2010 : M0107189 3DCG 3 (3DCG) 3DCG 3DCG 3DCG S



Similar documents
1 3 (3DCG) [1] [2] [3] [4] [5] 3DCG [6] [7] [8] [9] ( ) 3DCG 27 NICOGRAPH [10] [6] ( ) [7] 80km 500km 1 1: 25

IPSJ SIG Technical Report Vol.2014-CG-155 No /6/28 1,a) 1,2,3 1 3,4 CG An Interpolation Method of Different Flow Fields using Polar Inter

CG [7] Thomaszewski [12] Baranoski [1] [2] (a) (b) (c) 3 a b c 3(a) E g 3(b) E mag 3(c) E s 3 2 [16] SPH SPH 1960 Rosenswig 4 [9] Sudo [11] Han

2010 : M CG 3DCG 3 3

2012 M

2009 3DCG : M DCG,,,, 3DCG 2D 3DCG 2D 3DCG 3DCG

情報処理学会研究報告 IPSJ SIG Technical Report Vol.2012-CG-147 No /6/22 CG,.,,.,..,.,,. Keyframe Control of Cumulus Clouds based on Computational Fluid Dy

1 3DCG [2] 3DCG CG 3DCG [3] 3DCG 3 3 API 2 3DCG 3 (1) Saito [4] (a) 1920x1080 (b) 1280x720 (c) 640x360 (d) 320x G-Buffer Decaudin[5] G-Buffer D

2010 : M

2013 M

07-二村幸孝・出口大輔.indd

floating horizon algorithm 1 DEM [ 01] [Luebke01] LDI Layered Depth Image [Shade98] DEM Digital Elevation Model Height field

FIT2013( 第 12 回情報科学技術フォーラム ) I-032 Acceleration of Adaptive Bilateral Filter base on Spatial Decomposition and Symmetry of Weights 1. Taiki Makishi Ch

IPSJ SIG Technical Report Vol.2012-CG-148 No /8/29 3DCG 1,a) On rigid body animation taking into account the 3D computer graphics came

3D VR CAD 3D CAD CAD [1] CAD 3DCG [2] [3] CAD 3D NC CG [4] Ccurve XY C curve α C curve [5], [6], [7], [8], [9] 2 [10] 1 [11], [12] 2.2 [13] Tcu

Lyra X Y X Y ivis Designer Lyra ivisdesigner Lyra ivisdesigner 2 ( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 ) (1) (2) (3) (4) (5) Iv Studio [8] 3 (5) (4) (1) (

2003 : 00P249,,, CG

2). 3) 4) 1.2 NICTNICT DCRA Dihedral Corner Reflector micro-arraysdcra DCRA DCRA DCRA 3D DCRA PC USB PC PC ON / OFF Velleman K8055 K8055 K8055

(a) 1 (b) 3. Gilbert Pernicka[2] Treibitz Schechner[3] Narasimhan [4] Kim [5] Nayar [6] [7][8][9] 2. X X X [10] [11] L L t L s L = L t + L s

& Vol.5 No (Oct. 2015) TV 1,2,a) , Augmented TV TV AR Augmented Reality 3DCG TV Estimation of TV Screen Position and Ro

IPSJ SIG Technical Report 1,a) 1,b) 1,c) 1,d) 2,e) 2,f) 2,g) 1. [1] [2] 2 [3] Osaka Prefecture University 1 1, Gakuencho, Naka, Sakai,

An Interactive Visualization System of Human Network for Multi-User Hiroki Akehata 11N F

( )

第6章_田辺.PDF

Input image Initialize variables Loop for period of oscillation Update height map Make shade image Change property of image Output image Change time L

DEIM Forum 2012 E Web Extracting Modification of Objec

情報処理学会研究報告 IPSJ SIG Technical Report Vol.2013-CVIM-188 No /9/3 BRDF i

IPSJ SIG Technical Report Vol.2017-MUS-116 No /8/24 MachineDancing: 1,a) 1,b) 3 MachineDancing MachineDancing MachineDancing 1 MachineDan


2006 3D M

258 5) GPS 1 GPS 6) GPS DP 7) 8) 10) GPS GPS ) GPS Global Positioning System

untitled

2009 : M DCG 3 4 3

1 Kinect for Windows M = [X Y Z] T M = [X Y Z ] T f (u,v) w 3.2 [11] [7] u = f X +u Z 0 δ u (X,Y,Z ) (5) v = f Y Z +v 0 δ v (X,Y,Z ) (6) w = Z +


経済論集 46‐2(よこ)(P)☆/2.三崎

P2P P2P peer peer P2P peer P2P peer P2P i

IPSJ SIG Technical Report iphone iphone,,., OpenGl ES 2.0 GLSL(OpenGL Shading Language), iphone GPGPU(General-Purpose Computing on Graphics Proc

2018 M

DEIM Forum 2017 H ,

2009 : M (CG)

0302TH0130.indd

3 Adobe Photoshop CS6 Photoshop CS6 CS6 CS6 Photoshop CS6 24 Photoshop CS6 13 Adobe Mercury Graphics Engine CS6 Photoshop 3D CS6 Photoshop CS6 2


IPSJ SIG Technical Report Vol.2014-ARC-213 No.24 Vol.2014-HPC-147 No /12/10 GPU 1,a) 1,b) 1,c) 1,d) GPU GPU Structure Of Array Array Of

2 3

xx/xx Vol. Jxx A No. xx 1 Fig. 1 PAL(Panoramic Annular Lens) PAL(Panoramic Annular Lens) PAL (2) PAL PAL 2 PAL 3 2 PAL 1 PAL 3 PAL PAL 2. 1 PAL

2014 2

川崎学報57-4.indd


IPSJ SIG Technical Report Vol.2013-CE-122 No.16 Vol.2013-CLE-11 No /12/14 Android 1,a) 1 1 GPS LAN 2 LAN Android,,, Android, HTML5 LAN 1. ICT(I

( ) ( ) CG Yngve [2] Yngve Feldman [3] Stam Navier-Stokes (N-S ) [5] Rasmussen 2 3 [4] 2.2 Treuille [6] Fattal N-S driving force term gathering

Microsoft Word - 21年仕様書案 doc

untitled

(4) ω t(x) = 1 ω min Ω ( (I C (y))) min 0 < ω < C A C = 1 (5) ω (5) t transmission map tmap 1 4(a) t 4(a) t tmap RGB 2 (a) RGB (A), (B), (C)

Title KETpicによる曲面描画と教育利用 ( 数式処理と教育教育における数式処理システムの効果的利用に関する研究 ) : 数学 Author(s) 金子, 真隆 ; 阿部, 孝之 ; 関口, 昌由 ; 山下, 哲 ; 高遠, Citation 数理解析研究所講究録 (2009), 1624:

Dynamics and Design Conference 2004

IPSJ SIG Technical Report Vol.2014-HCI-158 No /5/22 1,a) 2 2 3,b) Development of visualization technique expressing rainfall changing conditions


Izard 10 [1]Plutchik 8 [2] [3] Izard Neviarouskaya [4][5] 2.2 Hao [6] 1 Twitter[a] a) Shook Wikipedia

,., ping - RTT,., [2],RTT TCP [3] [4] Android.Android,.,,. LAN ACK. [5].. 3., 1.,. 3 AI.,,Amazon, (NN),, 1..NN,, (RNN) RNN

3.1 Thalmic Lab Myo * Bluetooth PC Myo 8 RMS RMS t RMS(t) i (i = 1, 2,, 8) 8 SVM libsvm *2 ν-svm 1 Myo 2 8 RMS 3.2 Myo (Root

Int Int 29 print Int fmt tostring 2 2 [19] ML ML [19] ML Emacs Standard ML M M ::= x c λx.m M M let x = M in M end (M) x c λx.

001

Run-Based Trieから構成される 決定木の枝刈り法

23 Fig. 2: hwmodulev2 3. Reconfigurable HPC 3.1 hw/sw hw/sw hw/sw FPGA PC FPGA PC FPGA HPC FPGA FPGA hw/sw hw/sw hw- Module FPGA hwmodule hw/sw FPGA h

2 3, 4, [1] [2] [3]., [4], () [3], [5]. Mel Frequency Cepstral Coefficients (MFCC) [9] Logan [4] MFCC MFCC Flexer [10] Bogdanov2010 [3] [14],,,

IPSJ SIG Technical Report Vol.2009-DPS-141 No.23 Vol.2009-GN-73 No.23 Vol.2009-EIP-46 No /11/27 t-room t-room 2 Development of

GPU n Graphics Processing Unit CG CAD

Fuzzy Multiple Discrimminant Analysis (FMDA) 5) (SOM) 6) SOM 3 6) SOM SOM SOM SOM SOM SOM 7) 8) SOM SOM SOM GPU 2. n k f(x) m g(x) (1) 12) { min(max)

1 GPU GPGPU GPU CPU 2 GPU 2007 NVIDIA GPGPU CUDA[3] GPGPU CUDA GPGPU CUDA GPGPU GPU GPU GPU Graphics Processing Unit LSI LSI CPU ( ) DRAM GPU LSI GPU

GUI(Graphical User Interface) GUI CLI(Command Line Interface) GUI

GPGPU


IPSJ SIG Technical Report Vol.2009-DPS-141 No.20 Vol.2009-GN-73 No.20 Vol.2009-EIP-46 No /11/27 1. MIERUKEN 1 2 MIERUKEN MIERUKEN MIERUKEN: Spe

Microsoft Word - GrCadSymp1999.doc

2. Eades 1) Kamada-Kawai 7) Fruchterman 2) 6) ACE 8) HDE 9) Kruskal MDS 13) 11) Kruskal AGI Active Graph Interface 3) Kruskal 5) Kruskal 4) 3. Kruskal



IPSJ SIG Technical Report Vol.2010-CVIM-170 No /1/ Visual Recognition of Wire Harnesses for Automated Wiring Masaki Yoneda, 1 Ta

BendyLights BendyLights BendyLight 3 BendyLight BendyLight BendyLight 2 3 BendyLights [2] [3] [4] 3. BendyLights BendyLights BendyLights 1(a)

1 Table 1: Identification by color of voxel Voxel Mode of expression Nothing Other 1 Orange 2 Blue 3 Yellow 4 SSL Humanoid SSL-Vision 3 3 [, 21] 8 325

EndoPaper.pdf

[2][3][4][5] 4 ( 1 ) ( 2 ) ( 3 ) ( 4 ) 2. Shiratori [2] Shiratori [3] [4] GP [5] [6] [7] [8][9] Kinect Choi [10] 3. 1 c 2016 Information Processing So

IPSJ SIG Technical Report NetMAS NetMAS NetMAS One-dimensional Pedestrian Model for Fast Evacuation Simulator Shunsuke Soeda, 1 Tomohisa Yam

T554/67K

aisatu.pdf

Sigma

Sigma

i

PC Development of Distributed PC Grid System,,,, Junji Umemoto, Hiroyuki Ebara, Katsumi Onishi, Hiroaki Morikawa, and Bunryu U PC WAN PC PC WAN PC 1 P

(255) Vol. 19 No. 4 July (completion) tcsh bash UNIX Emacs/Mule 2 ( ) [2] [9] [11] 2 (speech completion) 3 ( ) [7] 2 ( 7.1 )


Honda 3) Fujii 4) 5) Agrawala 6) Osaragi 7) Grabler 8) Web Web c 2010 Information Processing Society of Japan

Emacs ML let start ::= exp (1) exp ::= (2) fn id exp (3) ::= (4) (5) ::= id (6) const (7) (exp) (8) let val id = exp in

[2] 2. [3 5] 3D [6 8] Morishima [9] N n 24 24FPS k k = 1, 2,..., N i i = 1, 2,..., n Algorithm 1 N io user-specified number of inbetween omis

,4) 1 P% P%P=2.5 5%!%! (1) = (2) l l Figure 1 A compilation flow of the proposing sampling based architecture simulation

IPSJ SIG Technical Report Vol.2017-HCI-173 No.5 Vol.2017-EC-44 No /6/1 1,a) 1,2,b) 3,c) 1,d) 3D * 1* Graduate School of Engineerin

- (20 ) 400 () 3DCG No.51 No.61 No.62 No.11 P 2 16

量子情報科学−情報科学の物理限界への挑戦- 2018

Transcription:

2010 M0107189

2010 : M0107189 3DCG 3 (3DCG) 3DCG 3DCG 3DCG S

1 1 1.1............................ 1 1.2.............................. 4 2 5 2.1............................ 5 2.2............................. 8 2.3.............................. 12 2.4....................... 13 3 15 3.1.......................... 15 3.2............................. 16 3.3......................... 18 3.4............................. 19 3.5.............................. 20 4 22 4.1................................... 25 5 27 28 29 I

1.1 (Wikipedia )............ 2 2.1 6 2.2....................... 8 2.3........................ 10 2.4....................... 11 2.5......................... 11 2.6............... 11 2.7.................... 14 4.1....................... 23 4.2 1....................... 23 4.3 2....................... 23 4.4 3....................... 24 4.5 4....................... 24 4.6 5....................... 24 4.7 1........................... 24 4.8 2........................... 25 4.9 3........................... 25 4.10 4........................... 25 4.11 5........................... 25 II

1 1.1 3 ( 3DCG) 3DCG [1][2][3][4] 3DCG [5][6][7] 1

1.1 1.1: (Wikipedia ) 2 [8] 2003 Baranoski [9] ( ) [10] ( ) 2

2005 Baranoski [11] Baranoski S ( ) [12] 1/f [13] 3 1/f 1/f 1/f [14] 3DCG 3

Baranosoki Bèzier [15] sin Baranosoki 1.2 5 2 3 4 5 4

2 2 [5] 2.1 2.2 2.3 2.4 2.1 ( ) 80km 500km 5

2.1 2.1: 3 U J 2 2 3 6

2 3 4 30 60 75% ( 7

) ( ) ( ) 2.2 2.2: 2.2 1km km 8

S km km 2km 10km 20km 1500km S km 0.06 0.2 50km/s ( ) 0.1 10 9

50km 100km 10 300m/s 50km/s 100km/s 2.3 10 2.4 2.5 2.6 2.3: 10

2.4: 2.5: 2.6: 11

2.3 1 557.7nm 630.0nm 391.4nm 427.8nm 670.5nm 630.0nm 110 630.0nm a b c d e f 6 a 120km 140km b 80km 100km c 100km 200km d 220km 250km e b 12

f 2.4 1 3 1 2 3 4 1 2 2 3 2 3 30 60 4 13

4 3 4 30 2 2.7 2.7: 14

3 3.1 3.2 3.3 3.4 3.5 3.4 3.1 3DCG y xz xz Bèzier [15] sin n Bèzier m sin R(t) (3.1) R(t) = n Bi n (t)q i + i=0 { m 1 j=0 A j sin(2πf j t) } N b (t) (0 t 1) (3.1) 15

N b (t) Bèzier t Q i Bèzier {Q 0, Q 1, Q 2,..., Q n } Bi n (t) Bernstein A j sin f j sin Bernstein (3.2) B n i (t) = n C i t i (1 t) n i (3.2) t k {W 0, W 1, W 2,..., W k 1 } (3.3) w W 0 (k = 1) 2 W (t, w) = w W tk (1 (tk tk ))+W tk +1 (tk tk ) (k 1, 0 t < 1) 2 w W k 2 (k 1, t = 1) (3.3) 1 w 1 tk tk (3.1) (3.3) A(t, w) (3.4) A(t, w) = R(t) + W (t, w)n a (t) (0 t 1, 1 w 1) (3.4) N a (t) t 3.2 [16] F P 0 v 0 t P 16

(3.5) P = ( ) t m F + v 0 t + P 0 (3.5) q 0 B E F (3.6) v B F = q 0 (E + v B) (3.6) B q 0 1 E φ E (3.7) E = φ (3.7) S N ρ (3.8) ρ = q 0N S (3.8) ε 0 ε 0 φ ρ [17][18] (3.9) 2 2 φ = 2 φ 2 x + 2 φ 2 z = ρ ε 0 (3.9) φ xz Drichlet [18] φ = 0 Gauss-Seidel [19] φ xz 17

4 4 4 d (i, j) 2 [18] (i, j) 2 (3.10) (3.11) ( ) 2 φ x 2 φ(i + 1, j) 2φ(i, j) + φ(i 1, j) ( d) 2 (3.10) ( ) 2 φ z 2 φ(i, j + 1) 2φ(i, j) + φ(i, j 1) ( d) 2 (3.11) (3.9) (3.10) (3.11) (i, j) φ(i, j) (3.12) φ(i, j) = 1 4 { ( d) 2 ρ ε 0 } + φ(i + d, j) + φ(i d, j) + φ(i, j + l) + φ(i, j d) (3.12) [18] (i, j) E(i, j) E(i, j) = ( φ(i + 1, j) φ(i 1, j), 2 d ) φ(i, j + 1) φ(i, j 1) 2 d (3.13) 3.3 [20] 18

B v t t t t t P (3.14) P = v B B t (3.14) r l n l [21] P 1 (3.15) P 1 = nπr 2 l (3.15) n 3.4 [22] [5] r n v m t t [21] P 2 (3.16) ( P 2 = 1 exp ) 2nπr 2 v m t (3.16) v m [23] 19

3.5 [24] σ (3.17) G(x, y) = 1 ) ( 2πσ exp x2 + y 2 2 2σ 2 (3.17) σ RGB CIE-XYZ X, Y, Z [25] λ L(λ) X, Y, Z (3.18) 780 X = k Y = k Z = k 380 780 380 780 380 x(λ)l(λ)δλ ȳ(λ)l(λ)δλ z(λ)l(λ)δλ (3.18) x, ȳ, z k L(λ) 20

X, Y, Z R, G, B (3.19) ( 3.5064X 1.7400Y 0.5441Z R = 255 100 ( 1.0690X + 1.9777Y + 0.0352Z G = 255 100 ( 0.0563X 0.1970Y + 1.0511Z B = 255 100 ) 1 2.2 ) 1 2.2 ) 1 2.2 (3.19) 21

4 3 3D FK ToolKit System[26] 512px 360px 10000 60000 9 100 40 4.1 4.1: OS Windows 7 Enterprise CPU AMD Phenom(tm) IIX6 1090T Processor 3.20 GHz GPU GeForce GTX 470 4.0 GB 4.1 22

4.1: 4.2 4.3 4.4 4.5 4.6 4.2: 1 4.3: 2 4.7 4.8 4.9 4.10 4.11 23

4.4: 3 4.5: 4 4.6: 5 4.7: 1 24

4.8: 2 4.9: 3 4.10: 4 4.11: 5 4.1 S 25

26

5 27

28

[1] Yoshinobu Takahiro and Kaneda Kazufumi. Rendering rainbows based on wave optics and compositing the rainbow and photographs.. ITS, Vol. 104, No. 647, pp. 65 70, 2005-01-28. [2] Yoshinori Dobashi, Tsuyoshi Yamamoto, and Tomoyuki Nishita. Efficient rendering of lightning taking into account scattering effects due to cloud and atmospheric particles. In Proceedings of the 9th Pacific Conference on Computer Graphics and Applications, PG 01, pp. 390, 2001. [3] TOKOI KOHE and MORIKI HIRONORI. Real-time modeling of snowcovered shape(computer graphics). Transactions of Information Processing Society of Japan, Vol. 47, No. 5, pp. 1558 1565, 2006-05-15. [4] Ye Zhao, Yiping Han, Zhe Fan, Feng Qiu, Yu-Chuan Kuo, Arie E. Kaufman, and Klaus Mueller. Visual simulation of heat shimmering and mirage. IEEE Transactions on Visualization and Computer Graphics, Vol. 13, pp. 179 189, 2007. [5]. 2., 1983. [6]. THE AURORA WATCHER S HANDBOOK., 1995. 29

[7].., 2010. [8]. CG. NICOGRAPH 95, pp. 161 170, 1995. [9] G. V. G. Baranoski, Jon Rokne, Peter Shirley, Trond Trondsen, Rui Bastos. Simulating the aurora. Visual. Comput. Animat, pp. 43 59, 2003. [10].. 2005, pp. 69 74, 2005. [11] G. V. G. Baranoski J. Wan. Simulating the dynamics of auroral phenomena. ACM Transactions on Graphics, Vol. 24, pp. 37 59, 2005. [12]. CG. 20, p. 137, 2008. [13]. CG. 21, p. 281, 2009. [14]... CAD, 2009. [15]. 3 CAD., 1991. [16]. [ 2]., 1983. [17]. 14., 2007. [18].., 1987. 30

[19]. UNIX & Informatioin Science-5 C., 2005. [20]. 23., 2011. [21]. 2.., Vol. 47, No. 1, pp. 2 6, 2004. [22] NASA, Robert McGuire. MSIS-E-90 Atmosphere Model. http://omniweb. gsfc.nasa.gov/vitmo/msis vitmo.html. [23]. 1.., Vol. 46, No. 4, pp. 31 34, 2003. [24] Gabriele Lohmann. 3 Volumetric Image Analysis., 2009. [25].., 2001. [26]. Fine Kernel Tool Kit System. http://fktoolkit.sourceforge. jp/. 31