IMES Discussion Paper Series 98-J

Similar documents
第一次大戦後の日本における国債流通市場の制度改革


IMES DISCUSSION PAPER SERIES Discussion Paper No. 99-J- 9 -J-19 INSTITUTE FOR MONETARY AND ECONOMIC STUDIES BANK OF JAPAN

1 1 1 [2000]


082_rev2_utf8.pdf

会社法制上の資本制度の変容と企業会計上の資本概念について

ISSN ISBN C3033 The Institute for Economic Studies Seijo University , Seijo, Setagaya Tokyo , Japan


23_02.dvi

untitled


untitled


2 94

The Japanese Journal of Psychology 1974, Vol. 44, No. 6, AN ANALYSIS OF WORD ATTRIBUTES IMAGERY, CONCRETENESS, MEANINGFULNESS AND EASE OF LEAR

表紙_目次.PDF

エジプト、アブ・シール南丘陵頂部・石造建造物のロータス柱の建造方法


DGE DGE (1) ( 1

13....*PDF.p

コピー ~ 5-森保.txt

アジアの資本移動の変化に関するクラスター分析 アジア域内の証券投資活性化に向けて

橡motonishi.PDF

Z...QXD (Page 1)

- October , -,,,, ,, -

A Nutritional Study of Anemia in Pregnancy Hematologic Characteristics in Pregnancy (Part 1) Keizo Shiraki, Fumiko Hisaoka Department of Nutrition, Sc

ヒストリカル法によるバリュー・アット・リスクの計測:市場価格変動の非定常性への実務的対応

2-栗原.TXT

1 (1997) (1997) 1974:Q3 1994:Q3 (i) (ii) ( ) ( ) 1 (iii) ( ( 1999 ) ( ) ( ) 1 ( ) ( 1995,pp ) 1

fiúŁÄ”s‘ê‡ÌŁª”U…−…X…N…v…„…~…A…•‡Ì ”s‘ê™´›ß…−…^†[…fiŠ‚ª›Âfl’«

1., 1 COOKPAD 2, Web.,,,,,,.,, [1]., 5.,, [2].,,.,.,, 5, [3].,,,.,, [4], 33,.,,.,,.. 2.,, 3.., 4., 5., ,. 1.,,., 2.,. 1,,

p1_5.pmd

デフレの定義(最新版).PDF

…_…C…L…fi…J…o†[fiü“ePDF/−mflF™ƒ

WINS クラブ ニュース

A Study on Throw Simulation for Baseball Pitching Machine with Rollers and Its Optimization Shinobu SAKAI*5, Yuichiro KITAGAWA, Ryo KANAI and Juhachi

1: A/B/C/D Fig. 1 Modeling Based on Difference in Agitation Method artisoc[7] A D 2017 Information Processing

13 RoboCup The Interface System for Learning By Observation Applied to RoboCup Agents Ruck Thawonmas

320_…X…e†Q“õ‹øfiÁ’F

Stepwise Chow Test * Chow Test Chow Test Stepwise Chow Test Stepwise Chow Test Stepwise Chow Test Riddell Riddell first step second step sub-step Step

Ver. 1.0 (discretion) (revenue management) (fictitious revenue recognition) (window dressing) (fraudulent accounting practice) SEC (General

<332D985F95B62D8FAC93638BA795DB90E690B62E706466>

ワークショップ「国際財務報告基準(IFRS)と企業行動:IFRSアドプションのインパクト」の模様


Studies of Foot Form for Footwear Design (Part 9) : Characteristics of the Foot Form of Young and Elder Women Based on their Sizes of Ball Joint Girth

【表紙】経済学論叢_18号/表1・3・背

OSIPP41_p1_2.eps

untitled

-February FRB BIS IMF BIS Spillover Spillovers BIS IMF EMEs

平成○○年度知能システム科学専攻修士論文

GDPギャップと潜在成長率

OSIPPニュースレター.indd

NINJAL Research Papers No.8

時間割引:双曲割引と弱加法性


THE JAPANESE JOURNAL OF PERSONALITY 2007, Vol. 15 No. 2, 217–227

OECD Benartzi and Thaler Brown et al. Mottla and Utkus Rooiji et al. Atkinson et al. MacFarland et al. Elton et al. Tang et al. Benartzi and Thaler Br



Powered by TCPDF ( Title 金利現実化措置以後の韓国における企業金融 : 年 Sub Title Korean corporate finance between 1965 and 1971 Author 李, 明輝 (Lee,

早稲田大学現代政治経済研究所 ダブルトラック オークションの実験研究 宇都伸之早稲田大学上條良夫高知工科大学船木由喜彦早稲田大学 No.J1401 Working Paper Series Institute for Research in Contemporary Political and Ec

Transcription:

IMES DISCUSSION PAPER SERIES Discuss ssion Paper No. 98-J-1 INSTITUTE FOR MONETARY AND ECONOMIC STUDIES BANK OF JAPAN

IMES Discussion Paper Series 98-J-1 1998 1 E-mail: tokiko.shimizu@boj.or.jp

1. 1.1. k profile 1

1.2. I R i å R i 2

2. 2.1. Glosten and Milgrom 1985 Glosten and Milgrom Gennottee and Leland 1990 3

2.2. t I R i t+1 t+2 t+3 t+2 t+3 t t+2 R it R it+1 R it+2 R it+3 S DR i 4 S 1

2.2.1. t I F it F it t f it x t Fit = fit ( xt ) S 0 t+1 I x t t+1 f it S 0 = dx F = f ( x ) = f ( x + dx) it + 1 it + 1 t + 1 it t R s å å å R = R = df = s i i fi x dx I f 1 f 2 it + it + t+2 F 2 = f 2( x + dx) it+ it+ t n 1996 5

æ n df ö i dx = G ç å èi= x 1 ø S 1 S1 = dx+ dx = dx R d å( + 2 ) å fit+ 2 ( xt dx) fit ( xt ) R = F - F d it it ( ) = + - æ i ( ) fx dx dx fi = ç + + è t dt ö å ø (1) 2.3. 2.2. t (1) fi t dt 6

2.3.1. R d t x a t a t = a constant x b t db = b / x b constant x c t dc = c dx t t t t b x t 100 x x t = 100 s x = 02. S0 = 5s = -65. x x t + 1 = 93. 5 7

F = f ( x ) = 100 x = 100 100 = 10000 it it t t F = f ( x ) = 100 x = 100 93. 5 = 9350 it + 1 it + 1 t + 1 t + 1 R s R = å R = ådf = 1950 s i i F2 = f2 ( x ) = 100 x = 100 100 = 10000 t t t t ( ) ( ) F = f ( x ) = 100 + b/ x x = 100 + 2000 / 93. 5 93. 5 = 11350 2t+ 1 2t+ 1 t+ 1 t+ 1 t+ 1 df 2 F3 = f3 ( x ) = 100 x = 100 100 = 10000 t t t t ( ) { } x t + 1 F = f ( x ) = 100 + c dx x = 100 + 5 (- 6. 5) 93. 5 = 6311 3t+ 1 3t+ 1 t+ 1 t+ 1 df 3 x t + 1 =+ 21 =- 32. 5 n dx æ ö = G dfi x ç å èi= 1 ø = k( 21-32. 5) =-11. 5k k=0.2 S1 = dx+ dx =-65. - 23. =-88. 8

R d å( + 2 ) R = F - F d it it æ x @ å Fit + 2ç1 - è x t t + 2 ö ø =-880-1065 -544 = 2539 1.3 2.3.2. 9

t 10

JGB JGB JGB ± ± ± 11

71.67% 76.67% 85.42% 12

13

3.01-3.43 2.96-2.59 3.46-2.54 % t 3.33 3.98 4.49 3.59 4.22 4.72 3.05 3.78 4.33 3.59 3.98 4.49 3.05 3.98 4.49 3.33 4.22 4.49 3.33 3.78 4.49 3.33 3.98 4.72 3.33 3.98 4.33 JGB 14

-80 260-60 120-150 -90-100 -340-30 330-60 200-430 -30 90-370 -420 270 300-150 40 10-40 10-40 140-40 60 210 200 310 720 120 JGB 15

JGB JGB JGB JGB 16

DP = as b DP a s b p p : JGB : / : JGB : 2.0 0.9-0.3 2.6-5.1 1.8 1.3-2.8 4.5 2.5-0.5 6.5-1.6 1.0-1.2-1.8 0.8 1.3 1.8 3.9 0.4-0.0-0.0 0.3 1.1 0.2-0.1 1.3 19.8 4.0 8.0 31.8 VaR (t) 5.8 0.5 2.2* * t VaR t-1 t 17

0.5-0.5 120 78 44 18

3. 3.1. 2.3.2. 19

3.2. 20

21

Factor x Factor y y x ( ) X = x, y t t t t f ( X ) t t Sensitivity data at t : f t ( Xt) f ( ) t Xt x t+1 f ( ) 1( X 1) ft+ 1 Xt+ 1 t+ t+ x f ( X ) t+ 1 t+ 1 y y 22

a) b) f f t ( X ) t t+1 x ( Xt) f ( ) t Xt+1 x f x ( X ) t+ 1 t+ 1 f t f t+1 x Network A sell xa Network B buy xb Network C sell xc 23

Camargo, F. A., Learning Algorithms in neural Networks, Working Paper, the DOC Laboratory, Computer Science Department, Columbia University, 1990. Glosten, L., and P. Milgrom, Bid, Ask, and Transaction Prices in a Specialist Market with Heterogeneously Informed Traders, Journal of Financial Economics, 13, 1985, pp.71-100. Gennottee, G., and H. Leland, Market Liquidity, Hedges and Crashes, American Economic Review, 80, 1990, pp.999-1021. O hara, M., Market Microstructure Theory, Blackwell Publishers. Shimizu, Tokiko, and Tsukasa Yamashita, Dynamic Micro and Macro Stress Simulation, Disucussion Paper Series, 96-E-4, IMES, Bank of Japan 24

180

181

182

183

184

185

186

187

Table 1 Characteristics of the agents Key for trading Fortrend/contrarian Other characteristics Targeted profit (loss limit), Position limit Agent 1 Charts of market movements (chartist) Fortrend Positive correlation b/w P/L condition and trading volume 3 billion yen/half year, delta limit:± 100 billion Agent 2 Charts of market movements (chartist) Contrarian Frequent writer of options 3 billion yen/half year, delta limit:± 100 billion Agent 3 Fundamental events (fundamentalist) Trading horizon is longer than the others (more an investor-type of trader than a dealer) 2 billion yen/half year, delta limit:± 70 billion Table 2 Steps for inputs adjustments Inputs Agent 1 Agent 2 Agent 3 A: Market data (change on a trading day) B: A + accumulated P/L C: B + recent market movements + news D: C + market trend over a longer horizon (Agent 3) 71.67% 82.08% 80.00% 76.67 82.08 82.92 85.42 87.92 (Figure 5) 87.92 90.83 (Figure 6) 188

Table 3 The magnitude of largest daily change Upward change Downward change 3-year swap rate 3.01s -3.43s 5-year swap rate 2.96s -2.59s 10-year swap rate 3.46s -2.54s Table 4 Stress scenarios 3y 5y 10y Period t 3.33% 3.98% 4.49% Scenario 1 3.59% 4.22% 4.72% Scenario 2 3.05% 3.78% 4.33% Scenario 3 3.59% 3.98% 4.49% Scenario 4 3.05% 3.98% 4.49% Scenario 5 3.33% 4.22% 4.49% Scenario 6 3.33% 3.78% 4.49% Scenario 7 3.33% 3.98% 4.72% Scenario 8 3.33% 3.98% 4.33% 189

Table 5 Changes of each agent s delta under scenarios (in billions of yen) Agent 1 Agent 2 Agent 3 Total D/S Scenario 1-8 26-6 12 Scenario 2-15 -9-10 -34 Scenario 3-3 33-6 20 Scenario 4-43 -3 9-37 Scenario 5-42 27 30-15 Scenario 6 4 1-4 1 Scenario 7-4 14-4 6 Scenario 8 21 20 31 72 Standard deviation 12 Table 6 Risk profiles of each agent (in billions of yen) Agent 1 Agent 2 Agent 3 Total Scenario 1 0.20 0.09-0.03 0.26 Scenario 2-0.51 0.18 0.13-0.28 Scenario 3 0.45 0.25-0.05 0.65 Scenario 4-0.16 0.10-0.12-0.18 Scenario 5 0.08 0.13 0.18 0.39 Scenario 6 0.04-0.00-0.00 0.03 Scenario 7 0.11 0.02-0.01 0.13 Scenario 8 1.98 0.40 0.80 3.18 VaR(t) 0.58 0.05 0.22* * Agent 3 s VaR figure is measured at period t-1, since its position at period t is square. 190