, [g/cm 3 ] [m/s] 1 6 [kg m 2 s 1 ] ,58 1, ,56 1, , ,58 1,

Similar documents
64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

all.dvi

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

2 1 x 1.1: v mg x (t) = v(t) mv (t) = mg 0 x(0) = x 0 v(0) = v 0 x(t) = x 0 + v 0 t 1 2 gt2 v(t) = v 0 gt t x = x 0 + v2 0 2g v2 2g 1.1 (x, v) θ

Gmech08.dvi


Note.tex 2008/09/19( )

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

Gmech08.dvi

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

修士論文

85 4

( ) e + e ( ) ( ) e + e () ( ) e e Τ ( ) e e ( ) ( ) () () ( ) ( ) ( ) ( )

The Physics of Atmospheres CAPTER :


) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)


Gmech08.dvi

untitled

2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

重力方向に基づくコントローラの向き決定方法

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

meiji_resume_1.PDF

空気の屈折率変調を光学的に検出する超指向性マイクロホン

chap9.dvi

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb


Microsoft Word - 学士論文(表紙).doc

1 7 ω ω ω 7.1 0, ( ) Q, 7.2 ( Q ) 7.1 ω Z = R +jx Z 1/ Z 7.2 ω 7.2 Abs. admittance (x10-3 S) RLC Series Circuit Y R = 20 Ω L = 100

,798 14, kg ,560 10, kg ,650 2, kg ,400 19, kg ,

( ) : 1997

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

吸収分光.PDF

4‐E ) キュリー温度を利用した消磁:熱消磁

( ) ,

1 Q A 82% 89% 88% 82% 88% 82%

main.dvi

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.


main.dvi

all.dvi

c 2009 i

基礎数学I

66 σ σ (8.1) σ = 0 0 σd = 0 (8.2) (8.2) (8.1) E ρ d = 0... d = 0 (8.3) d 1 NN K K 8.1 d σd σd M = σd = E 2 d (8.4) ρ 2 d = I M = EI ρ 1 ρ = M EI ρ EI

untitled

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( )

0.1 I I : 0.2 I

untitled

 

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.


(2/1) T UU UI E EI EE EI DT PQ PM SP TDK P4 PE22 EE32x25x2 TV E 9 12 PQ8 1 UU9x129x31 UU9x129x31

keisoku01.dvi

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

支持力計算法.PDF

chap10.dvi

sec13.dvi

c y /2 ddy = = 2π sin θ /2 dθd /2 [ ] 2π cos θ d = log 2 + a 2 d = log 2 + a 2 = log 2 + a a 2 d d + 2 = l

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

Jean Le Rond d Alembert, ( ) 2005

8 300 mm 2.50 m/s L/s ( ) 1.13 kg/m MPa 240 C 5.00mm 120 kpa ( ) kg/s c p = 1.02kJ/kgK, R = 287J/kgK kPa, 17.0 C 118 C 870m 3 R = 287J

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

Microsoft Word - 章末問題

SO(2)

JIS Z803: (substitution method) 3 LCR LCR GPIB

1

x E E E e i ω = t + ikx 0 k λ λ 2π k 2π/λ k ω/v v n v c/n k = nω c c ω/2π λ k 2πn/λ 2π/(λ/n) κ n n κ N n iκ k = Nω c iωt + inωx c iωt + i( n+ iκ ) ωx

( ) ± = 2018

1. ( ) 1.1 t + t [m]{ü(t + t)} + [c]{ u(t + t)} + [k]{u(t + t)} = {f(t + t)} (1) m ü f c u k u 1.2 Newmark β (1) (2) ( [m] + t ) 2 [c] + β( t)2

総研大恒星進化概要.dvi

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

all.dvi

NETES No.CG V

70 : 20 : A B (20 ) (30 ) 50 1

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

untitled

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

1 SK00500M10A6 S (0.25 ± 0.025) 2 mm ± mm 50 ± 20% pf ε r S r T i O Sonnet ε r, tan δ Sonnet [2] [3] : 2 : 3 : 4


1).1-5) - 9 -

3 filename=quantum-3dim110705a.tex ,2 [1],[2],[3] [3] U(x, y, z; t), p x ˆp x = h i x, p y ˆp y = h i y, p z ˆp z = h

Untitled

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

30

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

15

振動と波動

pdf

untitled

Chap10.dvi

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

Transcription:

264 72 5 216 pp. 264 272 * 43.3. k, Yj; 43.38.Hz 1. 2. 2.1 1 4.8 1 2 [kg m 2 s 1 ] 1.2 1 3 [g/cm 3 ] 34 [m/s] 1.48 1 6 [kg m 2 s 1 ] 1 [g/cm 3 ] 1,48 [m/s] 1, 1 4 1 2,5 1 Tutorial on the underwater or medical ultrasound transducer. Shinichi Takeuchi Faculty of Biomedical Engineering, Toin Uniersity of Yokohama, Yokohama, 225 853 e-mail: shin1@toin.ac.jp 2.2 2.3 2 khz 1 khz 1 [1] 3.

265 1 1,48 1.48 1 [g/cm 3 ] [m/s] 1 6 [kg m 2 s 1 ] 1.2 1 3 34.41 1.7 1,58 1,61 1.7 1.72 1.6 1,56 1,6 1.65 1.7.92 1,48 1.36 1.6 1,58 1,61 1.67 1.71 1.38 1.8 2,7 3,8 3.7 6.84.9 1.2 1,9 2,7 1.71 3.24 1 7.9 5,3 41.9 3.1 SONAR SOund NAigation and Ranging 1 2 3 2 3 [1] 2 khz khz khz 1 mm

266 72 5 216 2 4 HS-26 3 3 khz 3.2 4 1 1 5 B

267 4. 5 6 5 3 2 B 1 6.2.3 mm 5 6 4.1 PZT PZT Q m tan δ PZT Low Q Q m tan δ PZT High Q Q Q PT 1 2 [2 5]

268 72 5 216 D = ε S E + es 1 T = c E S ee 2 D E T S ε S c E e e Newton 3 [2 5] ρ 2 ξ t 2 = T x 3 1 2 3 Newton T 1 T 2 1 2 E i 4 6 [2 5] 4 6 7 T 2 = φ E j 1 2 + jz ωc sin 1 2 j 2 Z tan 2 = j + jz ωc sin 1 j + jz ωc sin j Z tan 2 + φ E 4 2 T 1 = j + jz ωc sin j Z tan 1 j + jz 2 ωc sin 2 + φ E 5 i = φ 1 φ 2 + jω C E 6 j + jz jz tan j + jz φ ωc 2 ωc T 1 sin sin T 2 = j + jz j + jz 1 jz i tan φ 2 ωc ωc 2 sin sin E φ φ jωc 7 φ = e ε C S = S A,C = ε S SA,q = D 1 S A,c D = c E + e2 l l ε S 7 7 Mason 4.2 Z b = ρ b c b Z b = ρ b c b 8 7 9 2 4 4 F F A B C D 8 [5]

269 [ ] [ ] A TR B TR = 1 φ 1 j 2 ωc C TR D TR φ Q jω C } + jz B sin Z {z B + { } 8 2 1 + jz B sin Z Q = 1+jz B sin, z b = Z B Z 1.5 MRayl I II II I Z 1 = ρ 1 c 1 II Z 2 = ρ 2 c 2 7 Mason [2 5] R p T p 9 1 R I T I 11 12 [6] R p = Z 2 Z 1 Z 1 + Z 2 9 T p = 2 Z 2 Z 1 + Z 2 1 2 Z2 Z 1 R I = 11 Z 1 + Z 2 T I = 4 Z 1 Z 2 Z 1 + Z 2 2 12 8 Mason Z b = ρ b c b 4.3 C6 31 MRayl 31 1 6 kgm 2s 1 31 MRayl C6 I 1.5 MRayl II 91% 82% II 9% 18% 1 I II Z ML II

27 72 5 216 9 Mason Z b = ρ b c b [4] 1 I II 11 T I =4 1 Z1 Z ML 2 1+tan 2 θ ML 2 Z1 Z1 +1 + + Z ML 2 tan 2 θ ML Z 2 Z ML Z 2 13 θ ML = ML =2π lml, c ML λ ML Z ML = Z 1 Z 2 II T I 13 [4] 13 Z ML = Z 1 Z 2 T I 4 1 II T I =1 4 1 [3] 11 [3] F 14 [ ] A ML B ML C ML = h D ML ML ML ML Z ML ML jz ML sin ML ML ML ML 14 9 Mason 11 12 12 4 1 2 F 14

271 [ ] [ ] [ ] [ ] [ ] A B A TR B TR A 1 B 1 A 2 B 2 A n B n = C D C TR D TR C 1 D 1 C 2 D 2 C n D n = 1 1 j ω C φ Q jω C + jz B sin Z TR {z B { 2 Z 1 1 jz 1 sin 1 1 1 1 1 Z 1 1 2 2 n jz 2 sin 2 2 2 2 2 n n n Z 2 2 + } 1 + jz B sin Z n } n jz n sin n n 15 n 13 Z ML = Z 1 Z 2 13 I II 2 1 4 1 Goll Souquet Desilets [7 9] 2 Desilets 12 C-6 Sittig [5] 13 12

272 72 5 216 2 Goll Souquet Desilets Z Z 3 M Z 2 Z 3 M Z ZM 2 3 2 Z Z 2 M 3 Z Z 2 M 7 Z 4 ZM 3 7 Z ZM 6 5. 13 Goll Z ML =7.8MRayl Souquet Z ML =5.7MRayl Desilets Z ML = 4.1MRayl 13 Desilets Z Z M Z ML = Z Z M Goll [1],,, 1974, pp. 181 21. [ 2 ] G.S. Kino, Acoustic waes: Deice, Imaging, and Analog Signal Processing Prentice-Hall Inc., Englewood Cliffs, NJ, 1987. [ 3 ] J.F. Rosenbaum, Bulk Acoustic Wae Theory and Deice Artec House, Norwood, MA, 1988. [4],,, 1988. [ 5 ] E.K. Sittig, Effect of bonding and electrode layers on the transmission parameters of piezoelectric transducers used in ultrasonic digital delay lines, IEEE Trans. Sonics Ultrason., SU-16, 2 1 1969. [6],,, 1976, pp. 2 23. [ 7 ] J.H. Goll, The design of broad-band fluid-loaded ultrasonic transducers, IEEE Trans. Sonics Ultrason., SU-26, 385 393 1979. [ 8 ] J. Souquet, P. Defranould and J. Desbois, Design of low-loss wide-band ultrasonic transducer for noninasie medical application, IEEE Trans. Sonics Ultrason., SU-26, 75 81 1979. [ 9 ] C.S. Desilets, J.D. Fraser and G.S. Kino, The design of efficient broad-band piezoelectric transducer, IEEE Trans. Sonics Ultrason., SU-25, 115 125 1978.