ヒストリカル法によるバリュー・アット・リスクの計測:市場価格変動の非定常性への実務的対応
|
|
|
- てるえ しろみず
- 7 years ago
- Views:
Transcription
1 VaR VaR VaR VaR GARCH [email protected]
2 VaR VaR LTCM VaR VaR VaR VaR VaR VaR VaR
3 VaR t P(t) P(= P() P(t)) Pr[ P X] =, X t100 (1 )VaR VaR P100 P X X (1 ) VaR VaR
4 VaR VaR VaR VaR VaR VaR VaR VaR VaR VaR VaR Exponentially Weighted Moving Average Method t 2 t 2 t 1 r t 1 2 t = 2 t 1 + (1 )r 2 t 1 (0<<1) 2 t = (1 )Σ k =1 k 1 r 2 t k i, j 2 ij,t = 2 ij,t 1 + (1 )r i,t 1 r j,t 1
5 VaR VaR VaR t x t T x t T,, x t 2, x t 1 r t T+1,, r t 1, r t x t i +1 r t i +1 = 1, i = 1,,T. x t i P(x t ) P = P(x t +1 ) P(x t ) r t T+1,, r t 1, r t T{x (T) t +1,, x (2) t +1, x (1) t+1 } x (i) t +1 = x t (1+r t i +1 ), i = 1,,T, T{ P 1, P 2,, P T } P i = P(x (i) t +1 ) P(x t ), i = 1,,T. { P 1, P 2,, P T } P VaR P i { P (1 ), P (2),, P (T ) }, r t i +1 = ln(x t i +1 /x t i ) (i =1,,T )
6 VaR100(1 ) P ((T+1 )) VaR(T+ 1) (T+1) VaR VaRsample quantile t n{x 1,t, x 2,t,, x n, t }T {x 1,t T, x 2,t T,,x n, t T },,{x 1,t 2, x 2,t 2,,x n, t 2 },{x 1,t 1, x 2,t 1,, x n, t 1 }, {r 1,t T+1, r 2,t T +1,,r n, t T+1 },,{r 1,t 1, r 2,t 1,,r n, t 1 },{r 1,t, r 2,t,, r n, t }. P {x 1,t, x 2,t,, x n, t } P = P(x 1,t +1, x 2,t +1,, x n, t +1 ) P (x 1,t, x 2,t,, x n, t ) i = 1,2,, T t i + 1{r 1,t i+1, r 2,t i+1,, r n, t i+1 } T {x (i) 1,t +1, x(i) 2,t +1,, x (i) n, t +1 } x (i) 1,t +1= x 1,t (1+r 1,t i +1 ) x (i) 2,t +1= x 2,t (1+r 2,t i +1 ) x (i) n, t +1= x n, t (1+r n, t i +1 ), i = 1,,T. T P i = P(x (i) 1,t +1, x (i) 2,t +1,, x (i) n, t +1 ) P(x 1,t, x 2,t,, x n, t ), i = 1,,T, { P 1, P 2,, P T }VaR VaR{ P 1, P 2,, P T } P100
7 VaR Efron VaR { P (1 ), P (2),, P (T ) } T VaR VaRVaR VaR VaR Harrell and Davis { P (1 ), P (2),, P (T ) }100 P P (i) = T w i P, T ( i) i = 1 P, w T,i w T, i 1 = ( k, T k + 1) i / T y k 1 ( i 1) / T ( 1 y) T k dy, k = ( T+ 1), VaR Inui, Kijima and Kitano
8 HDHD HD = T = w T,i VaRi i = (T +1) w T,i i T == T == T == T == HD Sheather and Marron HD HD (a, b) (a, b) = 1 0 y a 1 (1 y ) b 1 dy (a, b >0)HD n i =1 w T,i = 1, w T,i > 0 X (i) L = n i =1 w i X (i), w i 0, n i =1 w i = 1LL HDL
9 {x 1, x 2,, x n } f (x) 1 f ( x) = nh n i. i= 1 x x K h h K(u) (2 ) e 2 /2 [, ] 3/4 (1 u 2 ) [ 1,1] 15/16 (1 u 2 2 ) [ 1,1] VaR VaRVaRHD VaR VaR VaRButler and Schachter VaR
10 VaR VaRVaR VaR HDVaR VaRHDVaR VaR HD VaR
11 VaR VaR VaR VaR Boudoukh, Richardson and WhitelawHull and WhiteBarone-Adesi, Giannopoulos and Vosper Boudoukh, Richardson and WhitelawVaR VaRBRW
12 BRW BRW VaR 1,2,, T T { P 1, P 2,, P T } { P 1, P 2,, P T } (0 < < 1) {w 1, w 2,, w T } 1 w i = i 1. 1 T decay factor { P 1, P 2,, P T }{ P (1 ), P (2),, P (T ) }{w (1 ), w (2),, w (T ) } VaR100(1 ) VaR VaR w (1 ) P (1 ) VaR (a) (b) k k+ 1 w( i) < w( i) i = 1 i= 1 k k+1 VaR = {( w( i )) P( ( ) 1) ( )} k+ + w( i ) P k i= 1 i= 1 w ( k+ 1), w (1) VaR = P (1). T i =1 w i = T i =1 (1 ) i 1 /(1 T )=1 BRW P (i ) P j w (i ) = w j P (k) k i =1 w (i ) 100 { k 1 i =1 w (i ) + w (k) /2} 100 w (i ) = 1/n P (k) (k /n) 100 {(k 0.5)/n} 100 P (k) {k /(n+1)} 100nkk VaR BRWVaR VaR
13 BRWVaR VaR = = = = BRWVaR =0.99 N i =1 (1 )i 1 /(1 T )> 0.99N
14 VaR BRW VaR VaR VaR VaRVaR BRWVaR VaR Hull and White
15 HW HW r t r t = t t, t2 = 2 t 1 +(1 )r 2 t 1. t t t r t t +1 t +1 VaR r t +1 t +1 t +1 N(0,1) HW t i+1 (i = 1,,T ) t i+1 (i = 1,,T ) r t i+1 (i = 1,,T ) t i+1 (i = 1,,T ) t i+1 = r t i+1 / t i+1, i = 1,,T, t +1 r t +1 VaR {r t T+1,, r t 1,r t } { t T+1,, t 1, t } t+1 t +1 r r t i+ 1= t + 1 t + 1, i = 1, 2,, T, i t i+ 1 {r t T+1,, r t 1,r t } t +1 / t i +1
16 {r t T+1,, r t 1,r t } VaR VaR NYHWVaR = 0.94 VaR BRWVaR HW VaR HW t VaR
17 HWVaR VaR Barone-Adesi, Giannopoulos and Vosper GARCHHW FHS: filtering historical simulationfhs FHSHW t Barone-Adesi, Bourgoin and Giannopoulos
18 r t GARCH r t = t t, t2 = +r 2 t 1+ 2 t 1. t FHSGARCH HW GARCH VaR HW HW NYFHSVaR GARCHGARCH GARCH t t
19 HWVaR GARCH HWVaR BRWHWFHS HS VaR BRWHW HSBRWHWFHS BRW HSHWFHS VaRHSBRW HWFHS Boudoukh, Richardson and WhitelawHull and White
20 VCV EWMAHSBRWHWFHSVaR VaR VaR VaR VaR = =
21 Bloomberg VaR VaR
22 VaR LIBOR BPV VaR Hendricks
23 VaRT HSHDVaR HSHSSQHSHD VaRVaR VaRVaR VaR EWMABRWHW BRWEWMAHW EWMA HW
24 VaRVaR VaRVaR VaR VaR VaR X t 1 ( t Var) X t = 0 ( t Var). {X t } {X t } VaR VaR VaRVaRVaR VaR VaR VaR VaR VaR VaR HDVaR Hull and White
25 VaR VaR HWFHSHSBRW VCVEWMA BRW HS
26 HSVCV BRWHW
27 EWMABRWHW FHSVCVHS EWMABRWHW BRW BRW VaR VaRVaR VaRVaR VaR VaR VaRVaR
28 VCVHS VaR HW VaRVaR HWVaR HW VaR HW HWFHS VaR VaRHW
29 VaR VaRHW VaR HW VaR Inui, Kijima and Kitanot HSSQVaRVaR HSHDVaRHSSQ VaR Inui, Kijima and KitanoVaR VaRVaR HSHDHSSQ VaR Inui, Kijima and Kitano VaR t
30 VaR EWMABRW HSHW VaRVCV EWMAHS VaRBRWHW FHSVaR VaR
31 HSHWVaR HWFHS VaRVaR HWFHSVaR HW VaR VaR HSBRWHW FHS VaRVaR VaRVaR VaRVaR VaR VaRVaR VaR
32 VaR VaR VaR VaR VaR VaR VaR VaRHS BRWHS HWFHSHS HWFHSGARCH HS HWFHS VaR HS HSSQHSBRWBRWHW FHS VaRHS VaR Basel Committee on Banking Supervision VaR HSBRWHWFHS
33 BRWHWFHS VaR VaR HSBRWVaR VaRVaR HSBRW VaR HSBRWVaR HSBRW VaRHSBRW VaR
34 VaR VaR HSSQHSBRWHW FHS HS BRWHS HWFHS HWFHS VaR VaR BRWHWFHSVaR HWFHS VaR HWFHSVaR HSHDVCVEWMA
35 VaRVaRVaR VaRHSBRW VaR HSBRWVaR HS BRWHS VaR BRW HSHS BRWHWFHSVaRVCVEWMA VCV EWMA HSHS HS HS
36 VaR HS BRWHWFHS VaR VaRVaR HSBRW VaRVaR VaR VaR HS BRW VaR
37 F(x) f (x) {X 1, X 2,, X n } F n (x) =1/ n n i =1 1 {x X i } {X (1 ), X (2),, X (n) }k X (k) n n! i n i F ( x)(1 F( x, i = k ( n i)! i! P { X ( ) x} = )) k X (k) f k (x) 1 k 1 n k fk( x) = F ( x) {1 F ( x)} f ( x), ( k, n k + 1) X (k) E[ X ( k) 1 ] = ( k, n k + 1) 1 = ( k, n k + 1) 1 0 xf ( x) F 1 k 1 ( y) y {1 F ( x)} k 1 (1 y) n k n k df( x) dy, E[X (n+1 ) ] n 100F n (x) 100 HD 1 = (( n + 1), ( n + 1)(1 )) 1 0 F 1 n ( y) y ( n + 1) 1 (1 y) (n +) 1 (1 ) 1 dy, HD n HD = w n X. i = 1, i ( i) w n,i w n, i 1 = ( k, n k + 1) i / n ( i 1)/ n y k 1 n k ( 1 y) dy, k = ( n + 1). 1 {x Xi } x X i x < X i (, ) (k, n k + 1) = (k 1)! (n k)!/n! (n + 1)
38 (n + 1) = k HD {X (1 ), X (2),, X (n) } n k X (i) X (i) k X (i) n n! j ( i / n) {1 ( i / n)} ( n j )! j! j = k n j, X (i 1) k X (i 1) n ( j = k n n! j n j {( i 1) / n} [1 {( i 1) / n}], j )! j! kx (i ) w n,i w n, i = n n! j ( i / n) {1 ( i / n)} ( n j)! j! j = k n j = k n j n! j {( i 1) / n} [1 {( i 1)/ n}] ( n j)! j! n j, n i =1 w n,i X (i) X Beta (k, n k + 1) Y Bi (n, p) Pr ( X p) = Pr ( Y K) 1 ( k, n k + 1) p y k 1 0 n n k n! ( 1 y) dy = p j 1 p) ( n j )!j! j = k ( n j.
39 w n,i w n, i 1 = ( k, n k + 1) 1 ( k, n k + 1) i / n 0 y k 1 ( i 1)/ n 1 y k 0 n k ( 1 y) dy n k ( 1 y) dy 1 = ( k, n k + 1) i / n 1 y k ( i 1)/ n n k. ( 1 y) dy HD w n,i HD
40 {x 1, x 2,, x T }m x {x 1, x 2,, x T } T ( x x x x t k t )( t k ) = + 1 ( k) =, k = 1,2,, m, T 2 ( x x ) t = 1 t LB(m) 2 m (k) LB( m) = T( T + 2 ), k k = 1 T m m χ 2 (m) mχ 2 ( m ) LB(m)>χ 2 (m)m =15 LB(15)>χ 2 (15) =
41 VaR VaR Barone-Adesi, G., F. Bourgoin, and K. Giannopoulos, Don t Look Back, RISK, 11 (8), 1998, pp K. Giannopoulos, and L.Vosper, VaR without Correlations for Non-linear Portfolios, Journal of Futures Markets, 19, 1999, pp Basel Committee on Banking Supervision, Supervisory framework for the use of backtesting in conjunction with the internal models approach to market risk capital requirements, Basel Committee Publications, 22, January Bollerslev, T., and J. M. Wooldridge, Quasi Maximum Likelihood Estimation and Inference in Dynamic Models with Time Varying Covariances, Econometric Reviews, 11, 1992, pp Boudoukh, J., M. Richardson, and R. Whitelaw, The Best of Both Worlds, RISK, 11 (5), 1998, pp Butler, J. S., and B. Schachter, Estimating Value-at-Risk with a Precision Measure by Combining Kernel Estimation With Historical Simulation, Working Paper, Efron, B., Bootstrap Methods: Another Look at the Jackknife, The Annals of Statistics, 7, 1979, pp Harrell, F. E., and C. E. Davis, A new distribution-free quantile estimator, Biometrika, 69, 1982, pp Hendricks, D., Evaluation of Value at Risk Models Using Historical Data, Economic Policy Review, Federal Reserve Bank of New York, April 1996, pp Hull, J., and A. White, Incorporating Volatility Updating into the Historical Simulation Method for Value at Risk, Journal of Risk, 1, 1998, pp Inui, K., M. Kijima, and A. Kitano, VaR is subject to a significant positive bias, Working Paper, 70, Graduate School of Economics Kyoto University, Jorion, P., Value at Risk: The New Benchmark for Managing Financial Risk, McGraw-Hill, Chicago, Sheather, S. J., and J. S. Marron, Kernel quantile estimators, Journal of the American Statistical Association, 85, 1990, pp
42
カルマンフィルターによるベータ推定( )
β TOPIX 1 22 β β smoothness priors (the Capital Asset Pricing Model, CAPM) CAPM 1 β β β β smoothness priors :,,. E-mail: [email protected]., 104 1 TOPIX β Z i = β i Z m + α i (1) Z i Z m α i α i β i (the
Stepwise Chow Test * Chow Test Chow Test Stepwise Chow Test Stepwise Chow Test Stepwise Chow Test Riddell Riddell first step second step sub-step Step
Stepwise Chow Test * Chow Test Chow Test Stepwise Chow Test Stepwise Chow Test Stepwise Chow Test Riddell Riddell first step second step sub-step Stepwise Chow Test a Stepwise Chow Test Takeuchi 1991Nomura
商品流動性リスクの計量化に関する一考察(その2)―内生的流動性リスクを考慮したストレス・テスト―
E-mail: [email protected] E-mail: [email protected] Bangia et al. G Bangia et al. exogenous liquidity risk endogenous liquidity risk et al LTCMLong Term Capital Management Fed G G T
03.Œk’ì
HRS KG NG-HRS NG-KG AIC Fama 1965 Mandelbrot Blattberg Gonedes t t Kariya, et. al. Nagahara ARCH EngleGARCH Bollerslev EGARCH Nelson GARCH Heynen, et. al. r n r n =σ n w n logσ n =α +βlogσ n 1 + v n w
山形大学紀要
x t IID t = b b x t t x t t = b t- AR ARMA IID AR ARMAMA TAR ARCHGARCH TARThreshold Auto Regressive Model TARTongTongLim y y X t y Self Exciting Threshold Auto Regressive, SETAR SETARTAR TsayGewekeTerui
バリュー・アット・リスクのリスク指標としての妥当性について ― 理論的サーベイによる期待ショートフォールとの比較分析―
aaaab aabab VaR VaRArtzner et al. VaR VaR VaR Artzner et al.var VaR VaR VaR ρ XY ρ (X+Y ) ρ(x) + ρ(y ) XY ρ VaRArtzner et al.1999basak and Shapiro1999Danielsson2000Rootzén and Klüppelberg VaR VaR VaRVaR
わが国企業による資金調達方法の選択問題
* [email protected] ** [email protected] *** [email protected] No.05-J-3 2005 3 103-8660 30 No.05-J-3 2005 3 1990 * [email protected] ** [email protected]
IMES DISCUSSION PAPER SERIES Discuss ssion Paper No. 98-J-2 INSTITUTE FOR MONETARY AND ECONOMIC STUDIES BANK OF JAPAN 100-8630 203 IMES Discuss ssion Paper Series 98-J-2 1998 1 VaRVWAP E-mail: [email protected]
PDFŠpŒ{ٶ
Shinkin Central Bank Monthly Review 2003.12 hinkin Central Bank Monthly Review 200312 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 Community Banker 24 25 26 27 28 29 30 31 32 33 34 35 36
An Empirical Study of the Securities Firms' Dilemma on Financial Innovation through Diffusion of Internet Deals Yasugi Satoshi Bower, J. L., 1999, Disruptive technologies: Catching the wave,
IMES Discussion Paper Series 98-J
IMES DISCUSSION PAPER SERIES Discuss ssion Paper No. 98-J-1 INSTITUTE FOR MONETARY AND ECONOMIC STUDIES BANK OF JAPAN IMES Discussion Paper Series 98-J-1 1998 1 E-mail: [email protected] 1. 1.1.
IMES DISCUSSION PAPER SERIES Discussion Paper No. 99-J-17 INSTITUTE FOR MONETARY AND ECONOMIC STUDIES BANK OF JAPAN 100-8630 203 IMES Discussion Paper Series 99-J-17 1999 6 * JEL classification E52 E58
Microsoft Word - 査読SP問題110510RR.doc
JAVCERM Journal [] 2 # 2011_01_Ronko 2010 1 4 2011 5 12 1 2 2 1999 National Bank of Keystone(Keystone), Pacific Thrift and Loan(PLT) FDIC CAMEAL 20 20 1 11 6 2.2 2000 Greenspan FRB 2000 IT IT Greenspan[2004]
合理的個人VS
VS - 1 - - 2 - Simon Khaneman,Tversky 2 15 1 3-3 - ...2...5...6...14...16...17...18 SIMON...19 Simon... 28... 37 KHANEMANTVERSKY...44 KhanemanTversky... 50 DE BONDTTHALER...52 SEN...58... 60...63...67...67...69...72
日経225オプションデータを使ったGARCHオプション価格付けモデルの検証
GARCH GARCH GJREGARCH Duan Duan t GARCHGJREGARCH GARCH GJR EGARCHGARCHGJRt E-mail: [email protected] Black and ScholesBS Engle ARCHautoregressive conditional heteroskedasticity BollerslevGARCHgeneralized
2
[email protected] http://www.econ.tohoku.ac.jp/~fukui/site.htm 200 7 Cookbook-style . (Inference) (Population) (Sample) f(x = θ = θ ) (up to parameter values) (estimation) 2 3 (multicolinearity)
2 1,2, , 2 ( ) (1) (2) (3) (4) Cameron and Trivedi(1998) , (1987) (1982) Agresti(2003)
3 1 1 1 2 1 2 1,2,3 1 0 50 3000, 2 ( ) 1 3 1 0 4 3 (1) (2) (3) (4) 1 1 1 2 3 Cameron and Trivedi(1998) 4 1974, (1987) (1982) Agresti(2003) 3 (1)-(4) AAA, AA+,A (1) (2) (3) (4) (5) (1)-(5) 1 2 5 3 5 (DI)
IMES DISCUSSION PAPER SERIES Discussion Paper No. 99-J- 9 -J-19 INSTITUTE FOR MONETARY AND ECONOMIC STUDIES BANK OF JAPAN
IMES DISCUSSION PAPER SERIES Discussion Paper No. 99-J- 9 -J-19 INSTITUTE FOR MONETARY AND ECONOMIC STUDIES BANK OF JAPAN 100-8630 03 IMES Discussion Paper Series 99-J- 9 -J-19 1999 6 * * [1999] *(E-mail:
GDPギャップと潜在成長率
2003 output gap 80 1 20 90 20 70 2 1 2 output gap potential output 1 2 (2001) 3 potential rate of growth 2000 Meyer (2000) European Central Bank: (1999b) 2002 10 4 3 (2000) 4 4 () 5 5 5 6 () () 7 Total
082_rev2_utf8.pdf
3 1. 2. 3. 4. 5. 1 3 3 3 2008 3 2008 2008 3 2008 2008, 1 5 Lo and MacKinlay (1990a) de Jong and Nijman (1997) Cohen et al. (1983) Lo and MacKinlay (1990a b) Cohen et al. (1983) de Jong and Nijman (1997)
23_02.dvi
Vol. 2 No. 2 10 21 (Mar. 2009) 1 1 1 Effect of Overconfidencial Investor to Stock Market Behaviour Ryota Inaishi, 1 Fei Zhai 1 and Eisuke Kita 1 Recently, the behavioral finance theory has been interested
II III II 1 III ( ) [2] [3] [1] 1 1:
2015 4 16 1. II III II 1 III () [2] [3] 2013 11 18 [1] 1 1: [5] [6] () [7] [1] [1] 1998 4 2008 8 2014 8 6 [1] [1] 2 3 4 5 2. 2.1. t Dt L DF t A t (2.1) A t = Dt L + Dt F (2.1) 3 2 1 2008 9 2008 8 2008
fiúŁÄ”s‘ê‡ÌŁª”U…−…X…N…v…„…~…A…•‡Ì ”s‘ê™´›ß…−…^†[…fiŠ‚ª›Âfl’«
2016/3/11 Realized Volatility RV 1 RV 1 Implied Volatility IV Volatility Risk Premium VRP 1 (Fama and French(1988) Campbell and Shiller(1988)) (Hodrick(1992)) (Lettau and Ludvigson (2001)) VRP (Bollerslev
わが国のレポ市場について―理論的整理と実証分析―
GCGC SC GCSC SC SC E-mail: [email protected] E-mail: [email protected] GC general collateralscspecial collateral Griffiths and Winters GCFF Jordan and JordanDuffie matched book GC GC SC DuffieKrishnamurthy
国際流動性に関する財政的側面について
IMF SDR IMF 2011 6 1 2 2011 E-mail: [email protected] / /2011.10 35 1. 2007 2009 2 Goodhart [1999] 2010 11 2. 4 1970 IMF 1960 36 /2011.10 international reserve 1 D 35 1 D 35 1960 Eichengreen [2011]
村本 孜71‐89/71‐89
MERITUM RICARDIS OECD https://www.jicpa knk.ne.jp/download/image/index.html EU (intellectual capital rating) BCP OECD IR ex.) ex.) ex.) ex.) http://www.meti.go.jp/policy/intellectual_assets/index.htm (intellectual
Journal of Economic Behavior & Organization Quarterly Journal of Economics Review of Economics and Statistics Internal Labor Markets and Manpower Analysis Economics of Education Review Journal of Political
インフレの不確実性とインフレ率水準の関係
* ** Working Paper 00-0 00-863003 * ** * ** 3 4 5 96 8 ; How will we cenral bankers know when we have achieved price sabiliy? Cerainly we would deem our policies successful if we removed unproducive price-expecaion-driven
dvi
2017 65 2 217 234 2017 Covariate Balancing Propensity Score 1 2 2017 1 15 4 30 8 28 Covariate Balancing Propensity Score CBPS, Imai and Ratkovic, 2014 1 0 1 2 Covariate Balancing Propensity Score CBPS
text.dvi
Abstract JP Morgan CreditMetrics (1) () (3) (4) 1 3 3 4 4 5 10 6 16 1 1 BIS 1 3 1 BIS 1 BIS 1 3 ALM (1) Value at Risk () (3) RAROC (Risk Ajusted Return On Capital) (4) 3 5 6 31 99% (= p ) ~x X Prf~x Xg
And Business
Discussion Papers In Economics And Business Discussion Paper 03-06 Graduate School of Economics and Osaka School of International Public Policy (OSIPP) Osaka University, Toyonaka, Osaka 560-0043, JAPAN
1 Nelson-Siegel Nelson and Siegel(1987) 3 Nelson-Siegel 3 Nelson-Siegel 2 3 Nelson-Siegel 2 Nelson-Siegel Litterman and Scheinkman(199
Nelson-Siegel Nelson-Siegel 1992 2007 15 1 Nelson and Siegel(1987) 2 FF VAR 1996 FF B) 1 Nelson-Siegel 15 90 1 Nelson and Siegel(1987) 3 Nelson-Siegel 3 Nelson-Siegel 2 3 Nelson-Siegel 2 Nelson-Siegel
60 Vol. 44 No. 1 2 準市場 化の制度的枠組み: 英国 教育改革法 1988 の例 Education Reform Act a School Performance Tables LEA 4 LEA LEA 3
Summer 08 59 I はじめに quasi market II III IV V 1 II 教育サービスにおける 準市場 1 教育サービスにおける 準市場 の意義 Education Reform Act 1988 1980 Local Education Authorities LEA Le Grand 1991 Glennerster 1991 3 1 2 3 2 60 Vol. 44
会社法制上の資本制度の変容と企業会計上の資本概念について
IMES DISCUSSION PAPER SERIES Discussion Paper No. 2006-J-1 INSTITUTE FOR MONETARY AND ECONOMIC STUDIES BANK OF JAPAN 103-8660 30 http://www.imes.boj.or.jp IMES Discussion Paper Series 2006-J-1 2006 1
開発金融増刊号
4 6 Y = f (, E, Y E ( Y E = α ( E α we py α 0 β E ( ( E β ( E β 6 ( = ( α β ( E β 8 i Y i f i, E i, i 9 Y = α α ( α E α S E 0 ( β β E β E( β E β β6 ( we Y = = = α β E py E β ( β Y Y B Y A r / pr p Y
本組よこ/根間:文11-029_P377‐408
377 378 a b c d 379 p M NH p 380 p 381 a pp b T 382 c S pp p 383 p M M 384 a M b M 385 c M d M e M 386 a M b M a M 387 b M 388 p 389 a b c 390 391 a S H p p b S p 392 a T 393 b S p c S 394 A a b c d 395
競売不動産からみた首都圏地価の動向
E-mail : [email protected] http://bit.sikkou.jp STYLE m m LancasterRosen Suzaki and Ohta Nagai, Kondo and Ohta i P i n lnp i = + jln X ij + k D ik + TD i + i. m j =1 k =1 X ij j D ik k TD i
SEISMIC HAZARD ESTIMATION BASED ON ACTIVE FAULT DATA AND HISTORICAL EARTHQUAKE DATA By Hiroyuki KAMEDA and Toshihiko OKUMURA A method is presented for using historical earthquake data and active fault
P.5 P.6 P.3 P.4 P.7 P.8 P.9 P.11 P.19
MOST is the best! P.5 P.6 P.3 P.4 P.7 P.8 P.9 P.11 P.19 P.14 1 2 P.14 1 2 12,036 17,025 P.14 3 P.14 4 NEW P.12P.14 5 P.12P.14 6 P.12 P.15 7 NEW P.15 8 P.15 9 P.15 7 P.15 10 P.15 10 NEW P.12 P.15 11 P.15
日本統計学会誌, 第45巻, 第2号, 329頁-352頁
45, 2, 2016 3 329 352 Market Risk Aggregation Using Copula and Its Application to Financial Practice Toshinao Yoshiba 2009 We investigate how a copula between risk factors takes portfolio diversification
Kyoto University * Filipino Students in Japan and International Relations in the 1930s: An Aspect of Soft Power Policies in Imperial Japan
47 2 2009 9 * Filipino Students in Japan and International Relations in the 1930s: An Aspect of Soft Power Policies in Imperial Japan KINOSHITA Akira* Abstract The purpose of this paper is to look into
(a) (b) (c) Canny (d) 1 ( x α, y α ) 3 (x α, y α ) (a) A 2 + B 2 + C 2 + D 2 + E 2 + F 2 = 1 (3) u ξ α u (A, B, C, D, E, F ) (4) ξ α (x 2 α, 2x α y α,
[II] Optimization Computation for 3-D Understanding of Images [II]: Ellipse Fitting 1. (1) 2. (2) (edge detection) (edge) (zero-crossing) Canny (Canny operator) (3) 1(a) [I] [II] [III] [IV ] E-mail [email protected]
untitled
2007 2 * (i) (ii) 2006 7 1999 2 2000 8 1 (2003) Oda and Ueda (2005) 2005 Kimura and Small(2006) Iwamura, Shiratsuka and Watanabe (2006) (2006) 3 (i) (ii) (iii) 2 2 3 4 2.1 (2003) (2005) 1) (i) (ii) (i)
2 / 24
2017 11 9 1 / 24 2 / 24 Solow, 1957 total factor productivity; TFP 5% 経済成長率の要因分解 4% 3% 2.68% 2.51% 2% 1% 0% 1.63% 1.50% 0.34% 0.42% 0.55% 0.97% 1.14% 0.86% 0.13% -0.59% -0.59% -0.09% 0.01% -1% 1970-80
Graduate School of Policy and Management, Doshisha University 53 動学的資本税協調と公的資本形成 あらまし Zodrow and Mieszkowski 1986 Wilson 1986 Batina はじめに Zodr
Graduate School of Policy and Management, Doshisha University 53 動学的資本税協調と公的資本形成 あらまし Zodrow and Mieszkowski 1986 Wilson 1986 Batina 2009 1. はじめに Zodrow and Mieszkowski 1986 Wilson 1986 Tax Competition
アジアの資本移動の変化に関するクラスター分析 アジア域内の証券投資活性化に向けて
* ** 199 1 1996-97 relation * ** Seoul conference China and Emerging Asia: Reorganizing the Global Economy? held by KIEP and Seoul National University 26 5 11-12 Hugh Patrick Yung-Chul Park 26 9 9-1 East
autocorrelataion cross-autocorrelataion Lo/MacKinlay [1988, 1990] (A)
Discussion Paper Series A No.425 2002 2 186-8603 [email protected] 14 1 24 autocorrelataion cross-autocorrelataion Lo/MacKinlay [1988, 1990] 1990 12 13 (A) 12370027 13 1 1980 Lo/MacKinlay [1988]
201/扉
Mohammad Reza SARKAR ARANI Associate Professor, Allameh Tabatabai University Visiting Research Scholar, International Research Center for Japanese Studies 200718 Mohammad Reza SARKAR ARANI Visiting Research
1 (1997) (1997) 1974:Q3 1994:Q3 (i) (ii) ( ) ( ) 1 (iii) ( ( 1999 ) ( ) ( ) 1 ( ) ( 1995,pp ) 1
1 (1997) (1997) 1974:Q3 1994:Q3 (i) (ii) ( ) ( ) 1 (iii) ( ( 1999 ) ( ) ( ) 1 ( ) ( 1995,pp.218 223 ) 1 2 ) (i) (ii) / (iii) ( ) (i ii) 1 2 1 ( ) 3 ( ) 2, 3 Dunning(1979) ( ) 1 2 ( ) ( ) ( ) (,p.218) (
Vol.8 No (July 2015) 2/ [3] stratification / *1 2 J-REIT *2 *1 *2 J-REIT % J-REIT J-REIT 6 J-REIT J-REIT 10 J-REIT *3 J-
Vol.8 No.2 1 9 (July 2015) 1,a) 2 3 2012 1 5 2012 3 24, 2013 12 12 2 1 2 A Factor Model for Measuring Market Risk in Real Estate Investment Hiroshi Ishijima 1,a) Akira Maeda 2 Tomohiko Taniyama 3 Received:
