untitled

Size: px
Start display at page:

Download "untitled"

Transcription

1 K-Means

2 1 5 2 K-Means K-Means K-Means K-Means K-Means K-Means K-Means LVQ K-Means K-Means

3 K =3 K-Means K=3,m =2 K-Means K =3 LVQ K=3,m =2 LVQ K-Means LVQ K-Means K-Means K-Means Km, ( , ),( , ) Km, ( , ),( , ) Km, ( , ),( , ) Km, ( , ),( , ) Km, ( , ),( , ) Km, ( , ),( , ) K-Means m =2 K-Means m =3 K-Means {R }, {R (m) } {D (m) } {ρ (m) } {d( c (m =2),p )} {d(r (m =2),p )} LVQ m =2 LVQ {R }, {R (m) } {D (m) } {ρ (m) }

4 13 {d(r (m =2),p )} Km,Km

5 1 2 [1][2][3] K-Means [5][8][9] 1 N ( ) 2 1 N K-Means c- [4][7] K-Means (Learning Vector Quantization:LVQ)[6][11] 2 K-Means LVQ K-Means LVQ K-Means [16][17] 5

6 K-Means K-Means K-Means K K-Means [13][14] K-Means 2 K-Means LVQ 3 K-Means 4 K-Means LVQ 5 K-Means, K-Means,LVQ 2, K-Means 6,7 6

7 2 K-Means K-Means K K-Means n x i =(x i1,...,x id ),i=1,...,n X K X, =1,...,K J = min { c,=1,...,k} i=1 n x i X x i c 2. (1) x i c 2 = D d=1 (x id c d ) 2 c =(c 1,..., c D ) (1) K-Means m (m1) { c (t) } x i x i X (t) α α = arg min x i c (t) 2. (2) (m2) {X (t) } c (t+1) = 1 n (t) x i X (t) x i, =1,...,K. (3) n (t) X(t) c (t+1) X (t) ( +1) ɛ c (t+1) c (t) <ɛ (m1) (m2) { c (t) } { c } (1) R R = { x x c 2 < x c i 2 for all i } (4) 7

8 if x R, x Class (5) { c } 1: 2.2 K-Means K-Means n X p x X q x X p X q X p X p { x} X q X q { x} c p, c q c p, c q X p N p 1, Xq N q +1 J [1] m (m 1) c (t), =1,...,K (m 2) J x i,i=1,...,n (m 2-1) x i X p N p 1 8

9 J p = J l = N p N p 1 x i c p 2 N l N l +1 x i c l 2, l p J q J l, for all l x i X p X q c p = c p 1 N p 1 ( x i c p ) c q = c q 1 N q +1 ( x i c q ) N p = N p 1 N q = N q +1 J J = J + J q J p X p Xp = X p { x i } X q Xq = X q { x i } x X p x X q x c p 2 = x c q 2 = x X p x c p 2 x X q x c q 2 N p N p 1 x i c p 2 N q N q +1 x i c q (LVQ) K-Means t t =1, 2,... x(t) R p (t = 1, 2,...) (VQ) m R p, =1,...,K x(t) x(t) 9

10 m l m l (t) = arg min x(t) m (t). (6) x(t) m l (t) m l (t +1)=m l (t)+α(t)[x(t) m l (t)]. (7) α(t) α(t) =, α 2 (t) <, t =1, 2,... (8) t=1 t=1 α(t) α(t) = /t x(t) x(t) lvq (lvq1) m, =1,...,K (lvq2) t =1, 2,... (lvq2-1) m l = arg min 1 K x(t) m (t) (9) (lvq2-2) m 1 (t),...,m (t) m l (t +1) = m l (t)+α(t)[x(t) m l (t)] m (t +1) = m (t), l x(t) X l 10

11 3 K-Means K-Means X {R } { c } R R R R K-Means R R K-Means R 3.1 K-Means K = m (2 m M) R R m {R (m),p,p= 1,...,m}, { c (m),p,p=1,...,m} M 2 3 R D (m=1) R (m),p D (m),p = x i R (m),p = m R (m) x i R x i c 2. (10) x i c (m),p 2,m=2,...,M (11) D (m) = m p=1 D (m),p. (12) R ρ (m) =D (m) /D (m 1),m=2,...,M. (13) ρ (m) R m R m R m 1 R m 11

12 D (m) D (m 1) ρ (m ) = min {ρ (m), m=2,...,m} (14) m η ρ (m ) <η (15) R m R η η 3.2 R {R (m ),p,p =1,...,m } {R (m ),p } { c (m ),p,p =1,...,m } K-Means R m 1 c (m ),p R d( c (m ),p ) ˆd( c (m ),p ) = max p {d( c(m ),p ),p=1,...,m } (16) R (m ),p R p p R (m ),p d( c (m ),p ) d(r (m ),p ) = min x i R (m ),p, x j R l,l d( x i, x j ) (17) ˆd(R (m ),p ) = max p {d(r(m ),p ),p=1,...,m } (18) R (m ),p R R (m ),p ) d(r (m ),p ρ (m ) <η 12

13 4 SVM(Support Vector Machine)[15] H Φ :R p H H K( x, y) = Φ( x), Φ( y) H (19) Φ( x) RBF K( x, y) = exp( C x y 2 ) (20) K( x, y) = (1 + x, y ) d (21) 4.1 K-Means K-Means (1) K-Means K J = Φ( x i ) m 2 (22) =1 x i X m X m = x X Φ( x) n. (23) Φ Φ Φ( x i ) m 2 K( x i, x j ) D i = Φ( x i ) m 2 H. (24) (22) K J = D i (25) =1 x i X 13

14 D i = Φ( x i ) m 2 = Φ( x i ) x j X Φ( x j ), Φ( x i ) n x l X Φ( x l ) n = Φ( x i ), Φ( x i ) 2 Φ( x i ), Φ( x j ) + 1 n n 2 Φ( x j ), Φ( x l ) x j X x j, x l X = K( x i, x i ) 2 K( x i, x j )+ 1 n n 2 K( x j, x l ) x j X x j, x l X (26) Km (Km1) X K y j (j = 1,..., K) x i x i X (t) α α = arg min Φ( x i ) Φ( y j ) 2 = arg min K( x i, x i ) 2K( x i, y j )+K( y j, y j ). (27) (Km2) x i (Km2-1) x i α = arg min Φ( x i ) m 2 (28) (Km2-2) Φ( x i ) m 2 (26) 14

15 4.2 K-Means 4.1 n (25) Km (Km 1) X K y j (j = 1,..., K) x i (27) (Km 2) x i (Km 2-1) x i α = arg min Φ( x i ) m 2 (Km 2-2) x i (Km 2-2) J = D i (29) x i X J = K J. (30) =1 x i X p Xq X p,x q, m p, m q N p,n q Xp = X p { x i }, Xq = X q { x i }, m p = m q = N p N p 1 Φ( x i) m p 2, N q N q +1 Φ( x i) m q 2. J,J p,j q J,J p,j q J = J 15

16 = J p + J q + J p,q J p = x X p Φ( x) m p 2 Φ( x i ) m p 2 = Φ( x) m p + Φ( x i) m p 2 N p N x X p 1 N p 1 Φ( x i) m p 2 p = J p N p N p 1 Φ( x i) m p 2 = J p N p N p 1 D ip (31) J q = J q + N q N q +1 D iq. (32) J = J p + J q + p,q J = J p N p N p 1 D ip + J q + N q N q +1 D iq + p,q = J N p N p 1 D ip + N q N q +1 D iq (33) J 4.3 LVQ LVQ m l (t) = arg min Φ( x h ) m (t) (34) m l (t +1) = m l (t)+α(t)[φ( x h ) m l (t)] (35) m m t D i (t) = Φ( x i ) m (t) 2 (36) 16

17 (34) D il (t) = arg min D i (t) (37) (35) D i (t +1) = Φ( x i ) m (t +1) 2 = Φ( x i ), Φ( x i ) 2 Φ( x i ), m l (t +1) + m l (t +1), m l (t +1) (38) (35) α = α(t) D i (t +1) = Φ( x i ), Φ( x i ) 2{(1 α) Φ( x i ), m l (t) + α Φ( x i ), Φ( x h ) } + {(1 α) 2 m l (t), m l (t) +2α(1 α) Φ( x h ), m l (t) } + α 2 Φ( x h ), Φ( x h ) (39) D il (t +1) = (1 α)d il (t) α(1 α)d hl (t) + α{k( x i, x i ) 2K( x i, x h )+K( x h, x h )} (40) LVQ Klvq (Klvq1) D i,i=1,...,n, =1,...,K (Klvq2) t =1, 2,... (Klvq2-1) x i X l D il (t) = min D i (t) (Klvq2-2) D il (40) 17

18 5 5.1 K-Means (x 1,x 2 )= (0, 0), (x 1,x 2 )=(0.1, 0.1) [10] 2 (x 1,x 2 )=(5, 0), (x 1,x 2 )=(2, 2) 3 (x 1,x 2 )=(1, 4), (x 1,x 2 )=(0.2, 0.2) (0.0861, 0.113), (4.98, 0.163), (1.10, 4.04) x 1 x class1 class2 class3 centroid x x1 2: 3 18

19 3 K-Means line1,line2,line3 3 R 1 line1 line3 c 1 =(1.67, 0.383), c 2 =(5.36, 0.146), c 3 =(1.55, 3.86) K-Means c1 c2 c3 cluster-center line1 line2 line3 3 2 x x1 3: K =3 K-Means 1: K-Means R 1 23 c 1 =(1.67, 0.383) R 2 83 c 2 =(5.36, 0.146) R 3 24 c 3 =(1.55, 3.86) 19

20 2 K-Means D D c D p K-Means 3 2 K-Means M=3 K=m K-Means m m =2, 3 {R } K-Means 3,4 2: D D D p R R R : m =2 K-Means R (m=2) 1,1 10 c (m=2) 1,1 =(0.0861, 0.113) R (m=2) 1,2 13 c (m=2) 1,2 =(2.89, 0.590) R (m=2) 2,1 45 c (m=2) 2,1 =(4.72, 0.579) R (m=2) 2,2 38 c (m=2) 2,2 =(6.16, 1.05) R (m=2) 3,1 20 c (m=2) 3,1 =(1.10, 4.04) R (m=2) 3,2 4 c (m=2) 3,2 =(3.80, 2.98) 20

21 4: m =3 K-Means R (m=3) 1,1 10 c (m=3) 1,1 =(0.0861, 0.113) R (m=3) 1,2 2 c (m=3) 1,2 =(2.48, 1.37) R (m=3) 1,3 11 c (m=3) 1,3 =(2.96, 0.947) R (m=3) 2,1 29 c (m=3) 2,1 =(4.70, 1.10) R (m=3) 2,2 34 c (m=3) 2,2 =(5.15, 1.46) R (m=3) 2,3 20 c (m=3) 2,3 =(6.78, 0.218) R (m=3) 3,1 19 c (m=3) 3,1 =(1.05, 3.97) R (m=3) 3,2 1 c (m=3) 3,2 =(2.06, 5.21) R (m=3) 3,2 4 c (m=3) 3,2 =(3.80, 2.98) (10) (12) {R } {R (m) } {D (m) } 5 6 (13) 6 {ρ (m) } ρ (m=2) =1 ρ (m=2) =3 (15) η 0.4 m =2 R 1 R 3 2 5: {R }, {R (m) } {D (m) } D (m=1) D (m=2) D (m=3) = = = : {ρ (m) } ρ (m=2) ρ (m=3) = = =

22 7: {d( c (m =2),p )} R 1 R 2 R 3 d( c (m =2),p ) R (m =2) 1, d( c (m =2) 1,1 )=1.81 R (m =2) 1, d( c (m =2) 1,2 )=0.688 R (m =2) 3, d( c (m =2) 3,1 )=2.31 R (m =2) 3, d( c (m =2) 3,2 )= : {d(r (m =2),p )} R 1 R 2 R 3 d(r (m ),p ) R (m =2) 1, d(r (m =2) 1,1 )=3.04 R (m =2) 1, d(r (m =2) 1,2 )=0.366 R (m =2) 3, d(r (m =2) 3,1 )=1.97 R (m =2) 3, d(r (m =2) 3,2 )=0.628 (16) {R (m =2),p, =1,p =1, 2} {R (m =2),p, =3,p =1, 2} {d( c (m =2),p )} 7 R (m =2) 1,2 R 2 R (m =2) 3,2 R 2 8 (17) R (m =2) 1,2 R 2 R (m =2) 3,2 R 2 4 K-Means R 1 line11 2 R 2 R 3 line33 2 R

23 c11 c12 c21 c22 c31 c32 cluster-center line1 line2 line3 line11 line33 x x1 4: K=3,m =2 K-Means c1 c2 c3 line1 line2 line3 3 2 x x1 5: 23

24 5.2 LVQ K-Means K-Means LVQ LVQ K-Means 2 LVQ LVQ LVQ LVQ [12] 6 5 "c1" "c2" "c3" "first_centroid" x x1 6: K =3 LVQ 24

25 9: LVQ R 1 17 c 1 =(0.695, 0.073) R 2 89 c 2 =(5.23, 0.131) R 3 24 c 3 =(1.27, 3.97) 10: m =2 LVQ R (m=2) 1,1 10 c (m=2) 1,1 =(0.0861, 0.113) R (m=2) 1,2 7 c (m=2) 1,2 =(2.52, 0.391) R (m=2) 2,1 50 c (m=2) 2,1 =(4.54, 0.662) R (m=2) 2,2 39 c (m=2) 2,2 =(6.09, 1.03) R (m=2) 3,1 20 c (m=2) 3,1 =(1.10, 4.04) R (m=2) 3,2 4 c (m=2) 3,2 =(3.80, 2.98) 11: {R }, {R (m) } {D (m) } D (m=1) D (m=2) D (m=3) = = = : {ρ (m) } ρ (m=2) ρ (m=3) = = = M=3 K=m LVQ K- Means m m =2 {R } K-Means 10 {R } {R (m) } {D (m) } (13) η 0.4 {ρ (m) } m =2 R 1 R

26 LVQ (17) 13 R (m =2) 1,2 R 2 R (m =2) 3,2 R 2 LVQ K-Means 8 13: {d(r (m =2),p )} R 1 R 2 R 3 d(r (m ),p ) R (m =2) 1, d(r (m =2) 1,1 )=2.66 R (m =2) 1, d(r (m =2) 1,2 )=0.333 R (m =2) 3, d(r (m =2) 3,1 )=1.97 R (m =2) 3, d(r (m =2) 3,2 )=

27 6 5 4 "c11" "c12" "c21" "c22" "c31" "c32" "centroid" 3 2 x x1 7: K=3,m =2 LVQ K-Means 6 5 "cluster1" "cluster2" "cluster3" x x1 8: LVQ K-Means 27

28 5.3 K-Means 9 2 (ball) (ring) 200 K-Means 10 K-Means 11 C =0.1 RBF 5 4 "b" "r" x x1 9: 2 28

29 5 4 "c1" "c2" x x1 10: K-Means 5 4 "b15" "r15" x x1 11: K-Means 29

30 ,14 15,16 17, : K-Means (Km) K-Means (Km ) : Km,Km method Km Km

31 5 4 "output/b15" "output/r15" "output/init_pnt15" x x1 13: Km, ( , ),( , ) 5 4 "output/b71" "output/r71" "output/init_pnt71" x x1 14: Km, ( , ),( , ) 31

32 5 4 "output/b27" "output/r27" "output/init_pnt27" x x1 15: Km, ( , ),( , ) 5 4 "output/b41" "output/r41" "output/init_pnt41" x x1 16: Km, ( , ),( , ) 32

33 5 4 "output/b18" "output/r18" "output/init_pnt18" x x1 17: Km, ( , ),( , ) 5 4 "output/b72" "output/r72" "output/init_pnt72" x x1 18: Km, ( , ),( , ) 33

34 6 K-Means K-Means K-Means LVQ K-Mean LVQ LVQ 7 K-Means K-Means K-Means K-Means 34

35 [1] Duda R.O., Hart P.E., Stor D.G., Pattern Classification (2nd Edition), John Wiley & Sons, INC., [2] Jain A.K., Dubes R.C., Algorithms for Clustering Data, Prentice-Hall, Englewood Cliffs, NJ, [3] Gordon A.D., Classification (2nd Edition), Chapman & Hall/CRC, [4] Bezde J.C., Pattern Recognition with Fuzzy Objective Function Algorithms, Plenum Press, NY, [5] MacQueen J., Some Methods for Classification and Analysis of Multivariate Observations, Proc. 5th Bereley Symp. on Math. Stat. and Prob. 1, Univ. of California Press, Bereley and Los Angeles, pp , [6] Linde Y., Buzo A., Gray R.M., An Algorithm for Vector Quantizer Design, IEEE Trans. Commun., Vol.28, pp , [7], :,,, [8] Tarsitano A., A Computational Study of Several Relocation Methods for K-Means Algorithm, Pattern Recognition, Vol.36, pp , [9] Yu J., General C-Means Clustering Model, IEEE Trans. PAMI., Vol.27, No.8, pp , [10] Press W.H., Flannery B.P., Teuolsy S.A., Vetterling W.T., Numerical Recipes in C, Cambridge University Press, [11] T.Kohonen, Self-Organizing Maps (2nd Edition), Springer, Berlin, [12],,, Vol.46, pp , [13] M.Girolami, Mercer ernel based clustering in feature space, IEEE Trans. on Neural Networs, Vol.13, No3, pp ,

36 [14] S.Miyamoto, Y.Naayama, Algorithms of hard c-means clustering using ernel functions in support vector machines, J. of Advanced computational Intelligence and Intelligent Informatics, Vol.1.7, No.1, pp.19-24, [15] V.Vapni, Statistical Learning Theory, Wiley, New Yor, [16] F.Morii, K.Kurahashi, Clustering by the K-Means Algorithm Using a Split and Merge Procedure, Proceedings of SCIS&ISIS, SA-F2-6, pp , [17],, K-Means,, PRMU, vol.106, No.470, pp.67-71,

On the Limited Sample Effect of the Optimum Classifier by Bayesian Approach he Case of Independent Sample Size for Each Class Xuexian HA, etsushi WAKA

On the Limited Sample Effect of the Optimum Classifier by Bayesian Approach he Case of Independent Sample Size for Each Class Xuexian HA, etsushi WAKA Journal Article / 学術雑誌論文 ベイズアプローチによる最適識別系の有限 標本効果に関する考察 : 学習標本の大きさ がクラス間で異なる場合 (< 論文小特集 > パ ターン認識のための学習 : 基礎と応用 On the limited sample effect of bayesian approach : the case of each class 韓, 雪仙 ; 若林, 哲史

More information

3 2 2 (1) (2) (3) (4) 4 4 AdaBoost 2. [11] Onishi&Yoda [8] Iwashita&Stoica [5] 4 [3] 3. 3 (1) (2) (3)

3 2 2 (1) (2) (3) (4) 4 4 AdaBoost 2. [11] Onishi&Yoda [8] Iwashita&Stoica [5] 4 [3] 3. 3 (1) (2) (3) (MIRU2012) 2012 8 820-8502 680-4 E-mail: {d kouno,shimada,endo}@pluto.ai.kyutech.ac.jp (1) (2) (3) (4) 4 AdaBoost 1. Kanade [6] CLAFIC [12] EigenFace [10] 1 1 2 1 [7] 3 2 2 (1) (2) (3) (4) 4 4 AdaBoost

More information

[1] SBS [2] SBS Random Forests[3] Random Forests ii

[1] SBS [2] SBS Random Forests[3] Random Forests ii Random Forests 2013 3 A Graduation Thesis of College of Engineering, Chubu University Proposal of an efficient feature selection using the contribution rate of Random Forests Katsuya Shimazaki [1] SBS

More information

TC1-31st Fuzzy System Symposium (Chofu, September -, 15) cremental Neural Networ (SOINN) [5] Enhanced SOINN (ESOINN) [] ESOINN GNG Deng Evolving Self-

TC1-31st Fuzzy System Symposium (Chofu, September -, 15) cremental Neural Networ (SOINN) [5] Enhanced SOINN (ESOINN) [] ESOINN GNG Deng Evolving Self- TC1-31st Fuzzy System Symposium (Chofu, September -, 15) Proposing a Growing Self-Organizing Map Based on a Learning Theory of a Gaussian Mixture Model Kazuhiro Tounaga National Fisheries University Abstract:

More information

1 IDC Wo rldwide Business Analytics Technology and Services 2013-2017 Forecast 2 24 http://www.soumu.go.jp/johotsusintokei/whitepaper/ja/h24/pdf/n2010000.pdf 3 Manyika, J., Chui, M., Brown, B., Bughin,

More information

(MIRU2008) HOG Histograms of Oriented Gradients (HOG)

(MIRU2008) HOG Histograms of Oriented Gradients (HOG) (MIRU2008) 2008 7 HOG - - E-mail: [email protected], {takigu,ariki}@kobe-u.ac.jp Histograms of Oriented Gradients (HOG) HOG Shape Contexts HOG 5.5 Histograms of Oriented Gradients D Human

More information

258 5) GPS 1 GPS 6) GPS DP 7) 8) 10) GPS GPS 2 3 4 5 2. 2.1 3 1) GPS Global Positioning System

258 5) GPS 1 GPS 6) GPS DP 7) 8) 10) GPS GPS 2 3 4 5 2. 2.1 3 1) GPS Global Positioning System Vol. 52 No. 1 257 268 (Jan. 2011) 1 2, 1 1 measurement. In this paper, a dynamic road map making system is proposed. The proposition system uses probe-cars which has an in-vehicle camera and a GPS receiver.

More information

030801調査結果速報版.PDF

030801調査結果速報版.PDF 15 8 1 15 7 26 1. 2. 15 7 27 15 7 28 1 2 7:13 16:56 0:13 3km 45 346 108 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3. 3.1 26 7 10 1 20cm 2 1 2 45 1/15 3 4 5,6 3 4 3 5 6 ( ) 7,8 8 7 8 2 55 9 10 9 10

More information

untitled

untitled ISSN - ..................... 7............... Web........................ SVM... 7..... 7..........................7...................... Web........... ....... 7 7..... 7 7..... 7 7..... 7 7..............

More information

…p…^†[…fiflF”¯ Pattern Recognition

…p…^†[…fiflF”¯   Pattern Recognition Pattern Recognition Shin ichi Satoh National Institute of Informatics June 11, 2019 (Support Vector Machines) (Support Vector Machines: SVM) SVM Vladimir N. Vapnik and Alexey Ya. Chervonenkis 1963 SVM

More information

fiš„v3.dvi

fiš„v3.dvi (2001) 49 1 23 42 2000 10 16 2001 4 23 NTT * 1. 1.1 1998 * 104 0033 1 21 2 7F 24 49 1 2001 1999 70 91 MIT M. Turk Recognition Using Eigenface (Turk and Pentland (1991)). 1998 IC 1 CPU (Jain and Waller

More information

Power Transformation and Its Modifications Toshimitsu HAMASAKI, Tatsuya ISOMURA, Megu OHTAKI and Masashi GOTO Key words : identity transformation, pow

Power Transformation and Its Modifications Toshimitsu HAMASAKI, Tatsuya ISOMURA, Megu OHTAKI and Masashi GOTO Key words : identity transformation, pow Power Transformation and Its Modifications Toshimitsu HAMASAKI, Tatsuya ISOMURA, Megu OHTAKI and Masashi GOTO Key words : identity transformation, power-normal distribution, structured data, unstructured

More information

& 3 3 ' ' (., (Pixel), (Light Intensity) (Random Variable). (Joint Probability). V., V = {,,, V }. i x i x = (x, x,, x V ) T. x i i (State Variable),

& 3 3 ' ' (., (Pixel), (Light Intensity) (Random Variable). (Joint Probability). V., V = {,,, V }. i x i x = (x, x,, x V ) T. x i i (State Variable), .... Deeping and Expansion of Large-Scale Random Fields and Probabilistic Image Processing Kazuyuki Tanaka The mathematical frameworks of probabilistic image processing are formulated by means of Markov

More information

IPSJ SIG Technical Report Vol.2015-MUS-107 No /5/23 HARK-Binaural Raspberry Pi 2 1,a) ( ) HARK 2 HARK-Binaural A/D Raspberry Pi 2 1.

IPSJ SIG Technical Report Vol.2015-MUS-107 No /5/23 HARK-Binaural Raspberry Pi 2 1,a) ( ) HARK 2 HARK-Binaural A/D Raspberry Pi 2 1. HARK-Binaural Raspberry Pi 2 1,a) 1 1 1 2 3 () HARK 2 HARK-Binaural A/D Raspberry Pi 2 1. [1,2] [2 5] () HARK (Honda Research Institute Japan audition for robots with Kyoto University) *1 GUI ( 1) Python

More information

先端社会研究所紀要 第12号☆/1.巻頭言

先端社会研究所紀要 第12号☆/1.巻頭言 Kwansei Gakuin University Rep Title Author(s) Citation < 研 究 ノート> 他 者 問 題 解 決 の 遅 延 要 因 としての 正 統 性 : 実 験 的 手 法 による 検 討 寺 島, 圭 関 西 学 院 大 学 先 端 社 会 研 究 所 紀 要 = Annual review of advanced social research,

More information

fiš„v8.dvi

fiš„v8.dvi (2001) 49 2 333 343 Java Jasp 1 2 3 4 2001 4 13 2001 9 17 Java Jasp (JAva based Statistical Processor) Jasp Jasp. Java. 1. Jasp CPU 1 106 8569 4 6 7; [email protected] 2 106 8569 4 6 7; [email protected]

More information

main.dvi

main.dvi 305 8550 1 2 CREST [email protected] 1 7% 2 2 3 PRIME Multi-lingual Information Retrieval 2 2.1 Cross-Language Information Retrieval CLIR 1990 CD-ROM a. b. c. d. b CLIR b 70% CLIR CLIR 2.2 (b) 2

More information

20 Method for Recognizing Expression Considering Fuzzy Based on Optical Flow

20 Method for Recognizing Expression Considering Fuzzy Based on Optical Flow 20 Method for Recognizing Expression Considering Fuzzy Based on Optical Flow 1115084 2009 3 5 3.,,,.., HCI(Human Computer Interaction),.,,.,,.,.,,..,. i Abstract Method for Recognizing Expression Considering

More information

kut-paper-template.dvi

kut-paper-template.dvi 26 Discrimination of abnormal breath sound by using the features of breath sound 1150313 ,,,,,,,,,,,,, i Abstract Discrimination of abnormal breath sound by using the features of breath sound SATO Ryo

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

(a) 1 (b) 3. Gilbert Pernicka[2] Treibitz Schechner[3] Narasimhan [4] Kim [5] Nayar [6] [7][8][9] 2. X X X [10] [11] L L t L s L = L t + L s

(a) 1 (b) 3. Gilbert Pernicka[2] Treibitz Schechner[3] Narasimhan [4] Kim [5] Nayar [6] [7][8][9] 2. X X X [10] [11] L L t L s L = L t + L s 1 1 1, Extraction of Transmitted Light using Parallel High-frequency Illumination Kenichiro Tanaka 1 Yasuhiro Mukaigawa 1 Yasushi Yagi 1 Abstract: We propose a new sharpening method of transmitted scene

More information

カルマンフィルターによるベータ推定( )

カルマンフィルターによるベータ推定( ) β TOPIX 1 22 β β smoothness priors (the Capital Asset Pricing Model, CAPM) CAPM 1 β β β β smoothness priors :,,. E-mail: [email protected]., 104 1 TOPIX β Z i = β i Z m + α i (1) Z i Z m α i α i β i (the

More information

21 Pitman-Yor Pitman- Yor [7] n -gram W w n-gram G Pitman-Yor P Y (d, θ, G 0 ) (1) G P Y (d, θ, G 0 ) (1) Pitman-Yor d, θ, G 0 d 0 d 1 θ Pitman-Yor G

21 Pitman-Yor Pitman- Yor [7] n -gram W w n-gram G Pitman-Yor P Y (d, θ, G 0 ) (1) G P Y (d, θ, G 0 ) (1) Pitman-Yor d, θ, G 0 d 0 d 1 θ Pitman-Yor G ol2013-nl-214 No6 1,a) 2,b) n-gram 1 M [1] (TG: Tree ubstitution Grammar) [2], [3] TG TG 1 2 a) ohno@ilabdoshishaacjp b) khatano@maildoshishaacjp [4], [5] [6] 2 Pitman-Yor 3 Pitman-Yor 1 21 Pitman-Yor

More information

133 A Study on The Revitalize of Community with Branding: Suggestion about The Development of Community and Individualism Yasuko Koshikawa 1 2 1 2 3 50 1 1 3 134 90 1 1919 2 1968 1960 1970 1970 2 2 2005

More information

Microsoft PowerPoint - SSII_harada pptx

Microsoft PowerPoint - SSII_harada pptx The state of the world The gathered data The processed data w d r I( W; D) I( W; R) The data processing theorem states that data processing can only destroy information. David J.C. MacKay. Information

More information

A Japanese Word Dependency Corpus ÆüËܸì¤Îñ¸ì·¸¤ê¼õ¤±¥³¡¼¥Ñ¥¹

A Japanese Word Dependency Corpus   ÆüËܸì¤Îñ¸ì·¸¤ê¼õ¤±¥³¡¼¥Ñ¥¹ A Japanese Word Dependency Corpus 2015 3 18 Special thanks to NTT CS, 1 /27 Bunsetsu? What is it? ( ) Cf. CoNLL Multilingual Dependency Parsing [Buchholz+ 2006] (, Penn Treebank [Marcus 93]) 2 /27 1. 2.

More information

25 11M15133 0.40 0.44 n O(n 2 ) O(n) 0.33 0.52 O(n) 0.36 0.52 O(n) 2 0.48 0.52

25 11M15133 0.40 0.44 n O(n 2 ) O(n) 0.33 0.52 O(n) 0.36 0.52 O(n) 2 0.48 0.52 26 1 11M15133 25 11M15133 0.40 0.44 n O(n 2 ) O(n) 0.33 0.52 O(n) 0.36 0.52 O(n) 2 0.48 0.52 1 2 2 4 2.1.............................. 4 2.2.................................. 5 2.2.1...........................

More information

第5章 偏微分方程式の境界値問題

第5章 偏微分方程式の境界値問題 October 5, 2018 1 / 113 4 ( ) 2 / 113 Poisson 5.1 Poisson ( A.7.1) Poisson Poisson 1 (A.6 ) Γ p p N u D Γ D b 5.1.1: = Γ D Γ N 3 / 113 Poisson 5.1.1 d {2, 3} Lipschitz (A.5 ) Γ D Γ N = \ Γ D Γ p Γ N Γ

More information

(a) (b) (c) Canny (d) 1 ( x α, y α ) 3 (x α, y α ) (a) A 2 + B 2 + C 2 + D 2 + E 2 + F 2 = 1 (3) u ξ α u (A, B, C, D, E, F ) (4) ξ α (x 2 α, 2x α y α,

(a) (b) (c) Canny (d) 1 ( x α, y α ) 3 (x α, y α ) (a) A 2 + B 2 + C 2 + D 2 + E 2 + F 2 = 1 (3) u ξ α u (A, B, C, D, E, F ) (4) ξ α (x 2 α, 2x α y α, [II] Optimization Computation for 3-D Understanding of Images [II]: Ellipse Fitting 1. (1) 2. (2) (edge detection) (edge) (zero-crossing) Canny (Canny operator) (3) 1(a) [I] [II] [III] [IV ] E-mail [email protected]

More information

Trapezoidal Rule θ = 1/ x n x n 1 t = 1 [f(t n 1, x n 1 ) + f(t n, x n )] (6) 1. dx dt = f(t, x), x(t 0) = x 0 (7) t [t 0, t 1 ] f t [t 0, t 1 ], x x

Trapezoidal Rule θ = 1/ x n x n 1 t = 1 [f(t n 1, x n 1 ) + f(t n, x n )] (6) 1. dx dt = f(t, x), x(t 0) = x 0 (7) t [t 0, t 1 ] f t [t 0, t 1 ], x x University of Hyogo 8 8 1 d x(t) =f(t, x(t)), dt (1) x(t 0 ) =x 0 () t n = t 0 + n t x x n n x n x 0 x i i = 0,..., n 1 x n x(t) 1 1.1 1 1 1 0 θ 1 θ x n x n 1 t = θf(t n 1, x n 1 ) + (1 θ)f(t n, x n )

More information

2 3 5 5 5 5 6 6 7 7 8 10 10 10 10 11 11 12 12 13 16 16 16 16 17 19 21 21 22 5

2 3 5 5 5 5 6 6 7 7 8 10 10 10 10 11 11 12 12 13 16 16 16 16 17 19 21 21 22 5 1D000425-2 1 2 3 5 5 5 5 6 6 7 7 8 10 10 10 10 11 11 12 12 13 16 16 16 16 17 19 21 21 22 5 3 29 29 29 30 31 31 32 35 35 35 36 41 41 41 46 48 48 48 52 57 4 700 13 1988 4 5 4 5 21 1 1 3 4 5 6 21 10 1888

More information

経済論集 46‐2(よこ)(P)☆/2.三崎

経済論集 46‐2(よこ)(P)☆/2.三崎 1 2 1869 11 17 5 10 1 3 1914 5 15 5 1872 9 12 3 1870 1 26 14 1881 11 11 12 6 11 1878 5 9 13 1880 6 17 1 15 1882 1 2 3 11 1828 2 26 24 1891 4 22 2 1849 12 1 3 1856 pp 20 21. 1971 p.429. 1973 1, pp.440 444.

More information

○01 那覇市(7月変更)

○01 那覇市(7月変更) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 H26,2 H28.2 9 9 38 39 40 41 42 43 l ll 44 45 46 47 48 49 50 51 52 53 54 55 2733 14,500 56 57 58 59

More information

2003/9 Vol. J86 D I No. 9 GA GA [8] [10] GA GA GA SGA GA SGA2 SA TS GA C1: C2: C3: 1 C4: C5: 692

2003/9 Vol. J86 D I No. 9 GA GA [8] [10] GA GA GA SGA GA SGA2 SA TS GA C1: C2: C3: 1 C4: C5: 692 Comparisons of Genetic Algorithms for Timetabling Problems Hiroaki UEDA, Daisuke OUCHI, Kenichi TAKAHASHI, and Tetsuhiro MIYAHARA GA GA GA GA GA SGA GA SGA2SA TS 6 SGA2 GA GA SA 1. GA [1] [12] GA Faculty

More information

IPSJ SIG Technical Report Pitman-Yor 1 1 Pitman-Yor n-gram A proposal of the melody generation method using hierarchical pitman-yor language model Aki

IPSJ SIG Technical Report Pitman-Yor 1 1 Pitman-Yor n-gram A proposal of the melody generation method using hierarchical pitman-yor language model Aki Pitman-Yor Pitman-Yor n-gram A proposal of the melody generation method using hierarchical pitman-yor language model Akira Shirai and Tadahiro Taniguchi Although a lot of melody generation method has been

More information

ばらつき抑制のための確率最適制御

ばらつき抑制のための確率最適制御 ( ) http://wwwhayanuemnagoya-uacjp/ fujimoto/ 2011 3 9 11 ( ) 2011/03/09-11 1 / 46 Outline 1 2 3 4 5 ( ) 2011/03/09-11 2 / 46 Outline 1 2 3 4 5 ( ) 2011/03/09-11 3 / 46 (1/2) r + Controller - u Plant y

More information

JAPAN MARKETING JOURNAL 116 Vol.29 No.42010

JAPAN MARKETING JOURNAL 116 Vol.29 No.42010 JAPAN MARKETING JOURNAL 116 Vol.29 No.42010 JAPAN MARKETING JOURNAL 116 Vol.29 No.42010 JAPAN MARKETING JOURNAL 116 Vol.29 No.42010 JAPAN MARKETING JOURNAL 116 Vol.29 No.42010 JAPAN MARKETING JOURNAL 116

More information

オーストラリア研究紀要 36号(P)☆/3.橋本

オーストラリア研究紀要 36号(P)☆/3.橋本 36 p.9 202010 Tourism Demand and the per capita GDP : Evidence from Australia Keiji Hashimoto Otemon Gakuin University Abstract Using Australian quarterly data1981: 2 2009: 4some time-series econometrics

More information

xx/xx Vol. Jxx A No. xx 1 Fig. 1 PAL(Panoramic Annular Lens) PAL(Panoramic Annular Lens) PAL (2) PAL PAL 2 PAL 3 2 PAL 1 PAL 3 PAL PAL 2. 1 PAL

xx/xx Vol. Jxx A No. xx 1 Fig. 1 PAL(Panoramic Annular Lens) PAL(Panoramic Annular Lens) PAL (2) PAL PAL 2 PAL 3 2 PAL 1 PAL 3 PAL PAL 2. 1 PAL PAL On the Precision of 3D Measurement by Stereo PAL Images Hiroyuki HASE,HirofumiKAWAI,FrankEKPAR, Masaaki YONEDA,andJien KATO PAL 3 PAL Panoramic Annular Lens 1985 Greguss PAL 1 PAL PAL 2 3 2 PAL DP

More information

29 jjencode JavaScript

29 jjencode JavaScript Kochi University of Technology Aca Title jjencode で難読化された JavaScript の検知 Author(s) 中村, 弘亮 Citation Date of 2018-03 issue URL http://hdl.handle.net/10173/1975 Rights Text version author Kochi, JAPAN http://kutarr.lib.kochi-tech.ac.jp/dspa

More information

フリーソフトではじめる機械学習入門 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

フリーソフトではじめる機械学習入門 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. フリーソフトではじめる機械学習入門 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/085211 このサンプルページの内容は, 初版 1 刷発行時のものです. Weka Weka 2014 2 i 1 1 1.1... 1 1.2... 3 1.3... 6 1.3.1 7 1.3.2 11

More information

, CH n. CH n, CP n,,,., CH n,,. RH n ( Cartan )., CH n., RH n CH n,,., RH n, CH n., RH n ( ), CH n ( 1.1 (v), (vi) )., RH n,, CH n,., CH n,. 1.2, CH n

, CH n. CH n, CP n,,,., CH n,,. RH n ( Cartan )., CH n., RH n CH n,,., RH n, CH n., RH n ( ), CH n ( 1.1 (v), (vi) )., RH n,, CH n,., CH n,. 1.2, CH n ( ), Jürgen Berndt,.,. 1, CH n.,,. 1.1 ([6]). CH n (n 2), : (i) CH k (k = 0,..., n 1) tube. (ii) RH n tube. (iii). (iv) ruled minimal, equidistant. (v) normally homogeneous submanifold F k tube. (vi) normally

More information

Haiku Generation Based on Motif Images Using Deep Learning Koki Yoneda 1 Soichiro Yokoyama 2 Tomohisa Yamashita 2 Hidenori Kawamura Scho

Haiku Generation Based on Motif Images Using Deep Learning Koki Yoneda 1 Soichiro Yokoyama 2 Tomohisa Yamashita 2 Hidenori Kawamura Scho Haiku Generation Based on Motif Images Using Deep Learning 1 2 2 2 Koki Yoneda 1 Soichiro Yokoyama 2 Tomohisa Yamashita 2 Hidenori Kawamura 2 1 1 School of Engineering Hokkaido University 2 2 Graduate

More information