食品工学.indb

Similar documents
474 Nippon Shokuhin Kagaku Kogaku Kaishi Vol. /-, No.3,.1..2* (,**0) 24 Measurement of Deterioration of Frying Oil Using Electrical Properties Yoshio

Quantitative Relationship between SAR and Temperature Rise inside Eyeball in a Realistic Human Head Model for 1.5 GHz-Microwave Exposure Kiyofumi Taka

食品工学.indb

EQUIVALENT TRANSFORMATION TECHNIQUE FOR ISLANDING DETECTION METHODS OF SYNCHRONOUS GENERATOR -REACTIVE POWER PERTURBATION METHODS USING AVR OR SVC- Ju



第62巻 第1号 平成24年4月/石こうを用いた木材ペレット

Table 1. Assumed performance of a water electrol ysis plant. Fig. 1. Structure of a proposed power generation system utilizing waste heat from factori

620 Nippon Shokuhin Kagaku Kogaku Kaishi Vol. /0, No. +,, 0,* 0,1 (,**3) 14 Use of Rice Paste in Rice Bread Processing Yasuko Kainuma Keywords : rice,

Studies of Foot Form for Footwear Design (Part 9) : Characteristics of the Foot Form of Young and Elder Women Based on their Sizes of Ball Joint Girth

The Phase Behavior of Monooleoylglycerol-Water Systems Mivoshi Oil & Fat Co.. Ltd. Faculty of Science and Technology, Science University of Tokyo Inst

Fig. 1 Flow diagram of experimental apparatus employed Fig. 2 Porosity change during sulfurization of reduced sample pellets

248 Nippon Shokuhin Kagaku Kogaku Kaishi Vol. /-, No./,,.2,/. (,**0) 12 * * * Microencapsulation of Glutamine with Zein by a Solvent Evaporation Metho

J. Jpn. Soc. Soil Phys. No. 126, p (2014) ECH 2 O 1 2 Calibration of the capacitance type of ECH 2 O soil moisture sensors Shoichi MITSUISHI 1 a

304 Nippon Shokuhin Kagaku Kogaku Kaishi Vol. /., No.0, -*. -*3 (,**1) 58 * ** *** : * : ** *** Development of Sorting System Based on Potato Starch C


9 Nippon Shokuhin Kagaku Kogaku Kaishi Vol. /,, No.0,,/+,/0 (,**/) 251 * * E#ects of Microbial Transglutaminase on Melting Point and Gel property of G

Study on Application of the cos a Method to Neutron Stress Measurement Toshihiko SASAKI*3 and Yukio HIROSE Department of Materials Science and Enginee

75 unit: mm Fig. Structure of model three-phase stacked transformer cores (a) Alternate-lap joint (b) Step-lap joint 3 4)

Temperature Rise in a Birefringent Substrate by RF Discharge Plasma Koichi Takaki, Member, Kunioh Sayama, Student Member, Atsushi Takahashi, Student M

A Feasibility Study of Direct-Mapping-Type Parallel Processing Method to Solve Linear Equations in Load Flow Calculations Hiroaki Inayoshi, Non-member


Mikio Yamamoto: Dynamical Measurement of the E-effect in Iron-Cobalt Alloys. The AE-effect (change in Young's modulus of elasticity with magnetization

The Evaluation of LBB Behavior and Crack Opening Displacement on Statically Indeterminate Piping System Subjected to Monotonic Load The plastic collap

25 Removal of the fricative sounds that occur in the electronic stethoscope

技術研究報告第26号

520 Nippon Shokuhin Kagaku Kogaku Kaishi Vol. /0, No. +*, /,* /,2 (,**3) 20 * * Comparison of Breaking Properties of Products Baked with Rice Powders,

The Effect of the Circumferential Temperature Change on the Change in the Strain Energy of Carbon Steel during the Rotatory Bending Fatigue Test by Ch

Table 1. Reluctance equalization design. Fig. 2. Voltage vector of LSynRM. Fig. 4. Analytical model. Table 2. Specifications of analytical models. Fig

JFE.dvi

149 (Newell [5]) Newell [5], [1], [1], [11] Li,Ryu, and Song [2], [11] Li,Ryu, and Song [2], [1] 1) 2) ( ) ( ) 3) T : 2 a : 3 a 1 :

IPSJ SIG Technical Report Vol.2016-CE-137 No /12/ e β /α α β β / α A judgment method of difficulty of task for a learner using simple

渡辺(2309)_渡辺(2309)

電子部品はんだ接合部の熱疲労寿命解析

Natural Convection Heat Transfer in a Horizontal Porous Enclosure with High Porosity Yasuaki SHIINA*4, Kota ISHIKAWA and Makoto HISHIDA Nuclear Applie

013858,繊維学会誌ファイバー1月/報文-02-古金谷

Stress Singularity Analysis at an Interfacial Corner Between Anisotropic Bimaterials Under Thermal Stress Yoshiaki NOMURA, Toru IKEDA*4 and Noriyuki M

17 Proposal of an Algorithm of Image Extraction and Research on Improvement of a Man-machine Interface of Food Intake Measuring System

J. Soc. Cosmet. Chem. Jpn. 7-chome, Edogawa-ku, Tokyo 132, Japan 2.1 J. Soc. Cosmet. Chem. Japan. Vol. 31, No

42 1 Fig. 2. Li 2 B 4 O 7 crystals with 3inches and 4inches in diameter. Fig. 4. Transmission curve of Li 2 B 4 O 7 crystal. Fig. 5. Refractive index

塗装深み感の要因解析

01-C08244-食品の物性 indd

Estimation of Photovoltaic Module Temperature Rise Motonobu Yukawa, Member, Masahisa Asaoka, Non-member (Mitsubishi Electric Corp.) Keigi Takahara, Me


20 Nippon Shokuhin Kagaku Kogaku Kaishi Vol. /0, No. +,,* -* (,**3) 20 * * Taste of Mentsuyu (a Japanese noodle soup) Depends on the Combination and P

Developement of Plastic Collocation Method Extension of Plastic Node Method by Yukio Ueda, Member Masahiko Fujikubo, Member Masahiro Miura, Member Sum

Nippon Suisan Gakkaishi 55 (10), (1989) ) Effects of ph and Sodium Chloride on the Water Holding Capacity of Surimi and its Gel Yoshiaki Aka

Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels).

DPA,, ShareLog 3) 4) 2.2 Strino Strino STRain-based user Interface with tacticle of elastic Natural ObjectsStrino 1 Strino ) PC Log-Log (2007 6)


Evaluation of Anisotropy and Preferred Orientation of Carbon and Graphite Materials Yoshihiro Hishiyama Fig.1 Diffraction condition in Fourier space.

bosai-2002.dvi

110 B U N S E K I K A G A K U Vol Fig. 1 system Schematic diagram of the plasma measurement Fig. 2 Photograph of a time-resolved obserbation

Netsu Sokutei 19 (4) Thermal Transitions and Stability of Fatty Acid-Containing and Defatted Bovine Serum Albumin (BSA) Michiko Kodama, Shinji

2 94


Modal Phrase MP because but 2 IP Inflection Phrase IP as long as if IP 3 VP Verb Phrase VP while before [ MP MP [ IP IP [ VP VP ]]] [ MP [ IP [ VP ]]]

Fig. 4. Configuration of fatigue test specimen. Table I. Mechanical property of test materials. Table II. Full scale fatigue test conditions and test

320 Nippon Shokuhin Kagaku Kogaku Kaishi Vol. /., No.1, -,* -,/ (,**1) 8 * ** *** * ** *** E#ect of Superheated Steam Treatment on the Preservation an

日本感性工学会論文誌

untitled

Kyoto University * Filipino Students in Japan and International Relations in the 1930s: An Aspect of Soft Power Policies in Imperial Japan

) BPA ECN EPICLON N-600 Fig.2 Fig Fig.4 DCPD EPICLON HP-7200 ECN Fig.5 DCPD ECN DCPD 6-28) Table 1 BPA Fig.4 Chemical str

JAMSTEC Rep. Res. Dev., Volume 12, March 2011, 27 _ 35 1,2* Pb 210 Pb 214 Pb MCA 210 Pb MCA MCA 210 Pb 214 Pb * 2

磁気測定によるオーステンパ ダクタイル鋳鉄の残留オーステナイト定量

Core Ethics Vol.


IPSJ SIG Technical Report Vol.2010-NL-199 No /11/ treebank ( ) KWIC /MeCab / Morphological and Dependency Structure Annotated Corp

Visual Evaluation of Polka-dot Patterns Yoojin LEE and Nobuko NARUSE * Granduate School of Bunka Women's University, and * Faculty of Fashion Science,

System to Diagnosis Concrete Deterioration with Spectroscopic Analysis IHI IHI IHI The most popular method for inspecting concrete structures for dete

放水の物理的火災抑制効果に着目した地域住民の消火活動モデル


untitled

On the Wireless Beam of Short Electric Waves. (VII) (A New Electric Wave Projector.) By S. UDA, Member (Tohoku Imperial University.) Abstract. A new e

プラズマ核融合学会誌11月【81‐11】/小特集5

teionkogaku43_527

Table 1 Experimental conditions Fig. 1 Belt sanded surface model Table 2 Factor loadings of final varimax criterion 5 6

原稿.indd

untitled

暑熱順化の形成過程に関する研究 : サーモグラフィ装置によるヒト発汗部皮膚温測定

1 Fig. 1 Extraction of motion,.,,, 4,,, 3., 1, 2. 2.,. CHLAC,. 2.1,. (256 ).,., CHLAC. CHLAC, HLAC. 2.3 (HLAC ) r,.,. HLAC. N. 2 HLAC Fig. 2

JOURNAL OF THE JAPANESE ASSOCIATION FOR PETROLEUM TECHNOLOGY VOL. 66, NO. 6 (Nov., 2001) (Received August 10, 2001; accepted November 9, 2001) Alterna

IHIMU Energy-Saving Principle of the IHIMU Semicircular Duct and Its Application to the Flow Field Around Full Scale Ships IHI GHG IHIMU CFD PIV IHI M

06_学術.indd

1) K. J. Laidler, "Reaction Kinetics", Vol. II, Pergamon Press, New York (1963) Chap. 1 ; P. G. Ashmore, "Catalysis and Inhibition of Chemical Reactio

448 Nippon Shokuhin Kagaku Kogaku Kaishi Vol. /,, No.+*,..2./- (,**/) 14 * * The E#ect of Peptides on the Physical Properties of Soy Protein Gel Takah

Fig. 1 Structure of a Sebaceous Follicle (Ref.1).

& Vol.5 No (Oct. 2015) TV 1,2,a) , Augmented TV TV AR Augmented Reality 3DCG TV Estimation of TV Screen Position and Ro

The Eevaluation One Bottle Type Silane Coupling Agents Masahiro Aida, Hideo Kanaya, Taira Kobayashi, Keiji Utsugizaki, Yoshizumi Murata, Tohru Hayakaw

{.w._.p7_.....\.. (Page 6)

:- Ofer Feldman,Feldman : -

* * 2

20 Method for Recognizing Expression Considering Fuzzy Based on Optical Flow

日立金属技報 Vol.34

特-7.indd

Rate of Oxidation of Liquid Iron by Pure Oxygen Shiro BAN-YA and Jae-Dong SHIM Synopsis: The rate of oxidation of liquid iron by oxygen gas has been s


ステンレス鋼用高性能冷間鍛造油の開発

1. Precise Determination of BaAl2O4 Cell and Certification of the Formation of Iron Bearing Solid Solution. By Hiroshi UCHIKAWA and Koichi TSUKIYAMA (

特-3.indd

Transcription:

, Vol. 11, No. 1, pp. 19-30, Mar. 2010 Dielectric Properties of Food and Microwave Heating Noboru SAKAI Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477 The application of microwave heating to food processing, including microwave oven, have come into wide use because of their ability to heat and cook food quickly and conveniently. However, a problem that has arisen in microwave heating is uneven heating or non-uniform temperature distribution in the foods. To control the uneven heating, it is important to know the mechanism of heating and the role of the dielectric properties of food, because they determine the heat generation when the food is irradiated by the microwaves. First of all in this manuscript, the principle of the microwave heating and the role of water in the microwave heating are explained. Next, the influence of the water and salt content on the dielectric properties of food was described. Reduction of water content primarily changes the dielectric constant, whereas the addition of salt primarily changes the dielectric loss factor. Finally, the physical properties change according to the thawing of food was described. The thermal and dielectric properties of food vary with temperature in thawing process, and the great difference in dielectric properties between frozen state and thawed one can cause a problem in uniform thawing, that is known as runaway heating. Keywords: Dielectric properties, Microwave heating, Temperature distribution, Heat transfer analysis 1 1 [1] 2010 2 19 2010 2 26 108-84774-5-7 Fax: --, E-mail: sakai@kaiyodai.ac.jp 2 [2] 3 [3,4]

20 2 Q [W] 1 I [A] E [V] R [] [S/m] S [m 2 ] d [m] Fig. 1 1 Fig. 2 Q c [5] 2 f ε 0 ε' ε'' tanε' 2 1100 MHz 300 10430 H + + H + O -- Fig. 1 Water molecule. Fig. 2 Rotation of water molecule. -

21 Table 1 ISM Band. Frequency 13.56 MHz6.78 khz 27.12 MHz162.72 khz 40.68 MHz20.34 khz 2450 MHz50 MHz 5800 MHz75 MHz 24125 MHz125 MHz MHz300 GHz Table 1 ISMIndustrial, Scientific and Medical Use [5] 915 MHz ISM 2 3 3.1 6 [7] Hewlett Packard Agilent Technologies HP85070B Fig. 3 200 MHz13.5 GHz 100 100 2.4510-6 m Fig. 3 Measurement system for dielectric properties. 1 [7] 3.2 ε'ε'' [8] 3 4 ε tan 1 2,450 MHz [9] Table 2

22 Table 2 Dielectric properties of several materials (2,450MHz) Material Dielectric constant Dielectric power factor Loss factor Penetration Depth [ε' ] tan ε' tan d [cm] Air 1.0 0 0 Water (5) 80.2 0.275 22.0 0.80 Ice (-12) 3.2 0.0009 0.00028 12500 Glass 6.5 0.0090.01 0.06 82.8 Woodsoft 5.0 0.065 0.32 13.6 Woodhard 3.0 0.03 0.09 37.5 Phenolic resin 4.56.0 0.040.08 0.20.5 20.79.56 Urea resin 6.07.7 0.03 0.160.23 29.823.5 Vinyl chloride 3.05.0 0.0250.05 0.080.25 42.217.4 Cellulose acetate 3.06.0 0.0010.07 0.030.42 11211.4 Rubber 2.32.6 0.0115 0.0270.03 109105 Soft rubber 2.9 0.0060.04 0.0170.12 19527.7 Nylon 3.04.0 0.040.07 0.120.28 28.113.9 Polyethylene 2.3 0.0005 0.0012 2460 Polystyrol 2.63.0 0.00020.0004 0.00050.0012 62902810 Ebonite 2.03.5 0.00250.02 0.0050.09 55140.5 Teflon 2.1 0.0015 0.0032 883 Pottery 6.4 0.028 0.18 27.4 Porcelain 6.25 0.00055 0.0034 1430 Paper 2.7 0.056 0.15 21.4 Pyrex 4.0 0.0012 0.0048 812 Polypropylene 2.0 0.0002 0.0004 6890 5 P i P r ε' 80 0.64 ε' 2 2.5 0.05 P [Wm -2 ] 6 x P 0 7 c ε 0 d 1/e [10] 8 0 7 2 2 9 d d E d E 2d D d 10 Table 2 8 Table 2 0.8 cm 12 m

23 3.3 1 99 [11] 1 NaCl Fig. 4 2,450 MHz 2,450 MHz Fig. 4 NaCl Fig. 4 8 Fig. 5 NaCl NaCl NaCl 1 Fig. 6 NaCl Fig. 5 Penetration depth of 1% agar gel containing NaCl. (NaCl concentration :0%, :0.5%, :1%, :1.5%, :2%) Fig. 6 The dielectric properties of 1% agar gel containing sucrose. (sucrose concentration :0%, :10%, :20%, :30%, : 40%) NaCl NaCl Fig. 7 1 NaCl 40 NaCl NaCl [11] Fig. 4 The dielectric properties of 1% agar gel containing NaCl. (NaCl concentration : 0%, : 0.5%, : 1%, : 1.5%, :2%)

24 1 2 2 12 ε' 2 80 2 6.4 13 14 Fig. 7 The relationship of dielectric constant and loss factor (sucrose concentration in aqueous solution, () 0%, () 10%, () 20%, () 30%, ()40%, sucrose concentration in agar 1% gel, () 0%, () 10%, () 20%, () 30%, () 40%). 3.4 P[W m -2 ] 6 q[w m -3 ] 11 2 Fig. 8 1ε' 1 2ε' 2 Fig. 8 Refraction of microwave at the interface. R r r0p q [2] 1114 15 16 T C p k [12] 1 1 1 NaCl 10 mm 2047 mm 120 Fig. 91Fig. 101 1 NaClFig. 5 1 NaCl NaCl 1

25 Fig. 9 Comparison of measured temperature distribution and calculated one in radial direction (agar 1%, 120s). Fig. 10 Comparison of measured temperature distribution and calculated one in radial direction (agar 1% + NaCl 1%, 120s). 2 17 q 14 d Fig. 11 2 1 1 1 NaClFig. 12 120 1 NaCl 1 NaCl 1%agar 1%agar +1%NaCl Fig. 11 The ingredient configuration within the sample. (a) (b) (c) Fig. 12 Calculated temperature distribution.

26 3.5 [13,14] C app k 4 Hayakawa [15] T T sh kk l l C app C pl 18 TT sh 19 20 21 T sw [K]T sh [K] k e, e, C e, S k, S d, D, n l 1921 Table 3[10] n w 0.75 Fig. 13Fig. 14 10 Fig. 15Fig. 16 Fig. 17 Table 3-1 Empirical constants in Eq.(19) n w T sh kl k r S k [-] [] [W/m] [kj/kg] [W/m] Beef(1) 0.75-0.99 0.477 1.403 0.00765 Beef(2) 0.74-0.99 0.477 1.078 0.00623 Fish meat 0.82-0.8 0.523 1.302 0.01206 0.75-1 0.523 1.078 0.01518 Asparagus 0.93-0.7 0.53 1.299 0.01671 straw berry 0.89-0.9 0.54 1.95 0.0146 carrot 0.88-1.1 0.5 1.284 0.02214 cherry 0.87-1.4 0.53 1.718 0.01939 green peas 0.76-1.8 0.47 1.983 0.01172 plum 0.76-2.3 0.51 2.316 0.00147 Table 3-2 Empirical constants in Eq.(20) n w [-] T sh [] l [kg/m 3 ] X r [kg/m 3 ] S d [kg/m 3 ] 0.7-1.01 1070 1012 0.0056 Beef 0.63-1.76 1075 1019 0.2027 0.57-2.96 1080 1025 0.3322 0.45-4.09 1090 1057 1104 0.82-0.8 1060 985 0.2036 Fish meat 0.75-1 1070 1008-0.0426 0.66-1.95 1075 1016 0.2 0.57-2.96 1080 1030 0.2437 Fruit juice 0.96-0.39 830 817 0.1348 0.87-1.38 943 943 0.1079 Vegetable juice 0.75-3.19 1100 1030-0.1079 0.61-6.98 1227 1145 0.2248 Beef Fish meat Fruit/ vegetables (Including juice) Table 3-3 Empirical constants in Eq.(21) n w [-] T sh [] C l [kj/kg] D [kjk n-1 /kg] C e [kj/kg] n [-] 0.74-0.99 3.49 215.7 1.873 1.968 0.7-1.01 3.39 169.3 1.542 1.717 0.63-1.76 3.24 311 1.735 1.981 0.57-2.02 3.09 161.3 0.982 1.497 0.45-4.09 2.93 165.1 0.568 1.416 0.82-0.8 3.83 206.1 1.873 1.999 0.75-1 3.65 173.9 1.179 1.628 0.66-1.95 3.42 349 1.622 1.934 0.57-2.96 3.25 413.4 1.563 1.933 0.96-0.39 4.05 128.7 1.53 1.928 0.87-1.38 3.9 356.1 1.735 1.896 0.75-3.19 3.61 489.5 1.944 1.75 0.61-6.98 3.23 690.5 1.371 1.675

27 Fig. 13 Apparent specific heat calculated by Eq.(21). Fig. 15 Dielectric constant of foods. () potato, () carrot, () beef, () cheese, () lean meat tuna, () fatty meat tuna Fig. 14 Thermal conductivity and density calculated by Eqs.(19) and (20). ()thermal conductivity, (--)density Fig. 16 Loss factor of foods. () potato, () carrot, () beef, () cheese, () lean meat tuna, () fatty meat tuna [16] 22 d e 2 d e 2d x y planez [16,17] 23 kz

28 2 f 0 q M 25 Fig. 17 Penetration depth of foods. () potato, () carrot, () beef, () cheese, () lean meat tuna, () fatty meat tuna. 24 [18] Fig. 18Fig. 19 2 cmfig. 18 8 cmfig. 19 1 Fig. 13Fig. 14 Fig. 15Fig. 16 3060 Fig. 17 110 cm 16 cm32 cm 32 cm Fig. 18 Microwave power distribution of 2.0 cm thick sample. Solid lines: Maxwell' s equations. Dotted lines: Lambert's law.

29 Fig. 19 lines: Lambert's law. Microwave power distribution of 8.0 cm thick sample. Solid lines: Maxwell's equations. Dotted [18] Fig. 20Fig. 21 2 cm 8 cm 4 Fig. 20 Comparison of measured (lots) and calculated temperature distributions (solid and dotted lines) of the 2.0 cm thick tuna sample. Solid lines: Maxwell's equations. Dotted lines: Lambert's law. The heating time : 30s : 60s : 90s : 120s. Fig. 21 Comparison of measured (lots) and calculated temperature distributions (solid and dotted lines) of the 8.0 cm thick tuna sample. Solid lines: Maxwell's equations. Dotted lines: Lambert's law. The heating time :30s : 60s :90s :120s.

30 1) N. Sakai, Y. Cheng, H. Shimoda; Effect of Incident Power Intensity on Temperature Distribution in Microwave Heated Food, J. Chem. Eng. Japan. 36, 1432-1438 (2003). 2) Y. Cheng, N. Sakai, T. HanzawaHeat Transfer Analysis of Flat Cylindrical Food Model Heated by Microwave (in Japanese), Nippon Shokuhin Kagaku Kogaku Kaishi43, 1183-1189 (1996). 3) Y. Cheng, N. Sakai, T. Hanzawa; Effects of Dielectric Properties on Temperature Distributions in Food Model During Microwave Heating, Food Sci. and Technol., International,Tokyo, 3, 324-328 (1997). 4) W. Mao, M. Watanabe, N. Sakai; Dielectric Properties of Frozen Surimi at 915 MHz and 2450 MHz, Food Sci. Technol. Res., 9(4), 361-363 (2003). 5) H. Ohmori; Electromagnetic Wave and Food (in Japanese), Kohrin, 1993, pp.20-30. 6) C. H. Tong, R. R. Lentz; Dielectric Properties of Bentonaite Paste as a Function of Temperature, J. Food Proces. Preserv., 17, 139-145 (1993). 7) C. M. Liu, N. Sakai; Dielectric Properties of Tuna at 2450 MHz and 915 MHz as a Function of Temperature (in Japanese), Nippon Shokuhin Kagaku Kogaku Kaishi, 46, 652-656 (1999). 8) The Institute of Electrical Engineers of Japan, Dielectric Substance Phenomena (in Japanese), Ohmu Sha, 1990, p.89. 9) A. Higo; Handbook for Food and Container in Microwave Oven (in Japanese), Kadoya, S., Science Forum, 1988, p.112. 10) C. Shibata; Handbook for Microwave Heating Technology (in Japanese), Koshijima, T., NTS, 1994, p.8. 11) N. Sakai, W. Mao, Y. Koshima, M. Watanabe; A Method for Developing Model Food System in Microwave Heating Studies, J. Food Eng., 66, 525-531 (2004). 12 ) N. Sakai, C. Wang, S. Toba, M. Watanabe; An Analysis of Temperature Distributions in Microwave Heating of Foods with Non-Uniform Dielectric Properties, J. Chem. Eng. Japan, 37(7), 858-862 (2004). 13) N. Sakai, N. Morita, P. Qiu, T. Hanzawa; Two Dimensional Heat Transfer Analysis of the Thawing Process of Tuna by Far-Infrared Radiation (in Japanese), Nippon Shokuhin Kagaku Kogaku Kaishi42, 524-530 (1995). 14) C. M. Liu, N. Sakai, T. Hanzawa; Thee Dimensional Analysis of Heat Transfer during Food Thawing by Far-Infrared Radiation, Food Sci. Technol. Res., 5(3), 294-299 (1999). 15) J. Succar, K. I. Hayakawa: Empirical Formulae for Predicting Thermal Physical Properties of Food at Freezing or Defrosting Temperature, Lebensum. Wiss. U. Technol.. 16, 326 (1983). 16) K. G. Ayapa and et al.; Microwave heating: An evaluation of power formulations, Chem. Eng. Sci., 46, 1005 (1991). 17) P. Jolly, I. Turner; Non-linear Field Solution of Onedimensional Microwave Heating, J. Microwave Power and Electromagnetic Energy, 25, 3-15 (1990). 18) C. M. Liu, Q. Z. Wang, N. Sakai; Power and temperature distribution during microwave heating thawing, simulated by using Maxwell s equations and Lambert s law, International J. of Food Sci. Technol., 40, 9-21 (2005).