Similar documents

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

* 2

TOP URL 1

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

TOP URL 1

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

pdf

Microsoft Word - 11問題表紙(選択).docx

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

Gmech08.dvi

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

meiji_resume_1.PDF

30

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

Mott散乱によるParity対称性の破れを検証


18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α


1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h


5 c P 5 kn n t π (.5 P 7 MP π (.5 n t n cos π. MP 6 4 t sin π 6 cos π 6.7 MP 4 P P N i i i i N i j F j ii N i i ii F j i i N ii li i F j i ij li i i i


0.1 I I : 0.2 I

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

xyz,, uvw,, Bernoulli-Euler u c c c v, w θ x c c c dv ( x) dw uxyz (,, ) = u( x) y z + ω( yz, ) φ dx dx c vxyz (,, ) = v( x) zθ x ( x) c wxyz (,, ) =

Z: Q: R: C:


V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

量子力学 問題

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1)

Note.tex 2008/09/19( )

2000年度『数学展望 I』講義録

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

2011de.dvi

85 4

( ) ( )

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( )

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

Part () () Γ Part ,


.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

µµ InGaAs/GaAs PIN InGaAs PbS/PbSe InSb InAs/InSb MCT (HgCdTe)

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

(5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b)

untitled


I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

66 σ σ (8.1) σ = 0 0 σd = 0 (8.2) (8.2) (8.1) E ρ d = 0... d = 0 (8.3) d 1 NN K K 8.1 d σd σd M = σd = E 2 d (8.4) ρ 2 d = I M = EI ρ 1 ρ = M EI ρ EI


N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

Untitled

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

1.500 m X Y m m m m m m m m m m m m N/ N/ ( ) qa N/ N/ 2 2


PDF

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)


.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

0 s T (s) /CR () v 2 /v v 2 v = T (jω) = + jωcr (2) = + (ωcr) 2 ω v R=Ω C=F (b) db db( ) v 2 20 log 0 [db] (3) v R v C v 2 (a) ω (b) : v o v o =

() (, y) E(, y) () E(, y) (3) q ( ) () E(, y) = k q q (, y) () E(, y) = k r r (3).3 [.7 ] f y = f y () f(, y) = y () f(, y) = tan y y ( ) () f y = f y


: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

Transcription:

= hυ = h c λ υ λ (ev) = 1240 λ W=NE = Nhc λ W= N 2 10-16 λ

/ / Φe = dqe dt J/s Φ = km Φe(λ)v(λ)dλ THBV3_0101JA

Qe = Φedt (W s) Q = Φdt lm s Ee = dφe ds E = dφ ds Φ Φ THBV3_0102JA

Me = dφe ds M = dφ ds Φ Φ THBV3_0103JA le = dφe dw Φe: w : l = dφ dw Φ : w : Φ Φ THBV3_0104JA

Le = dle ds cosθ le: s : θ : L = dl ds cosθ l THBV3_0105JA

π π π π

4 THBV3_0201JA

ν ψ IIIV ν ν ψ THBV3_0202JA

ν ην Pν 1 η(ν) = (1 R) ( ) Ps k 1+1 kl ν ν ν

THBV3_0203JA

THBV3_0204JA THBV3_0205JA THBV3_0206JA

(δ) THBV3_0207JA

THBV3_0301JA

THBV3_0302JA µ

THBV3_0305JA THBV3_0306JA

THBV3_0307JA THBV3_0308JA

1 2 3 4 5 6 7 35.2 ± 1 54 60 1 2 3 4 5 6 7 8 9!0 80 ± 2 8 5 9!0 3-M3 48 54.0 ± 0.1 120 120 THBV3_0309JA

THBV3_0310JA

THBV3_0311JA

Γ Ec Γ V BIAS THBV3_0401JA THBV3_0402JAa

THBV3_0402JAb 1000 800 600 400 50 % 25 % 200 100 80 60 40 20 10 8 6 4 10 % 2.5 % 0.5 % 0.25 % 2 1.0 0.8 0.6 0.4 0.2 0.1 200 300 400 500 600 700 800 1000 1200 14001600 2000 5 % 1 % 0.1 % THBV3_0403JB

40 40 70 120 60 200 525 550 550 150 µ

100M 200S 200M 400K 400U 400S 401K 500K(S-20) 500U 500S 501K(S-25) 502K 700K(S-1) UV 95 95 95 40 150 150 150 200 230 20 µ

THBV3_0404JA

THBV3_0405JA Sk = I K L P (A/W)

h c η (%) = Sk = λ e h: 6.63 10-34 J s c: 3.00 10 8 m s -1 e: 1.60 10-19 C 1240 Sk 100 (%) λ

THBV3_0406JA THBV3_0407JA

THBV3_0408JA

THBV3_0409JA

THBV3_0410JA

THBV3_0411JA

THBV3_0412JA δ = a E k δ 1 = I d1 I K δ n = I dn I d(n-1) Ip = Ik α δ 1 δ 2 δ n Ip = α δ 1 δ 2 δ n Ik

µ = α δ 1 δ 2 δ n V µ = (a E k ) n = a n ( ) kn = A V kn n+1 THBV3_0413JA

THBV3_0414JA

THBV3_0415JA THBV3_0416JA

THBV3_0417JA THBV3_0418JA

FWHM FWTM THBV3_0419JA

THBV3_0420JA THBV3_0421JA

THBV3_0422JA C.R.T. = (τ 1 2 +τ 2 2 ) 1/2

C 1 µa 1 µa 0.1 µa 0.01 µa 10 µa 1 µa 0.1 µa 0.1 µa 0.1 µa

THBV3_0423JA

THBV3_0424JA (Ip 0 (Ip 1 +Ip 2 +Ip 3 +Ip 4 ) 1) 100 (%) Ip 0 = Ip 1 +Ip 2 +Ip 3 +Ip 4

R=100 kω THBV3_0425JA Ip 02 Ip 01 = 4 Ip 2 Ip 1 Ip 02 Ip 01 (Ip 2 Ip 1)-(Ip 02 Ip 01) (Ip 02 Ip 01) 100(%) (Ip 2 Ip 1 ) = (Ip 02 Ip 01 )

THBV3_0426JA THBV3_0427JA

THBV3_0428JAa THBV3_0428JAb

THBV3_0429JA

THBV3_0430JA THBV3_0431JA THBV3_0432JA

THBV3_0433JA

THBV3_0434JA

PMTR6249 1000 V 1 µa THBV3_0435JA

1 µa THBV3_0436JA H L = ((I MAX -I MIN ) Ii) 100 (%)

0.1 µa THBV3_0437JA H = ((I MAX I MIN) Ii) 100 (%)

THBV3_0438JA

i S = AT 5/4 e (-eψ/kt)

THBV3_0439JA

THBV3_0440JA

EADCI (lm) = (A) (A/lm)

THBV3_0441JA ENI = (2e Id µ B) 1/2 S (W) e: Id: µ: B: S:

THBV3_0442JA SN= I p i p+d SN I p i p F= (S/N) 2 in (S/N) 2 out

F= 1+1 δ 1 +1 δ 1 δ 2 + +1 δ 1 δ 2 δ n F δ (δ-1) i p = µ(2 e I k α B F) 1/2 i p = µ{2 e I k α B(1+1 δ 1 +1 δ 1 δ 2 + +1 δ 1 δ 2 δ n )} 1/2 I p = I k α µ SN = I p i p I = ( K α 1 ) 1/2 2eB 1+1 δ 1 +1 δ 1 δ 2 + +1 δ 1 δ 2 δ n I SN K 1 ( ) 1/2 2eB δ (δ-1) SN= (I k 2eB) 1/2 1.75 10 3 I k (µa) B (MHz)

SN= I k (2eB δ (δ-1) (I k +2I d )+N 2 A) 1/2 I SN= k (2eB δ (δ-1) (I k+2i d)) 1/2 η I k : λ: c: P: δ: I d : e: h: η: B: N A :

SN= I k = (2 e (I k +2 I d )F B) 1/2 I k µ (2e(I ph +2I d )FB µ 2 ) 1/2 = I p 2e(I p +2I da )µfb = S p P i 2e(S p Pi+2I da )µfb S p Pi= 2e(S p Pi+2I da )µfb (S p Pi) 2 2e(S p Pi+2I da )µfb= 0 S p Pi= ( 2eSpµFB) ± ( 2eSpµFB)2 4Sp 2 ( 4eIdaµFB) 2Sp 2 eµfb Pi= + Sp (eµfb) 2 + 4eIdaµFB Sp 10-9 10-10 10-11 10-12 10-13 10-14 10-15 10 6 10 4 A/W A/W ENI 10-16 10-17 10-2 10-1 10 0 10 1 10 2 10 3 10 4 10 5 10 6 10 7 10 8 THBV3_0444JA

THBV3_0445JA I I Iθ = I S cos 2 θ+i P sin 2 θ = (I P +I S )(1 P I S cos 2 θ) 2 I P +I S I S : I P : I I O = P+I S, P = 2 I P I S I P+I S θ = I O (1 P cos 2 θ)

THBV3_0446JA THBV3_0447JA

THBV3_0448JA

THBV3_0501JA THBV3_0502JA I b = V (R 1+R 2+ +R 6+R 7) I b = V (Dz1) R 1+R 2+R 3

THBV3_0503JA

THBV3_0504JA THBV3_0505JA

THBV3_0506JA

THBV3_0507JA

THBV3_0508JA Q 0 = Tw V 0 R L Q 3100 Q 0 C 3 100 Q 0 V 3 Q 2 = Q 3 2 Q Q 1 = 2 = 2 Q 3 4 C 2 50 Q 0 V 2 C 1 25 Q 0 V 1

Q 0 50 mv 50 Ω 1 µs = 1 nc C 3 100 C 2 50 C 1 25 1 nc 100 V 1 nc 100 V 1 nc 100 V =1 nf = 0.5 nf = 0.25 nf

THBV3_0509JA THBV3_0510JA

THBV3_0511JA

THBV3_0512JA THBV3_0513JA

C1 R1 -H.V SHV-R MAGNETIC SHIELD ACC DY1 DY2 DY3 DY4 DY5 DY6 DY7 DY8 C2 C3 C4 C5 C6 C8 C9 R17 C7 SIGNAL OUTPUT BNC-R R1: 33 kω R2, R15: 390 kω R3, R4, R13: 470 kω R5: 499 kω R6, R16: 360 kω R7: 536 kω R8 to R11: 300 kω R12: 150 kω R14: 430 kω R17: 50 Ω C1: 2200 µf C2, C3: 4700 µf C4: 0.01 µf C5, C6: 0.022 µf C7: 0.047 µf C8, C9: 1000 pf THBV3_0514JA Ω THBV3_0515JA

THBV3_0516JA

THBV3_0517JA µ THBV3_0518JA

THBV3_0519JA

THBV3_0520JA

THBV3_0521JA

± ± 0.05 ± C

THBV3_0522JA THBV3_0523JA THBV3_0524JA

ZC = l 2πfC V a = E 0e -t/rc R a R a+r L

THBV3_0525JA THBV3_0526JA

1 f C = 2πC S R L (Hz) THBV3_0527JA R 0 = Rin RL R in+r L R in V 0' = V 0 R in+r L

THBV3_0528JA V 0 = -I p R f

THBV3_0529JA THBV3_0530JA

THBV3_0531JA V 0 = Q p /C f V 0 = 1 t C f 0 I p d t THBV3_0532JA

THBV3_0533JA Q τ C V(t) = (e -t/τ e -t/τs ) τ τ s Q V(t) (e t/τ e t/τs ) C Q τ V(t) (e t/τs e t/τ ) C τ s

THBV3_0534JA THBV3_0535JA

THBV3_0536JA

THBV3_0537JA S = = H out H in 3tµ 4r S' = S1 S2 S3 S n = 3t 1 µ 1 3t 2 µ 2 3t 3µ 3 4r 1 4r 2 4r 3 3t nµ n 4r n

µ µ THBV3_0538JA

THBV3_0539JA µ THBV3_0540JA

µ THBV3_0541JAa

µ THBV3_0541JAb 10 5 10 4 10 3 10 20 40 60 100 200 400 600 THBV3_0542JA

THBV3_0543JA

THBV3_0544JA

5 1 2 3 4 3 7 4-M3 52 83 77 52 77.0 ± 0.1 THBV3_0545JAa 3 1 5 4 6 7 2 8!0 9 14568!0 3-M3 48 54.0 ± 0.1 120 120 A THBV3_0545JAb

± 50 +2-0 THBV3_0546JA

THBV3_0547JA

THBV3_0601JA THBV3_0602JA

= (Nd Np)= η α THBV3_0603JA

THBV3_0604JAa THBV3_0604JAb

8888 THBV3_0605JA

THBV3_0606JA THBV3_0607JA

N = M 1 M t THBV3_0608JA

2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1.0 1.00 1.02 1.04 1.06 1.08 1.10 THBV3_0609JA

SN Iph 2eNFB{Iph+2(Ib+Id)} Iph: e: NF: Ib: Id: B: Ns T SN Ns+2(Nb+Nd) Ns: Nb: Nd: T: SN Iph 2eNF{Iph+2(Ib+Id)} SN Ns 2{Ns+2(Nb+Nd)}

THBV3_0701JA

THBV3_0702JAa THBV3_0702JAb

THBV3_0703JA THBV3_0704JA

R = P P P P H H 2 THBV3_0705JA

THBV3_0706JA

δ

THBV3_0707JA

THBV3_0708JA N η α µ Ip = τs = 4 0.25 1.6 230 = 6.3

THBV3_0709JA THBV3_0710JA

n Σ n = 1 Pi P 100 D LTS = n P P Pi n DLTS = 1.0 % THBV3_0711JA

B D STS = (1 ) A

1 2 3 THBV3_0712JA

THBV3_0713JAa THBV3_0713JAb

THBV3_0713JAc

C C THBV3_0714JA

THBV3_0801JA

+ THBV3_0802JA THBV3_0803JA

5 (mv/div) 1 (µs/div) THBV3_0804JA

0 V 1000 V 50 (ms/div) THBV3_0805JA

+15 V +0.3 V +1.1 V THBV3_0806JA +15 V (10 kω) THBV3_0807JA

+ - LLD. RL 50 Ω +5 V GND THBV3_0808JA

10 8 10 7 10 6 10 5 THBV3_0809JA

10 8 10 7 10 6 10 5 THBV3_0810JA 1.0 0.5 (%/ C) 0-0.5-1.0 200 300 400 500 600 700 800 THBV3_0811JA

THBV3_0812JA

5 V 200 ns/div. THBV3_0813JA

LLD. +5 V 20 bit Counter 90 MHz 20 bit Latch I/O 128 kbyte ROM 4 kbyte RAM 16-bit CPU 16 MHz RS-232C RS-232C 9600 baud THBV3_0814JA

K P 1000 pf + THBV3_0815JA

THBV3_0901JA

THBV3_0902JA

M4 M16 M64 L16 L32 M64 4 16 64 16 32 64 9 9 4 4 2 2 0.8 16 0.8 7 5.8 5.8 THBV3_0903JA THBV3_0904JA

THBV3_0905JA THBV3_0906JA

THBV3_0907JA THBV3_0908JA

THBV3_0909JA OUTPUT DEVIATION (%) 100 80 60 40 20 SPATIAL RESOLUTION AND CROSS-TALK SCAN DEAD SPACE B EFFECTIVE SPACE SIGNAL 0 1 2 3 4 5 6 7 A 1 CH SCAN POSITION (TOP VIEW) 16 CH SUPPLY VOL.: -800 V LIGHT SOURCE: TUNGSTEN LAMP SPOT DIA.: 100 µm SCAN PITCH: 50 µm POSITION (channel) CH 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 100 2.9 0.8 0.3 0.1 2 2.9 100 2.8 0.8 0.3 0.1 3 0.6 3.1 100 2.7 0.8 0.3 0.1 4 0.2 0.5 2.8 100 2.9 0.8 0.3 0.1 5 0.1 0.2 0.6 3.2 100 2.7 0.8 0.3 0.1 6 0.1 0.2 0.6 3.1 100 2.7 0.8 0.3 0.1 CROSS-TALK AREA B / AREA A 100 CROSS-TALK RATIO (%) 7 0.1 0.2 0.6 3.0 100 8 0.1 0.2 0.6 3.0 9 0.1 0.2 0.6 10 0.1 0.2 2.9 100 2.9 0.6 0.8 2.9 100 2.9 0.3 0.8 3.1 100 0.1 0.4 0.1 0.8 0.4 0.1 3.3 0.9 0.4 0.1 11 0.1 0.2 0.6 2.7 100 3.2 0.8 0.4 0.1 12 0.1 0.2 0.6 3.8 100 3.1 0.8 0.4 0.1 13 0.1 0.2 0.6 2.8 100 3.1 0.9 0.4 14 0.1 0.2 0.6 2.8 100 3.2 0.9 15 0.1 0.2 0.6 2.7 100 3.1 16 0.1 0.3 0.6 2.9 100 THBV3_0910JA

5.0 4.0 3.0 2.0 1.0 0.0 1 ch 2 ch 3 ch 4 ch 5 ch 6 ch 7 ch 8 ch 9 ch 10 ch 11 ch 12 ch 13 ch 14 ch 15 ch 16 ch THBV3_0911JA 100 OUTPUT DEVIATION (%) 80 60 40 20 0 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 CHANNEL THBV3_0912JA

THBV3_0914JA

52.0 mm 32.2 mm 25.7 mm 25.7 mm 32.2 mm Effective Area 15 mm Effective Area 22 mm Effective Area 24 mm 49 mm THBV3_0915JA

THBV3_0916JA 0.2 1.8 0.2 1.5 100 2.7 0.2 2.6 0.3 THBV3_0917JA

100 5.5 3.5 0.5 THBV3_0918JA THBV3_0919JA

X = X2 X1 + X2 Y = Y2 Y1 + Y2 THBV3_0920JA

THBV3_0921JA THBV3_0922JA

THBV3_0923JA

THBV3_0925JA

X9 X10 THBV3_0927JA Y8 Y9 THBV3_0928JA

THBV3_0929JA THBV3_0930JA

THBV3_0931JA

THBV3_1001JA

THBV3_1002JA

12 MΩ 24 MΩ 6 MΩ 1000 pf 1000 pf 900 pf THBV3_1004JA

THBV3_1005JA

THBV3_1006JA

THBV3_1007JAa THBV3_1007JAb THBV3_1008JAa THBV3_1008JAb

µ µ µ THBV3_1009JA

THBV3_1010JA

10 5 10 4 S-25 (s -1 ) 10 3 10 2 10 1 S-20 10 0 10-1 -40-20 0 20 40 ( C) THBV3_1011JA

THBV3_1012JAa

THBV3_1012JAb THBV3_1013JAa

THBV3_1013JAb

THBV3_1014JA THBV3_1015JA

THBV3_1016JA

THBV3_1017JAa THBV3_1017JAb

MCP THBV3_1018JAa MCP SMA-R 100 kω 450 pf 330 pf 33 kω 12 MΩ 24 MΩ 6 MΩ 330 pf 330 pf 1000 pf 1000 pf 330 pf 50 Ω GND 10 kω GND -HV SHV-R SMA-R THBV3_1018JAb

THBV3_1019JA THBV3_1020JA

THBV3_1021JA

THBV3_1022JAa THBV3_1022JAb

THBV3_1022JAc

1100 50 THBV3_1101JA 1400 1200 1000 800 600 400 200 Vth 0 0 1 2 3 4 5 6 7 8 9 THBV3_1102JA

Gb = (Vpc-Vth) 3.6 G = Gb Gt

10 4

5000 4000 3000 2000 1000 0 0 1000 2000 3000 4000 THBV3_1103JA

1000 100 10 1 0.1 10-6 10-7 10-8 10-9 10-10 0.01 10-11 0 20 40 60 80 100 120 140 160 THBV3_1104JA 1400 1200 1000 800 600 400 200 α α 0 0 2 4 6 8 10 σ THBV3_1105JA

0.7 0.6 0.5 0.4 0.3 0.2 Ω 0.1 0 0 10 20 30 40 50 60 70 80 90 100 THBV3_1106JA

THBV3_1107JA

1.10 1.05 µ 1.00 0.95 0.90 0 100 200 300 400 500 THBV3_1108JA 120 115 110 µ 105 100 95 90 85 80 0 10 100 1000 THBV3_1109JA

100 10 1 0.1 0.01-40 -30-20 -10 0 10 20 30 40 C THBV3_1110JA

100 90 80 70 60 50 40 30 20 10 0-40 -30-20 -10 0 10 20 30 40 C THBV3_1111JA Ω Ω µ THBV3_1112JA

Ω Ω THBV3_1113JA

THBV3_1203JA

THBV3_1204JA THBV3_1205JA

6 5 4 3 2 1 0 0 200 400 600 800 1000 1200 1400 (V) THBV3_1206JA THBV3_1207JA

THBV3_1208JA 4 3 2 1 0 150 200 250 300 350 400 450 500 550 THBV3_1209JA

µ= A E bb kn Ebb k n 10 9 10 8 10 7 10 6 10 5 10 4 10 3 1000 1500 2000 2500 3000 (V) THBV3_1210JA

10-12 10 6 10-13 10-14 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 THBV3_1211JA THBV3_1212JA

10-8 10-9 10-10 10-11 10-12 10-13 10-14 THBV3_1213JA 0.1 0.05 0 10-6 10-5 10-4 10-3 10-2 10-1 THBV3_1214JA

Ω µ THBV3_1215JA

THBV3_1216JA

THBV3_1301JA

C THBV3_1302JA

C) THBV3_1303JA

10000 1000 100 (na) 10 1 0.1 0.01 0.001 0 20 40 60 80 100 120 140 160 180 200 ( C) THBV3_1304JA 500 = 1500 V =1 µa (%) 100 50 200 C (R1288A-14) 25 C 175 C 90 C 150 C 10 0.1 1 10 100 1000 (hours) THBV3_1305JB

C) THBV3_1306JA C C THBV3_1307JA

THBV3_1308JA

THBV3_1309JA THBV3_1310JAa

THBV3_1310JAb

THBV3_1311JA

THBV3_1312JAa THBV3_1312JAb

THBV3_1312JAc

THBV3_1313JA

THBV3_1314JA

4 3 4 1 6 5 1 2 3 4 5 6 THBV3_1315JAa 1 2 1 2 THBV3_1315JAb

1 2 3 4 5 6 1 2 3 4 5 6 THBV3_1316JAa 1 2 1 2 THBV3_1316JAb

1 3 2 4 5 6 1 2 3 4 5 6 THBV3_1317JAa 1 1 2 2 THBV3_1317JAb

THBV3_1318JA

THBV3_1319JAa THBV3_1319JAb

Ω THBV3_1320JA

THBV3_1321JA THBV3_1322JA

150 125 x + σ x 100 75 50 25 0 1 10 100 x - σ µ C 1000 10000 THBV3_1323JA

C µ THBV3_1324JA µ µ µ ± µ µ µ THBV3_1325JA

± ± THBV3_1326JA

R(t) = e -tλ t: λ λ

THBV3_1401JA ''' ' ' '' ' '' '

THBV3_1402JA THBV3_1403JA

THBV3_1404JA THBV3_1405JA

THBV3_1406JA THBV3_1407JA

THBV3_1411JA

THBV3_1413JA THBV3_1414JA

γ

THBV3_1415JA THBV3_1416JA

THBV3_1417JA

THBV3_1418JA

β β γ γ γ β γ

THBV3_1419JA TPMHC0000JA_HB

PMT THBV3_1421JA

THBV3_1422JA

THBV3_1423JA

THBV3_1424JA THBV3_1425JA

THBV3_1426JA

THBV3_1427JA THBV3_1428JA

THBV3_1429JA THBV3_1430JA

150 C 200 C THBV3_1433JA

THBV3_1434JA

THBV3_1435JA THBV3_1436JA

THBV3_1437JA

THBV3_1438JA

THBV3_1439JA

(-µρt) THBV3_1440JA THBV3_1441JA I = -I 0 e (-µρt) ρ µ

THBV3_1442JA

THBV3_1443JA

THBV3_1444JA THBV3_1445JA

THBV3_1447JA

THBV3_1448JA

THBV3_1449JA