013 Workshop on Wavelet Theory and its Applications to Engineering [10] A. Berlinet, Reproducing kernels in probability and statistics, The ISAAC Catani Congress Proceedings (to appear). [11] D.-W. Byun and S. Saitoh, A real inversion formula for the Laplace transform Z. Anal. Anw., 12(1993), 597-603. [12] D.-W. Byun and S. Saitoh, Approximation by the solutions of the heat equation, J. Approximation Theory, 78 (1994), 226 238. [13] D.-W. Byun and S. Saitoh, Best approximation in reproducing kernel Hilbert spaces, Proc. of the 2th International Colloquium on Numerical Analysis, VSP-Holland, (1994), 55 61. [14] N. Cristianini and J. Shawe-Taylor, An Introduction to Support Vector Machines and other Kernel-based Learning Methods, Cambridge Univ. Press, Cambridge (2001). [15] F. Cucker and S. Smale, On the mathematical foundations of learning, Bull. Amer. Math. Soc., 39 (2001), 1 49. [16] G. Doetsch, Handbuch der Laplace Transformation, Vol. 1., Birkhäuser Verlag, Basel, 1950. [17] H. W. Engl, M. Hanke and A. Neubauer, Regularization of Inverse Problems, Mathematics and Its Applications, 376(2000), Kluwer Academic Publishers. [18] J.D. Fay, Theta functions on Riemann surfaces, Lecture Notes in Math., Vol. 352, Springer-Verlag (1973). [19] H. Fujiwara, T. Matsuura and S. Saitoh, Numerical real inversion formulas of the Laplace transform by using a Fredholm integral equation of the second kind, RIMS. Kyoto Univ., 1566(2007), 52-63. [20] C. W. Groetsch, Inverse Problems in the Mathematical Sciences, Vieweg & Sohn Verlagsgesellschaft mbh, Braunschweig/Wiesbaden (1993). [21] N. Hayashi, Analytic function spaces and their applications to nonlinear evolution equations, Analytic Extension Formulas and their Applications, (2001), Kluwer Academic Publishers, 59 86. [22] D.A. Hejhal, Theta functions, kernel functions and Abel integrals, Memoirs of Amer. Math. Soc., Vol. 129, Providence, R. I. (1972). [23] J. R. Higgins, A sampling principle associated with Saitoh s fundamental theory of linear transformations, Analytic Extension Formulas and their Applications, (2001), Kluwer Academic Publishers, 73 86. [24] H. Imai, T. Takeuchi and M. Kushida, On numerical simulation of partial differential 18

Proceedings of the MEXT & OKU 2013 Workshop on Wavelet Theory and its Applications to Engineering 57 equations in infinite precision, Advances in Mathematical Sciences and Applications, 9(1999), 1007-1016. [25] H. Itou and S. Saitoh, Analytical and numerical solutions of linear singular integral equations, Functional Equations, Integral Equations and Differential Equations with Applications (The Tricentennial Birthday Anniversary of Leonhard EULER), Taylor & Francis Books, US [26] I.I. Hirschman and D.V. Widder, The Convolution Transform, Princeton University Press, Princeton, New Jersey, (1955). [27] V.V. Kryzhniy, Regularized inversion of integral transformations of Mellin convolution type, Inverse Problems, 19(2003), 573-583. [28] V. V. Kryzhniy, Numerical inversion of the Laplace transform: analysis via regularized analytic continuation, Inverse Problems, 22 (2006), 579-597. [29] T. Matsuura and S. Saitoh, Analytical and Numerical Solutions of the Inhomogeneous Wave Equation, Australian J. of Math. Anal. and Appl., 1(2004), Volume 1, Issure 1, Article 7. [30] T. Matsuura, S. Saitoh and D.D. Trong, Numerical solutions of the Poisson equation, Applicable Analysis, 83(2004), 1037-1051. [31] T. Matsuura and S. Saitoh, Analytical and numerical solutions of linear ordinary differential equations with constant coefficients, Journal Analysis and Applications, 3(2005), 1-17. [32] T. Matsuura and S. Saitoh, Numerical inversion formulas in the wave equation, Journal of Computational Mathematics and Optimization, 1(2005), 1-19. [33] T. Matsuura, S. Saitoh and D.D. Trong, Approximate and analytical inversion formulas in heat conduction on multidimensional spaces, J. of Inverse and Ill-posed Problems, 13 (2005), 479-493. [34] T. Matsuura and S. Saitoh, Dirichlet s Principle Using Computers, Applicable Analysis, 84(2005), 989-1003. [35] T. Matsuura and S. Saitoh, Analytical and numerical inversion formulas in the Gaussian convolution by using the Paley-Wiener spaces, Applicable Analysis, 85(2006), 901-915. [36] T. Matsuura and S. Saitoh, Analytical and numerical real inversion formulas of the Laplace transform, More Progresses in Analysis, World Scientific, 191-200, 2009. [37] T. Matsuura, A. Al-Shuaibi, H. Fuijiwara and S. Saitoh, Numerical real inversion formulas of the Laplace transform by using a Fredholm integral equation of the second kind, Journal of Analysis and Applications, Vol.5,123-136, 2007. 19

58 Proceedings of the MEXT & OKU 2013 Workshop on Wavelet Theory and its Applications to Engineering [38] T. Matsuura, A. Al-Shuaibi, H. Fuijiwara, S. Saitoh and M. Sugihara, Numerical real inversion formulas of the Laplace transform by a sinc method, Far East Journal of Mathematical Sciences, Vol.27(1), 1-14, 2007. [39] Z. Nehari, Conformal mapping, McGraw-Hill Book Company Inc., New York (1952). [40] E. L. Post, Generalized diffentiation, Trans. Amer. Math. Soc., 32(1930), 723-781. [41] Th. M. Rassias and S. Saitoh, The Pythagorean theorem and linear mappings, PanAmerican Math. J., 12 (2002), 1 10. [42] S. Saitoh, The Bergman norm and the Szegö norm, Trans. Amer. Math. Soc., 249 (1979), 261 279. [43] S. Saitoh, Hilbert spaces induced by Hilbert space valued functions, Proc. Amer. Math. Soc., 89 (1983), 74 78. [44] S. Saitoh, The Weierstrass transform and an isometry in the heat equation, Applicable Analysis, 16(1983), 1-6. [45] S. Saitoh, Theory of Reproducing Kernels and its Applications, Pitman Research Notes in Mathematics Series, 189 (1988), Longman Scientific & Technical, UK. [46] S. Saitoh, Interpolation problems of Pick-Nevanlinna type, Pitman Research Notes in Mathematics Series, 212 (1989), 253 262. [47] S. Saitoh, Representations of the norms in Bergman-Selberg spaces on strips and half planes, Complex Variables, 19 (1992), 231 241. [48] S. Saitoh, One approach to some general integral transforms and its applications, Integral Transforms and Special Functions, 3 (1995), 49 84. [49] S. Saitoh, Natural norm inequalities in nonlinear transforms, General Inequalities 7(1997), 39 52. Birkhäuser Verlag, Basel, Boston. [50] S. Saitoh, Representations of inverse functions, Proc. Amer. Math. Soc., 125 (1997), 3633 3639. [51] S. Saitoh, Integral Transforms, Reproducing Kernels and their Applications, Pitman Research Notes in Mathematics Series, 369 (1997), Addison Wesley Longman, UK. [52] S. Saitoh, Nonlinear transforms and analyticity of functions, Nonlinear Mathematical Analysis and Applications, (1998), 223 234. Hadronic Press, Palm Harbor. [53] S. Saitoh, Various operators in Hilbert space induced by transforms, International J. of Applied Math., 1 (1999), 111 126. [54] S. Saitoh, Applications of the general theory of reproducing kernels, Reproducing Kernels and their Applications, (1999), Kluwer Academic Publishers, 165 188. 20

Proceedings of the MEXT & OKU 2013 Workshop on Wavelet Theory and its Applications to Engineering 59 [55] S. Saitoh, D. Alpay, J.A. Ball and T. Ohsawa (eds), Reproducing Kernels and their Applications, (1999), Kluwer Academic Publishers. [56] S. Saitoh and M. Yamamoto, Integral transforms involving smooth functions, Reproducing Kernels and their Applications, (1999), Kluwer Academic Publishers, 149 164. [57] S. Saitoh, Linear integro-differential equations and the theory of reproducing kernels, Volterra Equations and Applications, C. Corduneanu and I.W. Sandberg (eds), Gordon and Breach Science Publishers (2000), Amsterdam. [58] S. Saitoh, Weighted L p -norm inequalities in convolutions, Survey on Classical Inequalities (T. M. Rassias, ed.), Kluwer Academic Publishers, 2000, pp. 225-234. [59] S. Saitoh, Analytic extension formulas, integral transforms and reproducing kernels, Analytic Extension Formulas and their Applications, (2001), Kluwer Academic Publishers, 207 232. [60] S. Saitoh, Applications of the reproducing kernel theory to inverse problems, Comm. Korean Math. Soc., 16 (2001), 371 383. [61] S. Saitoh, Principle of telethoscope, Functional-Analytic and Complex Methods, their Interaction and Applications to Partial Differential Equations, Proceedings of the International Graz Workshop, Graz, Austria, 12-16 February 2001. World Scientific (2001), 101 117. [62] S. Saitoh, N. Hayashi and M. Yamamoto (eds.), Analytic Extension Formulas and their Applications, (2001), Kluwer Academic Publishers. [63] S. Saitoh, Vu Kim Tuan and M. Yamamoto, Conditional Stability of a Real Inverse Formula for the Laplace Transform, Z. Anal. Anw., 20(2001), 193-202. [64] S. Saitoh and M. Mori, Representations of analytic functions in terms of local values by means of the Riemann mapping function, Complex Variables, 45 (2001), 387 393. [65] S. Saitoh, Vu Kim Tuan and M. Yamamoto, Reverse convolution inequalities and applications to inverse heat source problems, J. of Inequalities in Pure and Applied Mathematics, 3 (2002), Article 80. [66] S. Saitoh, T. Matsuura and M. Asaduzzaman, Operator Equations and Best Approximation Problems in Reproducing Kernel Hilbert Spaces, Journal of Analysis and Applications, 1(2003), 131-142. [67] S. Saitoh, Constructions by Reproducing Kernels of Approximate Solutions for Linear Differential Equations with L 2 Integrable Coefficients, International J. of Math. Sci., 2(2003), 261-273. [68] S. Saitoh, Approximate Real Inversion Formulas of the Gaussian Convolution, Appli- 21

60 Proceedings of the MEXT & OKU 2013 Workshop on Wavelet Theory and its Applications to Engineering cable Analysis, 83(2004), 727-733. [69] S. Saitoh, Best approximation, Tikhonov regularization and reproducing kernels, Kodai. Math. J., 28(2005), 359-367. [70] S. Saitoh, Tikhonov regularization and the theory of reproducing kernels, Finite or Infinite Dimensional Complex Analysis and Applications (Proceedings of the 12th IC- FIDCAA), Kyushu University Press (2005), 291-298. [71] S. Saitoh, Applications of reproducing kernels to best approximations, Tikhonov regularizations and inverse problems, Advances in Analysis, Proceedings of the 4th International ISAAC Congress (2005), (World Scientific), 439-445. [72] S. Saitoh and M. Yamada, Inversion formulas for a linear system determined by input and response relations, by using suitable function spaces, Hokkaido University Technical Report Series in Mathematics, 118(2007), 18-21. [73] M. Sakai, Analytic functions with finite Dirichlet integrals on Riemann surfaces, Acta. Math., 142 (1979), 199 229. [74] F. Stenger, Numerical Methods Based on Sinc and Analytic Functions, Springer Series in Computational Mathematics, 20, 1993. [75] N. Suita and A. Yamada, On the Lu-Qi Keng conjecture, Proc. Amer. Math. Soc., 59 (1976), 222 224. [76] L. Schwartz, Sous-espaces hilbertiens d espaces vectoriels topologiques et noyaux associés (noyaux reproduisants), J. Analyse Math., 13 (1964), 115 256. [77] W. Ulmer and W. Kaissl, The inverse problem of a Gaussian convolution and its application to the finite size of measurement chambers/detectors in photon and proton dosimetry, Phys. Med. Biol., 48(2003), 707-727. [78] V. Vapnik, Statistical Learning Theory, John Wiley & Sons (1998). [79] G. Wahba, Spline Models for Observational Data, CBMS-NSF Regional Conference Series in Applied Mathematics, 59, SIAM, Philadelphia, (1990). [80] D. V. Widder, The Laplace Transform, Princeton University Press, Princeton, 1972. [81] A. Yamada, Fay s trisecant formula and Hardy H 2 reproducing kernels, Reproducing Kernels and their Applications (1999), Kluwer Academic Publishers, 165 188. [82] A. Yamada, Equality conditions for general norm inequalities in reproducing kernel Hilbert spaces, Advances in Analysis, World Scientific, 2005, 447 455. [83] D. -X Zhou, Capacity of reproducing kernel spaces in learning theory, IEEE Trans. Inform. Theory, 49(2003), 1743 1752. 22

Proceedings of the MEXT & OKU 2013 Workshop on Wavelet Theory and its Applications to Engineering 61 [84] http://library.wolfram.com /inforcenter/mathsource/4738/ [85] http://www.columbia.edu/ ww2040/abate.html [86] H. Fujiwara, T. Matsuura, S. Saitoh and Y. Sawano, The real inversion of the Laplace transform by numerical singular value decomposition, Journal of Analysis and Applications, Vol.6, 55-68, 2008. [87] K. Fukumizu, F.R. Bach and M.I. Jordan, Dimensionality reduction for supervised learning with reproducing kernel Hilbert spaces, Journal of Machine Learning Research 5(2004), 73 99. [88] M. Cuturi, K. Fukumizu and J.P. Vert, Semigroup kernels on measures, Journal of Machine Learning Research, 6(2005), 1169 1198. [89] H. Takahasi and M. Mori, Double exponential formulas for numerical integration, Publ. RIMS. Kyoto Univ., 10(1974), 721 741. ( ) 376-8515 1-5-1 E-mail: matsuura@gunma-u.ac.jp 23

62 Proceedings of the MEXT & OKU 2013 Workshop on Wavelet Theory and its Applications to Engineering

Proceedings of the MEXT & OKU 2013 Workshop on Wavelet Theory and its Applications to Engineering 63 * * Wavelet applications for pattern recognition, in particular, for human gait of moving picture analysis Kohei Arai, Graduate School of Science and Engineering, Saga University Abstract. Wavelet applications for pattern recognition, in particular for human gait of moving picture analysis are discussed. There are some problems on pattern recognition, in particular for human gait recognition. One of these is effective feature extraction from acquired human gait of moving picture. Wavelets are applicable for time-frequency analysis. Therefore, it is expected that wavelet analysis is effective for feature extraction from the acquired moving picture. Through experiments, it is found that specific orders and levels of wavelets are effective for human gait recognitions. (Human Gait) [1] [2] / 1

64 Proceedings of the MEXT & OKU 2013 Workshop on Wavelet Theory and its Applications to Engineering [3] [4] [5] [6] ( ) [3] [7],[8] CASIA [9]. 2.1 (1) [10]-[24] [25] [26] CASIA HFB Database 1 25fps 320 240 2

Proceedings of the MEXT & OKU 2013 Workshop on Wavelet Theory and its Applications to Engineering 65 (2) ( ) 1 Figure 1. Background subtraction for silhouettes images RGB 2 1 Image_current( ) Image_background( ) 2 Image_dimension (Image_row image_column) 3

66 Proceedings of the MEXT & OKU 2013 Workshop on Wavelet Theory and its Applications to Engineering 3 (work_thresh) 4 R G B (1) 0 5 1E- 30 6 R G B a) b) (2) (3) c) (4) 7, 4) 6) 8 (5) 9 O_thresh 10) O_thresh 1 0 11 (6) 12 C(R) = A(R) B; C(G) = A(G) B; C(B) = A(B) B (7) 13 C 1 2 I (0) I (0) 3 1 t = 1 I I 4 2 4

Proceedings of the MEXT & OKU 2013 Workshop on Wavelet Theory and its Applications to Engineering 67 Figure 2. Silhouettes results 2.2 ( ) ( ) ( ) 3 6 [29] 1 2 2 1 G1 G2 G3 p 3 2 G1 G2 G3 2 p [6] 3 25 27 32 15 5

68 Proceedings of the MEXT & OKU 2013 Workshop on Wavelet Theory and its Applications to Engineering Figure 3. Proporsional average size of human body 1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 4 d 4 c 6

Proceedings of the MEXT & OKU 2013 Workshop on Wavelet Theory and its Applications to Engineering 69 (a) (b) (c) (d) Figure 4. (a) Skeleton image per frame, (b) Skeleton image per video sequence (c) Skeleton per frame,(d) Skeleton per frame sequence. 2.3 (1) 7

70 Proceedings of the MEXT & OKU 2013 Workshop on Wavelet Theory and its Applications to Engineering 5(a) 5(b) (a) Figure 5. (a) Skeleton image per frame, (b) Skeleton image per video sequence (b) (2) (. ) (DWT) DWT [7],[8],[12],[13],[15] [10] 2D DWT (decomposition) 2D (IDWT) (reconstruction) 6 1 2 DWT 4 6 4 LL( ) HL( ) LH( ) HH( ) 4 8

Proceedings of the MEXT & OKU 2013 Workshop on Wavelet Theory and its Applications to Engineering 71 Figure 6. 1-Level Decomposition 2D DWT DWT f(t) (8) (t) (t) [7] (8) (1) (11) (9) (10) 9

72 Proceedings of the MEXT & OKU 2013 Workshop on Wavelet Theory and its Applications to Engineering (11) (12) ( ) (SVM). 2.1 (USF) (SOTON) (CASIA) CASIA CASIA [9] 90 B CASIA B 2005 1 57 43 100 3 7 CASIA 10

Proceedings of the MEXT & OKU 2013 Workshop on Wavelet Theory and its Applications to Engineering 73 Figure 7. Frame sample of CASIA Human Gait Dataset 2.2 (1) 7 2 2 8,9 4 2 10 11 2 ( ) 2 12 4 2 13 4 2 1 eaeh 2 eaev 3 eaed 4 ehev 5 ehed 6 eved Haar 1 31 8 2 2 o + ehev 11

74 Proceedings of the MEXT & OKU 2013 Workshop on Wavelet Theory and its Applications to Engineering Figure 8. Result from single skeleton frame of 2 persons 9 2 2 ehed Figure 9. Result from skeleton frame sequence of 2 persons 10 4 2 12

Proceedings of the MEXT & OKU 2013 Workshop on Wavelet Theory and its Applications to Engineering 75 Figure 10. Result from skeleton frame sequence of 4 persons 11 2 2 Figure 11. Result from single motion frame of 2 persons 12 4 2 ehev 13

76 Proceedings of the MEXT & OKU 2013 Workshop on Wavelet Theory and its Applications to Engineering Figure 12. Result from single motion frame of 4 persons 13 4 2 ehev (2) Figure 13. Result from motion frame sequence of 4 persons 1 CASIA 14

Proceedings of the MEXT & OKU 2013 Workshop on Wavelet Theory and its Applications to Engineering 77 TABLE I. COMPARISON OF GENDER CLASSIFICATION PERFORMANCES AMONG THE PROPOSED METHOD AND THE CONVENTIONAL METHODS Method Dataset CCR Lee and Grimson [6] 25 males & 25 females 85.0% Huang and Wang [28] 25 males & 25 females 85.0% 2D DWT Energy proposed [17] 31 males & 31 females 92.9% Li et al. [30] 31 males & 31 females 93.28% GEM Proposed 31 males & 31 females 97.63% CCR Correct Classification Ratio Lee [6] [28] CASIA B 25 25 2D DWT [17] Li [30] 31 31 92.9 Li 93.28 Gait Energy Motion: GEM 97.63 (3)GEM GEM 14 Gait ( ) Figure 14 Accumulated Gait Energy Motion: GEM 15

78 Proceedings of the MEXT & OKU 2013 Workshop on Wavelet Theory and its Applications to Engineering f ( 13) 15 ( ) Figure 15 F-value image of the Gait Energy Motion: GEM (13) x GEM F F 3. ( ) ( ) F 16

Proceedings of the MEXT & OKU 2013 Workshop on Wavelet Theory and its Applications to Engineering 79 [1] X. Qinghan, Technology review Biometrics Technology, Application, Challenge, and Computational Intelligence Solutions, IEEE Computational Intelligence Magazine, vol. 2, pp. 5-25, 2007. [2] Jin Wang, Mary She, Saeid Nahavandi, Abbas Kouzani, A Review of Vision-based Gait Recognition Methods for Human Identification, IEEE Computer Society, 2010 International Conference on Digital Image Computing: Techniques and Applications, pp. 320-327, 2010 [3] N. V. Boulgouris, D. Hatzinakos, and K. N. Plataniotis, Gait recognition: a challenging signal processing technology for biometric identification, IEEE Signal Processing Magazine, vol. 22, pp. 78-90, 2005. [4] M. S. Nixon and J. N. Carter, "Automatic Recognition by Gait", Proceedings of the IEEE, vol. 94, pp. 2013-2024, 2006. [5] Y. Jang-Hee, H. Doosung, M. Ki-Young, and M. S. Nixon, Automated Human Recognition by Gait using Neural Network, in First Workshops on Image Processing Theory, Tools and Applications, 2008, pp. 1-6. [6] Wilfrid Taylor Dempster, George R. L. Gaughran, Properties of Body Segments Based on Size and Weight, American Journal of Anatomy, Volume 120, Issue 1, pages 33 54, January 1967 [7] Gilbert Strang and Truong Nguen, Wavelets and Filter Banks. Wellesley-Cambridge Press, MA, 1997, pp. 174-220, 365-382 [8] I. Daubechies, Ten lectures on wavelets, Philadelphis, PA: SIAM, 1992. [9] CASIA Gait Database, http://www.cbsr.ia.ac.cn/ English/index.asp [10] Edward WONG Kie Yih, G. Sainarayanan, Ali Chekima, "Palmprint Based Biometric System: A Comparative Study on Discrete Cosine Transform Energy, Wavelet Transform Energy and Sobel Code Methods", Biomedical Soft Computing and Human Sciences, Vol.14, No.1, pp.11-19, 2009 [11] Dong Xu, Shuicheng Yan, Dacheng Tao, Stephen Lin, and Hong-Jiang Zhang, Marginal Fisher Analysis and Its Variants for Human Gait Recognition and Content- Based Image Retrieval, IEEE Transactions On Image Processing, Vol. 16, No. 11, November 2007 [12] Hui-Yu Huang, Shih-Hsu Chang, A lossless data hiding based on discrete Haar wavelet transform, 10th IEEE International Conference on Computer and Information Technology, 2010 [13] Kiyoharu Okagaki, Kenichi Takahashi, Hiroaki Ueda, Robustness Evaluation of Digital Watermarking Based on Discrete Wavelet Transform, Sixth International Conference on Intelligent Information Hiding and Multimedia Signal Processing, 2010 [14] Bogdan Pogorelc, Matjaž Gams, Medically Driven Data Mining Application: Recognition of Health Problems from Gait Patterns of Elderly, IEEE International Conference on Data Mining Workshops, 2010 [15] B.L. Gunjal, R.R.Manthalkar, Discrete Wavelet Transform based Strongly Robust Watermarking Scheme for Information Hiding in Digital Images, Third International Conference on Emerging Trends in Engineering and Technology, 2010 [16] Turghunjan Abdukirim, Koichi Niijima, Shigeru Takano, Design Of Biorthogonal Wavelet Filters Using Dyadic Lifting Scheme, Bulletin of Informatics and Cybernetics Research Association of Statistical Sciences, Vol.37, 2005 [17] Seungsuk Ha, Youngjoon Han, Hernsoo Hahn, Adaptive Gait Pattern Generation of Biped Robot based on Human s Gait Pattern Analysis, World Academy of Science, Engineering and Technology 34 2007 [18] Maodi Hu, Yunhong Wang, Zhaoxiang Zhang and Yiding Wang, Combining Spatial and Temporal Information for Gait Based 17

80 Proceedings of the MEXT & OKU 2013 Workshop on Wavelet Theory and its Applications to Engineering Gender Classification, International Conference on Pattern Recognition 2010 [19] Xuelong Li, Stephen J. Maybank, Shuicheng Yan, Dacheng Tao, and Dong Xu, Gait Components and Their Application to Gender Recognition, IEEE Transactions On Systems, Man, And Cybernetics Part C: Applications And Reviews, Vol. 38, No. 2, March 2008 [20] Shiqi Yu,, Tieniu Tan, Kaiqi Huang, Kui Jia, Xinyu Wu, A Study on Gait-Based Gender Classification, IEEE Transactions On Image Processing, Vol. 18, No. 8, August 2009 [21] M.Hanmandlu, R.Bhupesh Gupta, Farrukh Sayeed, A.Q.Ansari, An Experimental Study of different Features for Face Recognition, International Conference on Communication Systems and Network Technologies, 2011 [22] S. Handri, S. Nomura, K. Nakamura, Determination of Age and Gender Based on Features of Human Motion Using AdaBoost Algorithms, 2011 [23] Massimo Piccardi, Background Subtraction Techniques: Review, http://www-staff.it.uts.edu.au/ ~massimo/backgroundsubtractionreview-piccardi.pdf [24] Bakshi, B., "Multiscale PCA with application to MSPC monitoring," AIChE J., 44, pp. 1596-1610., 1998 [25] G. Huang, Y. Wang, Gender Classification Based on Fusion of Multi-view Gait Sequences, Proceedings of the Asian Conference on Computer Vision, 2007. [26] W. Kusakunniran et al., Multi-view Gait Recognition Based on Motion Regression Using Multilayer Perceptron, Proceedings of the IEEE International Conference on Pattern Recognition, pp 2186-2189, 2010 840-8502 1 1974 1985 6 1974 ~78 1979 ~1990 ( JAXA) 1985-1987 ( ) 1990 1998 2008 A 2008 International Journal of Advanced Computer Science and Applications Best Paper Award 30 ( ) 31 ( ) 840-8502 1 arai@is.saga-u.ac.jp 18