γ γ CsI RIBF SAMURAI CsI(Tl),CsI(Na) APD γ



Similar documents
Drift Chamber

PET PET

NaI(Tl) CsI(Tl) GSO(Ce) LaBr 3 (Ce) γ Photo Multiplier Tube PMT PIN PIN Photo Diode PIN PD Avalanche Photo Diode APD MPPC Multi-Pixel Photon Counter L

24.15章.微分方程式

第85 回日本感染症学会総会学術集会後抄録(I)

A(6, 13) B(1, 1) 65 y C 2 A(2, 1) B( 3, 2) C 66 x + 2y 1 = 0 2 A(1, 1) B(3, 0) P 67 3 A(3, 3) B(1, 2) C(4, 0) (1) ABC G (2) 3 A B C P 6

日本内科学会雑誌第98巻第3号

基礎数学I

Coulomb potential

Mott散乱によるParity対称性の破れを検証

untitled


Donald Carl J. Choi, β ( )

03J_sources.key

untitled

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

A B 5 C mm, 89 mm 7/89 = 3.4. π 3 6 π 6 6 = 6 π > 6, π > 3 : π > 3

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,,

STB-Ring(Stretcher-Booster Ring) 1.2 GeV Tagging System Tagging System Efficiency rate rate rate Efficiency 1 STB-Ring 2 rate Efficiency 3 Efficiency

42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 =

B. 41 II: 2 ;; 4 B [ ] S 1 S 2 S 1 S O S 1 S P 2 3 P P : 2.13:

放射線専門医認定試験(2009・20回)/HOHS‐01(基礎一次)

W 1983 W ± Z cm 10 cm 50 MeV TAC - ADC ADC [ (µs)] = [] (2.08 ± 0.36) 10 6 s 3 χ µ + µ 8 = (1.20 ± 0.1) 10 5 (Ge

日本内科学会雑誌第101巻第12号


Microsoft Word - 章末問題

untitled

tnbp59-17_Web:プO1/ky079888509610003201

CsI(Tl) 2005/03/

Canvas-tr01(title).cv3

高校生の就職への数学II

2 2. : ( Wikipedia ) photoelectric effect photoelectron ν E = hν h ν > ν E = hν hν W = hν


A A. ω ν = ω/π E = hω. E

第1部 一般的コメント

第85 回日本感染症学会総会学術集会後抄録(III)

1 1 H Li Be Na M g B A l C S i N P O S F He N Cl A e K Ca S c T i V C Mn Fe Co Ni Cu Zn Ga Ge As Se B K Rb S Y Z Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb T e

SPECT(Single Photon Emission Computer Tomography ) SPECT FWHM 3 4mm [] MPPC SPECT MPPC LSO 6mm 67.5 photo electron 78% kev γ 4.6 photo electron SPECT

36 th IChO : - 3 ( ) , G O O D L U C K final 1

Ne 17M / 02/ 08

Ł\”ƒ-2005

熊本県数学問題正解

a (a + ), a + a > (a + ), a + 4 a < a 4 a,,, y y = + a y = + a, y = a y = ( + a) ( x) + ( a) x, x y,y a y y y ( + a : a ) ( a : a > ) y = (a + ) y = a

T T T T A 0 1 A 1 A P (A 1 ) = C 1 6 C 8C 3 = 15 8, P (A ) = C 6 C 1 8C 3 = 3 8 T 5 B P (A 1 B) = =

3-2 PET ( : CYRIC ) ( 0 ) (3-1 ) PET PET [min] 11 C 13 N 15 O 18 F 68 Ga [MeV] [mm] [MeV]

第86回日本感染症学会総会学術集会後抄録(II)

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

CdTe γ 02cb059e :

untitled

i I

h = h/2π 3 V (x) E ψ = sin kxk = 2π/λ λ = h/p p = h/λ = kh/2π = k h 5 2 ψ = e ax2 ガウス 型 関 数 関 数 値

光部品関連技術における基盤技術との題を与えられたが、光部品は広範囲の分野であり、その全てを網羅する時間も無いし、それだけの力量...

23 1 Section ( ) ( ) ( 46 ) , 238( 235,238 U) 232( 232 Th) 40( 40 K, % ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

ボールねじ

thesis.dvi

第52回日本生殖医学会総会・学術講演会

Λ (Λ ) Λ (Ge) Hyperball γ ΛN J-PARC Λ dead time J-PARC flash ADC 1 dead time ( ) 1 µsec 3

I [ ] N(µ, σ 2 ) σ 2 (X 1,..., X n ) X := 1 n (X X n ): µ X N(µ, σ 2 /n) Z = X µ σ/ n N(, 1) < α < 1/2 Φ(z) =.5 α z α

Z...QXD (Page 1)

一般演題(ポスター)

チュートリアル:ノンパラメトリックベイズ

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a

untitled

,..,,.,,.,.,..,,.,,..,,,. 2

最 新 測 量 学 ( 第 3 版 ) サンプルページ この 本 の 定 価 判 型 などは, 以 下 の URL からご 覧 いただけます. このサンプルページの 内 容 は, 第 3 版 1 刷 発 行 時 の

日本糖尿病学会誌第58巻第2号

?

29

受賞講演要旨2012cs3

1 29 ( ) I II III A B (120 ) 2 5 I II III A B (120 ) 1, 6 8 I II A B (120 ) 1, 6, 7 I II A B (100 ) 1 OAB A B OA = 2 OA OB = 3 OB A B 2 :

( )

取扱説明書 [F-02F]

名古屋工業大の数学 2000 年 ~2015 年 大学入試数学動画解説サイト

yakuri06023‡Ì…R…s†[

soturon.dvi

[ ] [ ] [ ] [ ] [ ] [ ] ADC

物理化学I-第12回(13).ppt


2301/1     目次・広告

jigp60-★WEB用★/ky494773452500058730

プログラム



1 2 1 a(=,incident particle A(target nucleus) b (projectile B( product nucleus, residual nucleus, ) ; a + A B + b a A B b 1: A(a,b)B A=B,a=b 2 1. ( 10

C:/KENAR/0p1.dvi

さくらの個別指導 ( さくら教育研究所 ) A 2 2 Q ABC 2 1 BC AB, AC AB, BC AC 1 B BC AB = QR PQ = 1 2 AC AB = PR 3 PQ = 2 BC AC = QR PR = 1

2 (1) a = ( 2, 2), b = (1, 2), c = (4, 4) c = l a + k b l, k (2) a = (3, 5) (1) (4, 4) = l( 2, 2) + k(1, 2), (4, 4) = ( 2l + k, 2l 2k) 2l + k = 4, 2l

koji07-02.dvi

example2_time.eps

Note5.dvi



76 3 B m n AB P m n AP : PB = m : n A P B P AB m : n m < n n AB Q Q m A B AQ : QB = m : n (m n) m > n m n Q AB m : n A B Q P AB Q AB 3. 3 A(1) B(3) C(

高等学校学習指導要領

高等学校学習指導要領

2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n

( ) 2003 Report on Activies in (JCPRG) HENDEL NRDF DARPE EXFOR Web HENDEL HENDEL NRDF EXFOR EXFOR NRDF IAEA IAEA

放射線化学, 92, 39 (2011)

Microsoft Word - Wordで楽に数式を作る.docx

Transcription:

2013 10 11030 2014/02/24

γ γ CsI RIBF SAMURAI CsI(Tl),CsI(Na) APD γ

i 1 1 1.1................................. 1 1.2.................................. 1 2 5 2.1.................................... 5 2.2.................................... 5 2.3.................................... 7 2.4 γ............................. 8 3 γ 11 3.1 γ................................. 11 3.2 γ.............................. 16 4 21 4.1............................... 21 4.2........................... 21 5 25 5.1................................... 25 5.2........................ 25 5.3........................ 27 5.4 CsI(Tl)-A....................... 33 5.5 γ.............................. 35 6 41 6.1 CsI(Tl),CsI(Na)........................ 41 6.2............................... 43

ii 7 49 7.1..................................... 49 7.2................................... 49 51

iii 1.1 124 Sn............... 2 1.2..................................... 3 1.3 130 Sn......... 3 2.1............................. 6 2.2................................... 7 2.3 SRC SAMURAI RIBF................... 8 2.4 SAMURAI.............................. 8 2.5 θ............ 9 2.6 γ θ............. 9 3.1 γ......................... 13 3.2............................ 14 3.3 PMT,APD........................ 15 3.4 CATANA.......................... 17 3.5 PMT(R11265U R580),APD.................... 19 3.6 CsI PMT APD [11, 12] 19 4.1 CsI(Tl) CsI(Na)...................... 22 4.2.................................. 23 4.3 137 Cs, 22 Na, 60 Co....................... 23 5.1 137 Cs, 22 Na, 60 Co........................ 26 5.2 γ...................... 27 5.3 HV........................ 28 5.4.................... 29 5.5 CsI(Na).............. 31

iv 5.6 CsI(Tl)-B CsI(Na)-C...... 31 5.7 CsI(Tl)-A.B CsI(Na)-C,D.... 32 5.8 ESR..... 33 5.9.............. 34 5.10 PMT....................... 34 5.11 A,B,C,D,E............................. 35 5.12 x, y, z................................ 35 5.13 x.................. 36 5.14 2......................... 36 5.15 γ........ 37 5.16 γ.................. 37 5.17 γ............... 38 5.18 22 Na..... 39 6.1.................. 42 6.2 PMT................ 42 6.3 5.11 A,B,C,D,E...................... 43 6.4?? x,y,z........................... 43 6.5....................... 44 6.6 A 1....................... 45 6.7 A 1..................... 46 6.8 B 1................. 47 6.9 C 1................. 47 6.10 A,B,C 1.................... 48

v 3.1 CATANA........................ 17 3.2 CsI(Tl),CsI(Na),NaI(Tl),BGO..... 18 3.3 PMT(R11265U), PMT(R580), APD(S8664-1010). 18 4.1........................ 23 5.1 PMT(R11265U,R580) APD (%)........ 30 5.2...... 31 6.1 CsI(Tl) CsI(Tl)-A,B CsI(Na) CsI(Na)-C,D.................................. 43

1 1 1.1 1940 (GDR :Giant Dipole Resonance) GDR E x A E x 80 A 1/3 MeV 3 4 MeV [1] (E1) 1 E1 ˆf 1 H A M S S = 1 2 < 0 [ ˆf 1, [H, ˆf 1 ] ] 0 >= 3A 32πM (1.1.1) (sum rule) 100% [2] GDR (E1 ) 1-1 124 Sn 1.1 10 MeV 25 MeV GDR [3] 1.2 1950 60 GDR 5-7 MeV PDR 1970

2 1 1.1 124 Sn [3] [4] 1.2 (Z) (N) [5] 2005 130,132 Sn 130 Sn 1.3 GDR GDR PDR 10 MeV PDR 15 MeV GDR [3] % PDR PDR 130 Sn, 132 Sn 68 Ni 10.1(7) MeV, 9.8(7) MeV, 9.55(17) MeV 68 Ni 0.17(2) fm 2.8(5) % [6, 7]

1.2 3 1.2 (Z) (N) [5] 1.3 130 Sn GDR PDR PDR [3]

4 1 PDR γ 2 RIBF PDR 3 γ γ 4 5 6 7

5 2 2.1 Ca 2015 Ca PDR 48 Ca 54 Ca 2p 3/2 2p 1/2 52 Ca, 54 Ca PDR [8] RI (RIBF) SAMURAI(Superconducting Analyzer for MUlti-particle from RAdioIsotope beams) 70 Zn(345 AMeV) 48,50,52 Ca γ 48,50,52 Ca Ca γ γ SAMURAI NaI(Tl) γ DALI2 20% γ 2.2 2.2.1 48,50,52 Ca 2.1 52 Ca Pb (Z) (E1 ) B(E1)

6 2 E x σ coul B(E1) dσ coul de x = 16π3 9ħc N E1(E x ) db(e1) de x (2.2.1) Pb Pb (Z=82) Pb Z C (Z=6) 2.1 52 Ca Pb ( ) 2.2.2 Ca 2.2 52 Ca 51 Ca 52 Ca PDR GDR 1 51 Ca 51 Ca γ 51 Ca m 51Ca, p 51Ca, E 51Ca, m n, p n, E n γ E γ 52 Ca M M = (E 51Ca + E n ) 2 (p 51Ca + p n ) 2 (2.2.2) E rel = M (m 51Ca + m n ) (2.2.3)

2.3 7 γ 52 Ca E x E x = S n + E rel + E γ (2.2.4) E x E rel E γ E rel SAMURAI Ca γ E γ γ 2.2 ( ) γ ( ) 52 Ca 51 Ca* 52 Ca* γ 52 Ca 2.3 RI (RIBF) SAMURAI SAMURAI NEBULA(NEutron detection system for Breakup of Unstable nuclei with Large Acceptance) γ RIBF SAMURAI 2.3,2.4 (SRC) SAMURAI SAMURAI 70 Zn(345 AMeV) 2 52 Ca

8 2 2.3 SRC SAMURAI RIBF 1 ( 70 Zn) Be ( 52 Ca) 2 BigRIPS SAMURAI 2 2.4 2.3 SAMURAI 52 Ca 51 Ca γ 2.4 γ 60% γ γ γ θ E lab γ = E cm γ 1 γ(1 β cos θ) (2.4.1)

2.4 γ 9 β = 0.6, E cm γ = 1 MeV θ 2.5 γ 2.5 β = 0.6 E γ cm = 1 MeV θ γ γ γ I cm γ I lab I lab = (1 + β cos θ)2 1 β 2 I cm (2.4.2) β = 0.6, I cm = 1 γ θ 2.6 2.6 β = 0.6 I cm = 1 θ γ θ E lab, I lab γ γ (θ) θ γ θ SAMRAI β E lab E cm

11 3 γ 2015 γ CATANA CAlorimeter for γ-ray Transition in Atomic Nuclei at high isospin Asymmetry γ CATANA 3.1 γ γ NaI(Tl),CsI(Tl) Ge Ge CATANA γ γ 3.1 γ 3.1.1 γ γ α β γ 1. 2. 3. 3 [9] γ E γ = ħω E e = ħω I(I: )

12 3 γ K σ photon (K) σ phton (K) = { ϕ 0 α 4 Z 5 4 2 ζ 7/2 (ζ 1) ϕ 0 α 4 Z 5 ζ 1 e πα+2α2 (1 ln α) (ζ 1) (3.1.1) ϕ, ζ, α ϕ 0 = 8π 3 ( e 2 m e c 2 ) cm 2 (3.1.2) ζ = hν 0 m e c 2 (3.1.3) α = e2 4πħc = 1 137 (3.1.4) Z 5 L,M σ photon σ photon 5 4 σ phton(k) (3.1.5) E γ γ E γ E e γ ϕ γ θ E γ E γ = 1 + ζ(1 cos θ) 2ζ cos 2 ϕ E e =E γ (1 + ζ) 2 ζ 2 cos 2 ϕ tan ϕ = cot(θ/2) 1 + ζ ζ 1 σ comp (3.1.6) (3.1.7) (3.1.8) Z σ comp = Zϕ 0 (1 2ζ + 5.2ζ 2 13.3ζ 3 ) (3.1.9) γ E γ 2m e c 2 = 1.02 MeV

3.1 γ 13 E γ 2m e c 2 m e c 2 E γ 137m e c 2 Z 1/3 σ pair σ pair = ϕz 2 ( 28 9 ) 218 ln 2ζ 27 (3.1.10) Z 2 ϕ ( ) e 2 2 ϕ = m e c 2 /137 = 5.79 10 28 (cm 2 ) (3.1.11) γ γ σ 3 σ = σ photon + σ comp + σ pair (3.1.12) 3.1 γ 3 1 MeV 1 MeV [9] 3.1 γ 3 1 MeV 1 MeV

14 3 γ I γ dx di di = N Aσ Idx (3.1.13) A I 0 γ x I(x) γ I(x)/I 0 I(x) = I 0 e N A σ A x (3.1.14) 3.1.2 γ γ (Photomultiplier Tube ;PMT) Avalanche Photodioide(APD) 3.2 PMT 3.2 [10] PMT (PMT) 1. (Photo Cathode) 2. 1 δ 2

3.1 γ 15 N α = α δ N (3.1.15) 10 7 10 9 3.3 PMT [10] APD Avalanche Photodioide(APD) PMT 60 80% 200 300 APD ( ) 3.3 APD [10] 3.3 ( )PMT,( )APD PMT APD

16 3 γ 3.2 γ 3.2.1 γ CATANA γ β = 0.6 γ CATANA 200 CsI(Tl) CsI(Na) (5 < θ < 111 ) E γ =1 MeV 56 % SAMURAI γ 20 % 100 kev-10 MeV 100 kev-30 MeV θ 9 ϕ 18 137 Cs γ (661 kev) 10 % 3.2.2 CATANA 3.4 2.5 γ 15 cm 9.5 cm 3.1 3.2.3 CATANA CsI(Tl) CsI(Na) γ ( 3.1.1, 3.1.9, 3.1.10) Z γ CsI(Tl) CsI(Na) NaI(Tl) BGO 3.2 [12]

3.2 γ 17 3.4 CATANA ( ) ( ) 3.1 CATANA γ 3.4 ( ) (cm) 5.0 16.0 15.0 16.0 27.0 15.0 27.0 38.0 14.0 38..0 49.0 12.5 49.0 59.0 10.5 59.0 69.0 10.5 69.0 79.5 9.5 79.5 90.0 9.5 90.0 100.5 9.5 100.5 111.0 9.5 3.2.4 (PMT) Avalanche Photodiode(APD) CATANA PMT(R11265U,R580) APD(S8664-1010) 3.3 3.5 PMT APD

18 3 γ 3.2 CsI(Tl),CsI(Na),NaI(Tl),BGO CsI(Tl) CsI(Na) NaI(Tl) BGO (g/cm 3 ) 4.51 4.51 3.67 7.13 1.79 1.84 1.85 2.15 (cm) 2 2 2.5 1 (nm) 550 420 415 480 (ns) 1000 630 250 300 (NaI(Tl) (%)) 45 85 100 20 Z Z Z [11] 3.3 PMT(R11265U), PMT(R580), APD(S8664-1010) PMT(R11265U) PMT(R580) APD(S8664-1010) (mm 2 ) 23 23 ϕ34 10 10 (nm) 420 420 600 (%) 35 27 70 3.7 10 5 1.1 10 6 50 (V) 1000 1750 500 CsI(Tl) CsI(Na) 3.6 PMT APD CsI(Na) PMT CsI(Tl) PMT [11, 12] 3.2.5 ESR

3.2 γ 19 3.5 ( )PMT(R11265U R580), ( )APD 3.6 CsI PMT APD [11, 12]

21 4 4.1 γ CATANA CATANA CsI(Tl),CsI(Na) 2 PMT 2 (R11265U,R580) APD S8664-1010 3 CsI(Tl),CsI(Na) PMT,APD CATANA γ 4.2 4.2.1 A:CsI(Tl), CATANA ( 4.1) B:CsI(Tl),30 30 100 mm 3 C:CsI(Na), D:CsI(Na), A,B,C,D

22 4 4.1 CsI(Tl) CsI(Na) 4.2.2 CATANA PMT(R11265U, R580) APD(S8664-1010) 3M ESR [13] 4.2.3 4.2 PMT APD splitter 2 shaping-amp ADC ADC PC ADC 4.2.4 137 Cs, 22 Na, 60 Co 22 Na A 4.1 N N 0 T 1/2 t 4.2.1 t N = N 0 2 T 1/2 (4.2.1) 4.3 137 Cs, 22 Na, 60 Co 137 Cs β 137 Ba 661 kev γ 22 Na β +

4.2 23 4.2 ( )VETO 4.1 (kev) (Bq) ( ) 137 Cs 661 1.82 10 5 30.17 22 Na 511,1275 8.85 10 5 5.27 60 Co 1173,1333 5.11 10 3 2.60 22 Ne 1275 kev γ β + 511 kev γ 2 60 Co 2 1173 kev,1333 kev γ 4.3 ( ) 137 Cs,( ) 22 Na,( ) 60 Co 137 Cs 661 kev, 22 Na 511 kev,1275 kev, 60 Co 1173 kev,1333 kev γ

25 5 5.1 5.1 CsI(Tl)-A PMT(R11265U) HV=850 V, 2.0 µs 60 Co γ 40 K(1461 kev) γ (µ) (σ) 5.2 γ γ 5.2 5.1 CsI(Tl)-A PMT(R11265U) HV 850 V,2.0 µs 3 5 µ(ch) = p0 + p1 E γ (5.2.1)

26 5 5.1 ( ) 137 Cs(661 kev), ( ) 22 Na(511 kev,1275 kev), ( ) 60 Co(1173 kev,1333 kev), ( ), ( ) 60 Co

5.3 27 Egamma 1400 1200 χ 2 / ndf 160.9 / 3 p0-32.63 ± 0.1724 p1 1.208 ± 0.0003065 1000 800 600 400 200 0 0 200 400 600 800 1000 1200 1400 1600 1800 2000 channel 5.2 γ E 1 p1 E(%) = σ(ch) p1 E γ 2.35 100 (5.2.2) 5.3 CsI(Tl)-B( ) CsI(Na)-C D( ) PMT APD (HV) (sht) 5.3.1 HV HV 5.3 CsI(Tl)-B 137 Cs 661 kev 60 Co 1173 kev 60 Co 1333 kev γ R1165U, R580, APD PMT:2.0 µs, APD:1.0 µs PMT R11265U HV R580 1200 V APD

28 5 390 V HV PMT(R11265U):+850 V,PMT(R580):+1200 V, APD:+390 V resolution(%) 20 18 16 14 12 Cs661 Co1173 Co1333 resolution(%) 20 18 16 14 12 Cs661 Co1173 Co1333 10 10 8 8 6 6 4 4 2 0 800 820 840 860 880 900 920 940 960 HV(V) 2 0 1140 1160 1180 1200 1220 1240 1260 HV(V) resolution(%) 20 18 16 14 12 Cs661 Co1173 Co1333 10 8 6 4 2 0 330 340 350 360 370 380 390 HV(V) 5.3 HV R11265U R580U APD 3 γ

5.3 29 5.3.2 HV 5.4 CsI(Tl)-B R1165U, R580, APD HV PMT(R11265U) 850 V,PMT(R580) +1200 V, APD +390 V PMT(R580) sht=2.0 µs PMT(R11265U),APD PMT(R11265U),APD sht=2.0 µs sht=2.0 µs resolution(%) 20 18 16 14 12 Cs661 Co1173 Co1333 resolution(%) 20 18 16 14 12 Cs661 Co1173 Co1333 10 10 8 8 6 6 4 4 2 0 0 1 2 3 4 5 6 shaping-time(us) 2 0 0 1 2 3 4 5 6 shaping-time(us) resolution(%) 20 18 16 14 12 Cs661 Co1173 Co1333 10 8 6 4 2 0 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 shaping-time(us) 5.4 R11265U R580U APD

30 5 5.1 PMT(R11265U,R580) APD (%) R11265U R580 APD 137 Cs(661keV) 8.3 7.8 7.6 60 Co(1173keV) 5.5 5.2 5.7 60 Co(1333keV) 5.0 4.8 4.8 5.3.3 PMT APD 5.3.1 5.3.2 PMT APD HV sht= 2.0 µs (%) 5.1 PMT(R11265U) PMT(R580) APD HV +850 V,+1200 V,+390 V 137 Cs APD 60 Co R580 137 Cs 0.7 % CATANA A 5.3.4 CsI(Tl) CsI(Na) CsI(Tl) CsI(Na) 3.2 NaI(Tl) 45 %,85 % CsI Tl Na CsI(Na) PMT(R11265U) PMT CsI(Tl)-B CsI(Na)-C(1 ) PMT HV +850 V CsI(Na) 5.5 5.3.1 sht = 2.0 µs CsI(Tl) CsI(Na) 5.6 CsI(Tl)-B, CsI(Na)-C CsI(Tl) sht = 2.0 µs CsI(Tl) CsI(Na)

5.3 31 resolution(%) 20 18 16 14 12 Cs661 Co1173 Co1333 resolution(%) 12 10 8 CsI(Tl)-B CsI(Na)-C 10 8 6 6 4 2 0 0 1 2 3 4 5 6 shaping-time(us) 5.5 CsI(Na) CsI(Tl) 4 2 0 600 700 800 900 1000 1100 1200 1300 Egamma(keV) 5.6 CsI(Tl)-B( ) CsI(Na)-C( ) 5.3.5 CsI(Tl),CsI(Na) 5.7 CsI(Tl)-A,B CsI(Tl)-C,D CsI(Tl)-A CsI(Tl)-B CsI(Na)-C CsI(Na)-D PMT(R11265U) HV=+850 V, sht=2.0 µs CsI(Tl) CsI(Na) A D B C CsI(Tl) CsI(Na) 5.2 CsI(Tl)-A,B CsI(Na)-C,D PMT A/B, D/C γ A-B,D-C CsI(Na) PMT CsI(Tl) PMT PMT 5.2 ( ) CsI(Tl) 3.3 2.0 5.2 1.7 % CsI(Na) 8.0 4.0 4.0 0.9 %

32 5 resolution(%) 12 10 8 CsI(Tl)-A CsI(Tl)-B resolution(%) 12 10 8 CsI(Na)-C CsI(Na)-D 6 6 4 4 2 2 0 600 700 800 900 1000 1100 1200 1300 Egamma(keV) 0 600 700 800 900 1000 1100 1200 1300 Egamma(keV) 5.7 CsI(Tl)A.B CsI(Na)C,D CsI(Tl) CsI(Na) CsI(Tl) 5.3.6 CsI(Na)-D PMT PMT (ESR) ( ) PMT R11265U,HV=+850 V, sht =2.0 µs 5.8 0.51 %-0.86 % PMT

5.4 CsI(Tl)-A 33 resolution(%) 12 10 8 ESR absorber 6 4 2 0 600 700 800 900 1000 1100 1200 1300 Egamma(keV) 5.8 ESR ( ) ( ) 5.4 CsI(Tl)-A CATANA B,C,D CsI(Tl)-A A 5.3.6 CsI(Tl)-A PMT ESR ESR PMT(R11265U) 5.4.1 CsI(Tl)-A PMT PMT HV=+850 V, sht = 2.0 µs 5.9 1 2 3 ( ) ( ) PMT 5.9 k 1,k 2,k 3

34 5 Egamma(keV) 1400 first 1200 1000 second thrid resolution(%) 14 first 12 10 second thrid 800 600 400 200 8 6 4 2 0 0 200 400 600 800 1000 1200 1400 1600 1800 2000 5.9 channel 0 600 800 1000 1200 1400 Egamma(keV) HV, 1 k 1 1 = 0.91 2 k 1 2 = 0.79 3 k 1 3 = 0.64 1 3 70 % PMT 2.3 % PMT CsI(Tl)-A 2 5.10 PMT PMT PMT 5.10 PMT ( ) ( ) PMT PMT

5.5 γ 35 5.5 γ 5.5.1 5.11 ( 6.0 cm 9.0 cm) A,A ( 3.4 cm 5.2 cm) B,B C(6.0 cm 3.4 cm) D(9.0 cm 5.2 cm) A A E E 5.12 x, y, z 5.11 A,B,C,D,E A A B B 5.12 x, y E z E γ 5.13 5.14 1 cm 1 cm 2 A γ A 5.5.2 γ 1 5.14 1cm 137 Cs A 1 cm HV=+850 V, sht=2.0 µs 5.15 x = z = 0 cm, y = 25 cm γ (529 ch), (10.44 %) z (PMT ) z = 1 3 cm PMT z =4 cm

36 5 5.13 x A x z 5.14 2 5.5.2 1 cm 5.5.3 1 cm z = 0 1 cm x 5.5.3 5.5.3 γ 2 5.14 1 cm 22 Na A 1 1 cm 2 HV=+850 V, sht = 2.0 µs x = 0 cm( ) z =0 8.8 cm x =0.5 cm, 1.0 cm, 1.5 cm, 2.0 cm z=0 cm 1.8 cm 22 Na 511 kev, 1275 kev 2 γ

5.5 γ 37 channel 600 580 560 540 resolution(%) 14 13 12 11 520 500 480 460 0 1 2 3 4 5 6 7 8 9 z(cm) 5.15 10 9 8 7 0 1 2 3 4 5 6 7 8 9 z(cm) γ ( ) ( ) z γ 5.16,5.17 x = y = 0 cm, z = 15 cm γ, 551 kev 470 ch, 10.95 % 1275 kev 1124 ch, 7.65 % x x 0 cm, 0.5 cm, 1.0 cm, 1.5 cm, 2.0 cm channel 480 475 470 channel 1160 1140 465 460 1120 455 x=0 450 x=0.5 445 x=1.0 440 x=1.5 435 x=2 430 0 1 2 3 4 5 6 7 8 9 5.16 z(cm) 1100 1080 1060 x=0 x=0.5 x=1.0 x=1.5 x=2 0 1 2 3 4 5 6 7 8 9 z(cm) γ ( 511 kev, 1275 kev) x x z γ x = 0 z 5.5.2 z (PMT ) z = 0 2 cm 5.5.2 511 kev z = 0.3 cm 2.8 cm 0.51 % z =2.8 cm 8.8 cm 5.4 % 1275 kev z =0.3 cm 2.8 cm 0.20 % z = 2.8 cm 8.8 cm 2.2 %

38 5 resolution(%) 18 17 16 15 14 13 x=0 x=0.5 x=1.0 x=1.5 x=2.0 resolution(%) 9 8 7 6 x=0 x=0.5 x=1.0 x=1.5 x=2.0 12 11 5 10 4 9 8 0 1 2 3 4 5 6 7 8 9 z(cm) 3 0 1 2 3 4 5 6 7 8 9 5.17 γ ( 511 kev, 1275 kev)x x z z = 0 2 cm γ z(cm) x x PMT PMT z < 2 cm ( x = 0, z = 0.8 cm) ( x = 0, z = 8.8 cm) 5.18 511 kev, 1275 kev x = 0, z = 6.0 cm PMT z = 6.0 cm x = 0, z = 6.0 cm 511 kev,1275 kev 1.0 %, 3.6 %

5.5 γ 39 count 4000 3500 3000 count 5000 4000 2500 2000 1500 1000 500 3000 2000 1000 0 0 200 400 600 800 1000 1200 1400 1600 1800 2000 channel 0 0 200 400 600 800 1000 1200 1400 1600 1800 2000 5.18 Na ( x = 0, z = 0.3 cm x = 0, z = 8.8cm) 511 kev,1275 kev channel

41 6 6.1 CsI(Tl),CsI(Na) CsI(Tl)-A,B CsI(Na)-C,D PMT(R11265U) 6.1.1 CsI(Tl),CsI(Na) PMT 6.1,6.2 PMT SBA(Super Bialkali) SBA PMT [11][12] PMT N e 6.1.1 N photon η 300nm-700nm 300nm-700nm γ E γ 1 kev CsI(Tl) 54 CsI(Na) 45 N phton = λ (N e η) (6.1.1) N eλ N eλ = λ { 54 E γ kev (CsI(Tl)) 45 E γ kev (CsI(Na)) (6.1.2)

42 6 6.1 [12] 6.2 PMT Super Bialkali( ) PMT [11] N photon 6.1.3 E(%) = 1 Nphoton 2.35 100 (6.1.3) 6.1.2 6.1.1 6.1 HV=+850 V, sht = 2.0 µs CsI(Tl)-A 1.8 3.3 9.1 % 31 % PMT PMT 5.5 γ

6.2 43 6.1 ( )CsI(Tl) CsI(Tl)-A,B ( )CsI(Na) CsI(Na)- C,D γ (CsI(Tl)) CsI(Tl)-A CsI(Tl)-B 137 Cs(661keV) 3.88 9.20 8.20 60 Co(1173keV) 2.92 7.64 5.46 60 Co(1331keV) 2.74 6.36 5.06 (CsI(Na)) CsI(Na)-C CsI(Na)-D 137 Cs(661keV) 2.71 8.33 9.00 60 Co(1173keV) 2.04 5.89 6.76 60 Co(1331keV) 1.91 5.12 6.01 6.2 0 1 PMT 5.5 6.3,6.4 E 100% 90% 6.3 5.11 A,B,C,D,E A A B B 6.4 5.12 x, y E z E

44 6 6.2.1 1 0 A,A 1 B 1 C 1 PMT 0 6.5 E θ 0 Ω 0 = 1 2 (1 cos θ 0) (6.2.1) 6.5 z cm z = 5, 7 cm x = 4.0, 4.0 cm z = 9 cm x = 4.0, 3.5, 3.5, 4.0 cm 0 PMT z = 1 cm -1 cm< x <1 cm efficiency 0.3 0.25 0.2 0.15 z=1 z=3 z=5 z=7 z=9 0.1 0.05 0-4 -3-2 -1 0 1 2 3 4 x(cm) 6.5 z = 0 z x A,A 1 A,A 1 6.6 PMT θ 1A 6.2.1 θ 1A

6.2 45 6.6 x = 0 E P,C,H,θ, d P (x, y, z) E (0,y, z) P P C H θ PC PH R P ϕ A A PMT ϕ A = 84.75 A C PMT a=45 mm r=19 mm 6.6 A 1 z = 0 x, z( ) PMT θ 1A P, C, H, θ, d E y = 0 A,A y E 5.2 cm, 3.4 cm, 9.3 cm y = 1 z {5.2 (5.2 3.4)} 2 9.3 (6.2.2) x, y, z, ϕ A, r CH, P H, P C, θ, R CH = z + (y a) cos ϕ A sin ϕ A (6.2.3) P H = (y + a) sin ϕ A (6.2.4) P C = CH 2 + P H 2 + x 2 (6.2.5) 1 CH θ = sin P C (6.2.6) R = r cos(ϕ A θ) (6.2.7) θ A A 1 PMT e

46 6 θ A = tan 1 R P C (6.2.8) e = 1 2 (1 cos θ A) (6.2.9) 6.7 0 x x (PMT ) z z = 5 cm x x = 0 cm PMT z z PMT cos θ z = 5 cm efficiency 0.03 0.025 0.02 0.015 z=1 z=3 z=5 z=7 z=9 0.01 0.005 0-4 -3-2 -1 0 1 2 3 4 x(cm) 6.7 A 1 z x B,B 1 B,B 1 6.8 θ 1B 6.2.1 6.8 0 x x = 0 cm z z = 7 cm x x = 0 cm x A,A B,B z A,A C 1 C 1 θ 1C 6.2.1 6.9 0 x

6.2 47 efficiency 0.02 0.018 0.016 0.014 0.012 0.01 z=1 z=3 z=5 z=7 z=9 0.008 0.006 0.004 0.002 0-4 -3-2 -1 0 1 2 3 4 x(cm) 6.8 B 1 y = 0 cm z x z x z (PMT ) 0 6.5 efficiency 0.01 0.009 0.008 0.007 0.006 0.005 z=1 z=3 z=5 z=7 z=9 0.004 0.003 0.002 0.001 0-4 -3-2 -1 0 1 2 3 4 x(cm) 6.9 C 1 z = 0 cm z x

48 6 6.2.2 6.2.1 0 1 6.10 x = 0 5.5.2 z ( ) x 1 cm z 1 A B C 1 A B A,B 2 efficinecy 0.3 0.25 0.2 no reflection on A on B on C SUM efficinecy 0.1 0.09 0.08 0.07 0.06 no reflection on A on B on C SUM 0.15 0.05 0.1 0.04 0.03 0.05 0 1 2 3 4 5 6 7 8 9 z(cm) 6.10 0.02 0.01 0 1 2 3 4 5 6 7 8 9 z(cm) A,B,C 1 x = 0 5.5.2 x 1cm z 1 5.5.2 5.5.3 z z z 1 2

49 7 7.1 γ CATANA 48,50,52 Ca PDR 2015 CATANA Ca γ γ CATANA CATANA CsI(Tl) CsI(Na) PMT(R11265U,R580) APD(S8664-1010) 4 3 CATANA γ 7.2 CATANA CsI(Tl) PMT(R11265U) CATANA

50 7 CsI(Tl),CsI(Na) CATANA γ γ RIBF

51 [1] ( 1988 ) [2] 19 ( 1988 ) [3] P.Adrich et al., Evidence for Pygmy and Giant Dipole Resonances in 130 Sn and 132 Sn Phys.Rev.Lett.95,132501(2005) [4] D. Savran, T. Aumann, A. Zilges, Progress in Particle and Nuclear Physics (2013), doi:10.1016/j.ppnp.2013.02.003 [5] LBNL Isotopes Project Nuclear Structure Systematics Home Page http://ie.lbl.gov/systematics.html [6] D.M.Rossi et al. Measurement of the Dipole Polarizability of the Unstable Neutron- Rich Nucules 68 Ni,Phys.Rev.Lett.111,242503(2013) [7] O.wieland et al., Search for the Pygmy Dipole Resonance in 68 Ni at 600 MeV/nucleon Phys.Rev.Lett.102,092502(2009) [8] Tsunenori Inakura, Takashi Nakatsukasa, Kazuhiro Yabana Low-energy E1 strength in select nuclei: Possible constraints on the neutron skins and the symmetry energy arxiv:1306.3089(2013) [9] W.R.Leo Techniques for Nuclear and Particle Physics Experiment Second Revised Edition(Springer-Verlag, 1993) [10] Glenn F. Knoll 3 ( 2001 ) [11] http://www.hamamatsu.com/jp/ja/index.html [12] Saint-Gobain http://www.crystals.saint-gobain.com [13] 3M http://www.mmm.co.jp/display/index.html [14] J.Bea, A.Gadea,L.M.Garicia-Raffi,J.Rico, B.Rubio, J.L.Tain imulation of light collection in scintillators with rough surfaces (Nuclear Instruments and Method in Physics Research A 350 (1994) 184-191)

53 4