2010 : M0107189 3DCG 3 (3DCG) 3DCG 3DCG 3DCG S



Similar documents
1 3 (3DCG) [1] [2] [3] [4] [5] 3DCG [6] [7] [8] [9] ( ) 3DCG 27 NICOGRAPH [10] [6] ( ) [7] 80km 500km 1 1: 25

2009 3DCG : M DCG,,,, 3DCG 2D 3DCG 2D 3DCG 3DCG

1 3DCG [2] 3DCG CG 3DCG [3] 3DCG 3 3 API 2 3DCG 3 (1) Saito [4] (a) 1920x1080 (b) 1280x720 (c) 640x360 (d) 320x G-Buffer Decaudin[5] G-Buffer D

2013 M

07-二村幸孝・出口大輔.indd

FIT2013( 第 12 回情報科学技術フォーラム ) I-032 Acceleration of Adaptive Bilateral Filter base on Spatial Decomposition and Symmetry of Weights 1. Taiki Makishi Ch

IPSJ SIG Technical Report Vol.2012-CG-148 No /8/29 3DCG 1,a) On rigid body animation taking into account the 3D computer graphics came

3D VR CAD 3D CAD CAD [1] CAD 3DCG [2] [3] CAD 3D NC CG [4] Ccurve XY C curve α C curve [5], [6], [7], [8], [9] 2 [10] 1 [11], [12] 2.2 [13] Tcu

Lyra X Y X Y ivis Designer Lyra ivisdesigner Lyra ivisdesigner 2 ( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 ) (1) (2) (3) (4) (5) Iv Studio [8] 3 (5) (4) (1) (

2). 3) 4) 1.2 NICTNICT DCRA Dihedral Corner Reflector micro-arraysdcra DCRA DCRA DCRA 3D DCRA PC USB PC PC ON / OFF Velleman K8055 K8055 K8055

(a) 1 (b) 3. Gilbert Pernicka[2] Treibitz Schechner[3] Narasimhan [4] Kim [5] Nayar [6] [7][8][9] 2. X X X [10] [11] L L t L s L = L t + L s

& Vol.5 No (Oct. 2015) TV 1,2,a) , Augmented TV TV AR Augmented Reality 3DCG TV Estimation of TV Screen Position and Ro

Input image Initialize variables Loop for period of oscillation Update height map Make shade image Change property of image Output image Change time L

DEIM Forum 2012 E Web Extracting Modification of Objec

情報処理学会研究報告 IPSJ SIG Technical Report Vol.2013-CVIM-188 No /9/3 BRDF i

258 5) GPS 1 GPS 6) GPS DP 7) 8) 10) GPS GPS ) GPS Global Positioning System

1 Kinect for Windows M = [X Y Z] T M = [X Y Z ] T f (u,v) w 3.2 [11] [7] u = f X +u Z 0 δ u (X,Y,Z ) (5) v = f Y Z +v 0 δ v (X,Y,Z ) (6) w = Z +


経済論集 46‐2(よこ)(P)☆/2.三崎

DEIM Forum 2017 H ,

3 Adobe Photoshop CS6 Photoshop CS6 CS6 CS6 Photoshop CS6 24 Photoshop CS6 13 Adobe Mercury Graphics Engine CS6 Photoshop 3D CS6 Photoshop CS6 2


xx/xx Vol. Jxx A No. xx 1 Fig. 1 PAL(Panoramic Annular Lens) PAL(Panoramic Annular Lens) PAL (2) PAL PAL 2 PAL 3 2 PAL 1 PAL 3 PAL PAL 2. 1 PAL

IPSJ SIG Technical Report Vol.2013-CE-122 No.16 Vol.2013-CLE-11 No /12/14 Android 1,a) 1 1 GPS LAN 2 LAN Android,,, Android, HTML5 LAN 1. ICT(I

Microsoft Word - 21年仕様書案 doc

(4) ω t(x) = 1 ω min Ω ( (I C (y))) min 0 < ω < C A C = 1 (5) ω (5) t transmission map tmap 1 4(a) t 4(a) t tmap RGB 2 (a) RGB (A), (B), (C)

Dynamics and Design Conference 2004


Izard 10 [1]Plutchik 8 [2] [3] Izard Neviarouskaya [4][5] 2.2 Hao [6] 1 Twitter[a] a) Shook Wikipedia

,., ping - RTT,., [2],RTT TCP [3] [4] Android.Android,.,,. LAN ACK. [5].. 3., 1.,. 3 AI.,,Amazon, (NN),, 1..NN,, (RNN) RNN

3.1 Thalmic Lab Myo * Bluetooth PC Myo 8 RMS RMS t RMS(t) i (i = 1, 2,, 8) 8 SVM libsvm *2 ν-svm 1 Myo 2 8 RMS 3.2 Myo (Root

Run-Based Trieから構成される 決定木の枝刈り法

23 Fig. 2: hwmodulev2 3. Reconfigurable HPC 3.1 hw/sw hw/sw hw/sw FPGA PC FPGA PC FPGA HPC FPGA FPGA hw/sw hw/sw hw- Module FPGA hwmodule hw/sw FPGA h

2 3, 4, [1] [2] [3]., [4], () [3], [5]. Mel Frequency Cepstral Coefficients (MFCC) [9] Logan [4] MFCC MFCC Flexer [10] Bogdanov2010 [3] [14],,,

GPU n Graphics Processing Unit CG CAD

Fuzzy Multiple Discrimminant Analysis (FMDA) 5) (SOM) 6) SOM 3 6) SOM SOM SOM SOM SOM SOM 7) 8) SOM SOM SOM GPU 2. n k f(x) m g(x) (1) 12) { min(max)

1 GPU GPGPU GPU CPU 2 GPU 2007 NVIDIA GPGPU CUDA[3] GPGPU CUDA GPGPU CUDA GPGPU GPU GPU GPU Graphics Processing Unit LSI LSI CPU ( ) DRAM GPU LSI GPU

GUI(Graphical User Interface) GUI CLI(Command Line Interface) GUI

GPGPU


IPSJ SIG Technical Report Vol.2009-DPS-141 No.20 Vol.2009-GN-73 No.20 Vol.2009-EIP-46 No /11/27 1. MIERUKEN 1 2 MIERUKEN MIERUKEN MIERUKEN: Spe

Microsoft Word - GrCadSymp1999.doc


BendyLights BendyLights BendyLight 3 BendyLight BendyLight BendyLight 2 3 BendyLights [2] [3] [4] 3. BendyLights BendyLights BendyLights 1(a)

[2][3][4][5] 4 ( 1 ) ( 2 ) ( 3 ) ( 4 ) 2. Shiratori [2] Shiratori [3] [4] GP [5] [6] [7] [8][9] Kinect Choi [10] 3. 1 c 2016 Information Processing So

T554/67K

Sigma


Emacs ML let start ::= exp (1) exp ::= (2) fn id exp (3) ::= (4) (5) ::= id (6) const (7) (exp) (8) let val id = exp in

[2] 2. [3 5] 3D [6 8] Morishima [9] N n 24 24FPS k k = 1, 2,..., N i i = 1, 2,..., n Algorithm 1 N io user-specified number of inbetween omis

IPSJ SIG Technical Report Vol.2017-HCI-173 No.5 Vol.2017-EC-44 No /6/1 1,a) 1,2,b) 3,c) 1,d) 3D * 1* Graduate School of Engineerin

- (20 ) 400 () 3DCG No.51 No.61 No.62 No.11 P 2 16

量子情報科学−情報科学の物理限界への挑戦- 2018

Transcription:

2010 M0107189

2010 : M0107189 3DCG 3 (3DCG) 3DCG 3DCG 3DCG S

1 1 1.1............................ 1 1.2.............................. 4 2 5 2.1............................ 5 2.2............................. 8 2.3.............................. 12 2.4....................... 13 3 15 3.1.......................... 15 3.2............................. 16 3.3......................... 18 3.4............................. 19 3.5.............................. 20 4 22 4.1................................... 25 5 27 28 29 I

1.1 (Wikipedia )............ 2 2.1 6 2.2....................... 8 2.3........................ 10 2.4....................... 11 2.5......................... 11 2.6............... 11 2.7.................... 14 4.1....................... 23 4.2 1....................... 23 4.3 2....................... 23 4.4 3....................... 24 4.5 4....................... 24 4.6 5....................... 24 4.7 1........................... 24 4.8 2........................... 25 4.9 3........................... 25 4.10 4........................... 25 4.11 5........................... 25 II

1 1.1 3 ( 3DCG) 3DCG [1][2][3][4] 3DCG [5][6][7] 1

1.1 1.1: (Wikipedia ) 2 [8] 2003 Baranoski [9] ( ) [10] ( ) 2

2005 Baranoski [11] Baranoski S ( ) [12] 1/f [13] 3 1/f 1/f 1/f [14] 3DCG 3

Baranosoki Bèzier [15] sin Baranosoki 1.2 5 2 3 4 5 4

2 2 [5] 2.1 2.2 2.3 2.4 2.1 ( ) 80km 500km 5

2.1 2.1: 3 U J 2 2 3 6

2 3 4 30 60 75% ( 7

) ( ) ( ) 2.2 2.2: 2.2 1km km 8

S km km 2km 10km 20km 1500km S km 0.06 0.2 50km/s ( ) 0.1 10 9

50km 100km 10 300m/s 50km/s 100km/s 2.3 10 2.4 2.5 2.6 2.3: 10

2.4: 2.5: 2.6: 11

2.3 1 557.7nm 630.0nm 391.4nm 427.8nm 670.5nm 630.0nm 110 630.0nm a b c d e f 6 a 120km 140km b 80km 100km c 100km 200km d 220km 250km e b 12

f 2.4 1 3 1 2 3 4 1 2 2 3 2 3 30 60 4 13

4 3 4 30 2 2.7 2.7: 14

3 3.1 3.2 3.3 3.4 3.5 3.4 3.1 3DCG y xz xz Bèzier [15] sin n Bèzier m sin R(t) (3.1) R(t) = n Bi n (t)q i + i=0 { m 1 j=0 A j sin(2πf j t) } N b (t) (0 t 1) (3.1) 15

N b (t) Bèzier t Q i Bèzier {Q 0, Q 1, Q 2,..., Q n } Bi n (t) Bernstein A j sin f j sin Bernstein (3.2) B n i (t) = n C i t i (1 t) n i (3.2) t k {W 0, W 1, W 2,..., W k 1 } (3.3) w W 0 (k = 1) 2 W (t, w) = w W tk (1 (tk tk ))+W tk +1 (tk tk ) (k 1, 0 t < 1) 2 w W k 2 (k 1, t = 1) (3.3) 1 w 1 tk tk (3.1) (3.3) A(t, w) (3.4) A(t, w) = R(t) + W (t, w)n a (t) (0 t 1, 1 w 1) (3.4) N a (t) t 3.2 [16] F P 0 v 0 t P 16

(3.5) P = ( ) t m F + v 0 t + P 0 (3.5) q 0 B E F (3.6) v B F = q 0 (E + v B) (3.6) B q 0 1 E φ E (3.7) E = φ (3.7) S N ρ (3.8) ρ = q 0N S (3.8) ε 0 ε 0 φ ρ [17][18] (3.9) 2 2 φ = 2 φ 2 x + 2 φ 2 z = ρ ε 0 (3.9) φ xz Drichlet [18] φ = 0 Gauss-Seidel [19] φ xz 17

4 4 4 d (i, j) 2 [18] (i, j) 2 (3.10) (3.11) ( ) 2 φ x 2 φ(i + 1, j) 2φ(i, j) + φ(i 1, j) ( d) 2 (3.10) ( ) 2 φ z 2 φ(i, j + 1) 2φ(i, j) + φ(i, j 1) ( d) 2 (3.11) (3.9) (3.10) (3.11) (i, j) φ(i, j) (3.12) φ(i, j) = 1 4 { ( d) 2 ρ ε 0 } + φ(i + d, j) + φ(i d, j) + φ(i, j + l) + φ(i, j d) (3.12) [18] (i, j) E(i, j) E(i, j) = ( φ(i + 1, j) φ(i 1, j), 2 d ) φ(i, j + 1) φ(i, j 1) 2 d (3.13) 3.3 [20] 18

B v t t t t t P (3.14) P = v B B t (3.14) r l n l [21] P 1 (3.15) P 1 = nπr 2 l (3.15) n 3.4 [22] [5] r n v m t t [21] P 2 (3.16) ( P 2 = 1 exp ) 2nπr 2 v m t (3.16) v m [23] 19

3.5 [24] σ (3.17) G(x, y) = 1 ) ( 2πσ exp x2 + y 2 2 2σ 2 (3.17) σ RGB CIE-XYZ X, Y, Z [25] λ L(λ) X, Y, Z (3.18) 780 X = k Y = k Z = k 380 780 380 780 380 x(λ)l(λ)δλ ȳ(λ)l(λ)δλ z(λ)l(λ)δλ (3.18) x, ȳ, z k L(λ) 20

X, Y, Z R, G, B (3.19) ( 3.5064X 1.7400Y 0.5441Z R = 255 100 ( 1.0690X + 1.9777Y + 0.0352Z G = 255 100 ( 0.0563X 0.1970Y + 1.0511Z B = 255 100 ) 1 2.2 ) 1 2.2 ) 1 2.2 (3.19) 21

4 3 3D FK ToolKit System[26] 512px 360px 10000 60000 9 100 40 4.1 4.1: OS Windows 7 Enterprise CPU AMD Phenom(tm) IIX6 1090T Processor 3.20 GHz GPU GeForce GTX 470 4.0 GB 4.1 22

4.1: 4.2 4.3 4.4 4.5 4.6 4.2: 1 4.3: 2 4.7 4.8 4.9 4.10 4.11 23

4.4: 3 4.5: 4 4.6: 5 4.7: 1 24

4.8: 2 4.9: 3 4.10: 4 4.11: 5 4.1 S 25

26

5 27

28

[1] Yoshinobu Takahiro and Kaneda Kazufumi. Rendering rainbows based on wave optics and compositing the rainbow and photographs.. ITS, Vol. 104, No. 647, pp. 65 70, 2005-01-28. [2] Yoshinori Dobashi, Tsuyoshi Yamamoto, and Tomoyuki Nishita. Efficient rendering of lightning taking into account scattering effects due to cloud and atmospheric particles. In Proceedings of the 9th Pacific Conference on Computer Graphics and Applications, PG 01, pp. 390, 2001. [3] TOKOI KOHE and MORIKI HIRONORI. Real-time modeling of snowcovered shape(computer graphics). Transactions of Information Processing Society of Japan, Vol. 47, No. 5, pp. 1558 1565, 2006-05-15. [4] Ye Zhao, Yiping Han, Zhe Fan, Feng Qiu, Yu-Chuan Kuo, Arie E. Kaufman, and Klaus Mueller. Visual simulation of heat shimmering and mirage. IEEE Transactions on Visualization and Computer Graphics, Vol. 13, pp. 179 189, 2007. [5]. 2., 1983. [6]. THE AURORA WATCHER S HANDBOOK., 1995. 29

[7].., 2010. [8]. CG. NICOGRAPH 95, pp. 161 170, 1995. [9] G. V. G. Baranoski, Jon Rokne, Peter Shirley, Trond Trondsen, Rui Bastos. Simulating the aurora. Visual. Comput. Animat, pp. 43 59, 2003. [10].. 2005, pp. 69 74, 2005. [11] G. V. G. Baranoski J. Wan. Simulating the dynamics of auroral phenomena. ACM Transactions on Graphics, Vol. 24, pp. 37 59, 2005. [12]. CG. 20, p. 137, 2008. [13]. CG. 21, p. 281, 2009. [14]... CAD, 2009. [15]. 3 CAD., 1991. [16]. [ 2]., 1983. [17]. 14., 2007. [18].., 1987. 30

[19]. UNIX & Informatioin Science-5 C., 2005. [20]. 23., 2011. [21]. 2.., Vol. 47, No. 1, pp. 2 6, 2004. [22] NASA, Robert McGuire. MSIS-E-90 Atmosphere Model. http://omniweb. gsfc.nasa.gov/vitmo/msis vitmo.html. [23]. 1.., Vol. 46, No. 4, pp. 31 34, 2003. [24] Gabriele Lohmann. 3 Volumetric Image Analysis., 2009. [25].., 2001. [26]. Fine Kernel Tool Kit System. http://fktoolkit.sourceforge. jp/. 31