I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

Similar documents
30

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

総研大恒星進化概要.dvi

pdf

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

master.dvi

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

TOP URL 1

IA

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

Note.tex 2008/09/19( )


i

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y


i Γ

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

Untitled

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

gr09.dvi

2011de.dvi

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

meiji_resume_1.PDF

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

Gmech08.dvi

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

Part () () Γ Part ,


TOP URL 1


Gmech08.dvi

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

all.dvi

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

( ) ,


t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

( )

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

LLG-R8.Nisus.pdf

untitled

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq


D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j


Radiation from moving charges#1 Liénard-Wiechert potential Yuji Chinone 1 Maxwell Maxwell MKS E (x, t) + B (x, t) t = 0 (1) B (x, t) = 0 (2) B (x, t)

A 99% MS-Free Presentation

201711grade1ouyou.pdf

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

( ) ( )

[ ] (Ising model) 2 i S i S i = 1 (up spin : ) = 1 (down spin : ) (4.38) s z = ±1 4 H 0 = J zn/2 i,j S i S j (4.39) i, j z 5 2 z = 4 z = 6 3

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e



phs.dvi


TOP URL 1

I ( ) 2019

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1.

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

m d2 x = kx αẋ α > 0 (3.5 dt2 ( de dt = d dt ( 1 2 mẋ kx2 = mẍẋ + kxẋ = (mẍ + kxẋ = αẋẋ = αẋ 2 < 0 (3.6 Joule Joule 1843 Joule ( A B (> A ( 3-2

sec13.dvi

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π


I 1

H.Haken Synergetics 2nd (1978)


.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

第1章 微分方程式と近似解法

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

Transcription:

16 I ( ) (1) I-1 I-2 I-3 (2) I-1 ( ) (100 ) 2l x x = 0 y t y(x, t) y(±l, t) = 0 m T g y(x, t) l y(x, t) c = 2 y(x, t) c 2 2 y(x, t) = g (A) t 2 x 2 T/m (1) y 0 (x) y 0 (x) = g c 2 (l2 x 2 ) (B) (2) (1) h y 1 (x) u 1 (x) y 1 (x) y 0 (x) y u(x, t) y(x, t) y 0 (x) (3) (4) u(x, t) (5)

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) cot x B n n! xn B 3 = B 5 = B 7 = = 0 cot x = 1 x n=0 A n Bernoulli A n n! xn (4) cos(kx) x [ π, π] Fourier cos(kx) = C 0 2 + { } C n cos(nx) + S n sin(nx) n=1 C n S n

I-3 ( ) (100 ) 1, 2 φ 1 (x), φ 2 (x) φ 1, φ 2 2 s 1 s 2 ψ s (1) z, ψ s (2) z (1) S = s 1 + s 2 S S z Ψ S,Sz S = 1, S = 0 x 1 x 2 (2) P 1, P 0 P 1 Ψ 1,Sz = Ψ 1,Sz, P 1 Ψ 0,0 = 0, P 0 Ψ 0,0 = Ψ 0,0, P 0 Ψ 1,Sz = 0 P 0, P 1 P i = c i + d i s 1 s 2 c i, d i (3) H = e 2 /r 12 r 12 x 1 x 2 S = 0, S = 1 H = a + b s 1 s 2 S b b = 2 d 3 x 1 d 3 x 2 φ 1(x 2 )φ 2(x 1 ) e2 φ 1 (x 1 )φ 2 (x 2 ) r 12 s 1 s 2 S S s 1 s 2 a, b S (4) Ω φ 1(r)φ 2 (r) = 1 a q e iq r Ω b d 3 eiq r r lim d 3 eiq r ɛr r r ɛ +0 r (5) S = 1, S = 0 q

16 II (3 30 ) (1) II-1 II-2 II-3 1 (2) II-1 ( ) (100 ) N m k (N + 1) 7 7 7 7 (1) n t x n (t) (2) x n (t) n N x(t) d 2 dt 2 x = Lx N L (3) x (p) n (t) = a (p) n cos ω p t (n = 1, 2,..., N) N p = 1, 2,..., N ω p a (p) n ω p = Ω sin θ p 2, a(p) n = A sin nθ p (A) Ω = 2 k/m θ p = pπ/(n + 1) A a (p) n = a sin(nθ + α) θ α (4) a (p) = t (a (p) 1, a (p) 2,..., a (p) n ) a (p) (A) A = 2/(N + 1) N n=1 a (p) n a (p ) n = δ pp (p, p = 1, 2,..., N) N δ pp sin 2 nθ p = (N + 1)/2 n=1

(5) 2mγẋ n γ > 0 F n (t) = mf n cos ω e t d 2 dt 2 x Lx + 2γ d dt x = f cos ω et (B) f = t (f 1, f 2,..., f N ) q p (t) f (p) = N n=1 a (p) n f n (6) q p (t) N n=1 a (p) n x n (t)

II-2 ( ) (100 ) (1) a b L C 0 ɛ 0 (2) C α α h 1 h 1 ( g ) α h 1 C θ ρ ( ) ( α) (3) C 1 h 1 C 1 ɛ ɛ 0 (4) V h 2 C 2 h 2 ρ (5) C 3 ɛ a, b, C 0, C 1, C 2, C 3, V, ɛ 0, θ α α' α θ C a b V L h1 h2 h1

II-3 (Ising ) (100 ) (1) V N µ H (+) ( ) σ i (i = 1,..., N) H +1 1 Hamiltonian H = J σ i σ j µh ij i σ i (A) ij i Hamiltonian H i σ i σ H i = Jz σ σ i µhσ i (B) z Jz σ = µh H eff = H + H (a) Z 1 H eff (b) Helmholtz F S U (c) M(= N µ σ ) V M = Nµ µh V tanh( kt + JzV M ) kt µn (d) (C) H = 0 M = 0 Curie T c = Jz/k k Boltzmann (2) N H (+) ( ) N + N Φ N + /N = (1 + Φ)/2 N /N = (1 Φ)/2 zn/2 +, N ++ N N + U (C) U = J(N ++ + N N + ) (D)

+ p + = N + /N p = N /N U N ++ N ++ = 1 2 zn +p + = z N(1 + Φ)2 (E) 8 N + = zn + p = z 4 N(1 Φ2 ) N = 1 2 zn p = z N(1 Φ)2 (G) 8 (F) (a) N N + N Φ Stirling (log x! x log x x) (b) H Helmholtz F Φ (c) Φ (C) H = 0 Φ (d) C v T c

平成 16 年度大学院入学試験問題 III 3 時間 注意 (1) 問題は III-1 から III-8 まで 8 問ある これから 3 問選択せよ (2) 選択した問題の回答はそれぞれ別の用紙一枚に記入せよ 裏面を用いても よい (3) 各用紙ごとに 左上に問題番号 右上に受験番号と氏名を記入せよ III-1 (選択)(振り子の実験) (100 点) 剛体を水平な固定軸で支えた実体振り子で重力加速度 g を求める実験を行うも のとする Borda の振り子 この振り子は図1のように細い針金で吊られた半径 r 質量 M の金属球からなり 支持体のナイフエッジ K を支点として振動する 針金の長さを l 振り子が最大振幅になるときの角度を α 振動の周期を T とする と 重力加速度 g は次の式で求めることができる " 4π 2 (l + r) 2r2 g= 1 + T2 5(l + r)2 #" α2 1+ 8 # (A) K l L (1) 金属球の直径をノギス キャリパー を用いて測定したところ 図 2 のよう な表示だった 直径の値を誤差を含めて書け

(2) T 190 10 1 0 90 2 100 190 3 1 2 100 100 0 1 40 5 100 5 09 7 3 29 2=209.2 10 2 01.2 110 5 30.7 3 29.5=209.6 20 2 22.0 120 5 53.7 3 31.7=211.7 30 2 43.1 130 6 14.5 3 29.4=209.4 40 3 03.8 140 6 35.5 3 29.7=209.7 50 3 24.8 150 6 56.5 3 29.7=209.7 60 3 45.8 160 7 17.3 3 29.5=209.5 70 4 06.6 170 7 38.3 3 29.7=209.7 80 4 27.6 180 7 59.5 3 29.9=209.9 90 4 48.6 190 8 20.5 3 29.9=209.9 T T T 4.32 = 0.219089, 0.43 = 0.077281 90 72 K L 110.96± 0.01 cm α 2 = 1.54 10 3 (3) l (4) g (5) (4) 979.60184 g (6) l, r, T l r T g g g = L + r L r + 2 T T (B) g g

III-2 ( )( ) (100 ) (1) 10 cm 50 cm 100 A 10 T L µ 0 = 4π 10 7 kg m C 2 (2) 1 10 8 Ω m 0.1 mm 1 m R 0 t=0 I 0 t B I 0, L, R L, R (3) (2) r

1 ppm(=1 10 6 ) r (4) (2) 0 t=0 I 0 =βt t B I 0, L, R, β β=0.1 A/sec L, R (5) 100A (S1) ( 1) (PSW) (D1,D2,R1 ) D1,D2 2 R1 0.02 Ω I D2 R1 D1 S1 60A 0.6V 1.2V V

III-3 ( )( ) (100 ) ( p 2 + ω 2 x 2) H = 1 2 x, p ω 1 a = (2ω) 1/2 (p iωx) a = (2ω) 1/2 (p + iωx) a a h = 1 (1) a a H ( H = ω a a + 1 ) 2 (2) 0 a 0 = 0 ϕ 0 (x) = x 0 π e ax2 dx = a (3) 1 = a 0 ϕ 1 (x) = x 1 H 0 H 0 = 1 2 ( p 2 x + p 2 y) + 1 2 ω2 ( x 2 + y 2) [ H = λ ( p e) 2 1 ] 2 (p2 x + p 2 y) p = (p x, p y ) e (cos θ, sin θ)

(4) θ = π/4 H H (5) θ = 0 λ > 0 λ < 0 ϕ 0 (x), ϕ 0 (y), ϕ 1 (x), ϕ 1 (y) (6) θ (7) (5) (6)

III-4 ( ) ( ) (100 ) µ 0 z x(> a) a x z ( ) (1) I 1 I 2 I 1 P H (2) (1) P ds = adθ x df x z df z (3) F π 0 dθ u t cos θ = π u2 t 2 (u > t) (4) I 1 = I sin ωt M e ( ) (5) I 1 = I x v 0 x(> a) I 2 R (6) (5) x = d 1 (> a) x = d 2 W Q

III-5 ( ) ( ) (100 ) Maxwell-Boltzmann ε(p) = 1 (A) 2m p2 m Maxwell-Boltzmann h k B (1) V T Z 1 Gauss : dx e x2 = π (2) N Z N ( ) (3) N µ Ξ (4) N = Ω µ Ω = pv = k BT ln Ξ µ = µ cl N T V µ cl = k B T ln [( ) ] N λ 3 T V λ T h λ T = 2 2πmk B T (5) m (A) ε(p) Ω = 2 V m 3/2 dε ε 3/2 ze βε (B) 3 2π2 3 1 gze βε 0

β = 1 k B T z = eβµ µ g +1 1 (6) (B) z N V T z = e βµ 1 (B) z N = Ω z N µ λ T V z N g Γ : Γ(z) = 0 dx x z 1 e x, Γ(z + 1) = zγ(z), Γ(1/2) = π (7) : z = e βµ 0 z (2) z = exp(βµ cl ) (8) (6) (7) z : x N V λ3 T (6) z x x (9) : pv Nk B T p

III-7 ( )( : ) (100 ) M r p(r), ρ(r), v(r) (1) (2) v 1 dv 2a2 v dr = r GM r 2 v 2 a 2 (A) a p/ρ G (A) (critical point) r crit a (A) r (3) v r (A) (4) (3) (5) 6.7 10 8 dyn cm 2 g 2 8.3 10 7 erg deg 1 mol 1 0.60 2.0 10 33 g 7.0 10 10 cm 1.0 10 6 K

III-8 ( ) ( ) (100 ) ( ) 1940 Fe XIV Fe X Edlen ( 1) : Fe X Grotorian Fe X 1939 (1) λ R (2) Fe X Fe XIV 300eV 2 1eV=1.60 10 12 erg k=1.38 10 16 erg K 1 3000m ( ) L1 L2 L3 F L1 C C 1 A 3 L1 L1 L2 L1 D ( ) (3) L2 1 A F A L1 D Fe XIV 5303Å

2 T Fe XIV Maxwell FeXIV v v + dv f(v)dv = ( ) m 1/2 e mv 2 /(2kT ) dv 2πkT m k (4) Fe XIV 1 kt 2 Fe XIV 5303Å Fe XIV 3: Fe XIV 5303Å Fe XIV λ 0 =5303Å (5) 1/e λ D c λ D = λ 0 c ( 2kT m (6) ( ) 6 ) 1/2