eto-vol1.dvi

Similar documents
eto-vol2.prepri.dvi

all.dvi


Gmech08.dvi

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

SO(3) 49 u = Ru (6.9), i u iv i = i u iv i (C ) π π : G Hom(V, V ) : g D(g). π : R 3 V : i 1. : u u = u 1 u 2 u 3 (6.10) 6.2 i R α (1) = 0 cos α

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

70 : 20 : A B (20 ) (30 ) 50 1

DVIOUT-fujin

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

高知工科大学電子 光システム工学科

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

TOP URL 1

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [


SFGÇÃÉXÉyÉNÉgÉãå`.pdf

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

液晶の物理1:連続体理論(弾性,粘性)

QMII_10.dvi


4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

Aharonov-Bohm(AB) S 0 1/ 2 1/ 2 S t = 1/ 2 1/2 1/2 1/, (12.1) 2 1/2 1/2 *1 AB ( ) 0 e iθ AB S AB = e iθ, AB 0 θ 2π ϕ = e ϕ (ϕ ) ϕ

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

The Physics of Atmospheres CAPTER :

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

all.dvi

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

量子力学 問題

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

Part () () Γ Part ,

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

chap10.dvi

30

Gmech08.dvi

( ) s n (n = 0, 1,...) n n = δ nn n n = I n=0 ψ = n C n n (1) C n = n ψ α = e 1 2 α 2 n=0 α, β α n n! n (2) β α = e 1 2 α 2 1

note5.dvi

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

TOP URL 1

(1) D = [0, 1] [1, 2], (2x y)dxdy = D = = (2) D = [1, 2] [2, 3], (x 2 y + y 2 )dxdy = D = = (3) D = [0, 1] [ 1, 2], 1 {

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

note4.dvi

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds


( )

2009 I 2 II III 14, 15, α β α β l 0 l l l l γ (1) γ = αβ (2) α β n n cos 2k n n π sin 2k n π k=1 k=1 3. a 0, a 1,..., a n α a

1).1-5) - 9 -

II 2 II


8 (2006 ) X ( ) 1. X X X 2. ( ) ( ) ( 1) X (a) (b) 1: (a) (b)

untitled

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

Radiation from moving charges#1 Liénard-Wiechert potential Yuji Chinone 1 Maxwell Maxwell MKS E (x, t) + B (x, t) t = 0 (1) B (x, t) = 0 (2) B (x, t)

a L = Ψ éiγ c pa qaa mc ù êë ( - )- úû Ψ 1 Ψ 4 γ a a 0, 1,, 3 {γ a, γ b } η ab æi O ö æo ö β, σ = ço I α = è - ø çèσ O ø γ 0 x iβ γ i x iβα i

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =

1 (1) ( i ) 60 (ii) 75 (iii) 315 (2) π ( i ) (ii) π (iii) 7 12 π ( (3) r, AOB = θ 0 < θ < π ) OAB A 2 OB P ( AB ) < ( AP ) (4) 0 < θ < π 2 sin θ

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π

本文/目次(裏白)

0406_total.pdf

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

nsg02-13/ky045059301600033210

Mott散乱によるParity対称性の破れを検証

III,..

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1.

Gmech08.dvi

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

Ł\”ƒ-2005

卒業研究報告 題 目 Hamiltonian 指導教員 山本哲也教授 報告者 汐月康則 平成 14 年 2 月 5 日 1

第90回日本感染症学会学術講演会抄録(I)

日本内科学会雑誌第102巻第4号

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

E 1/2 3/ () +3/2 +3/ () +1/2 +1/ / E [1] B (3.2) F E 4.1 y x E = (E x,, ) j y 4.1 E int = (, E y, ) j y = (Hall ef

LLG-R8.Nisus.pdf

Onsager SOLUTION OF THE EIGENWERT PROBLEM (O-29) V = e H A e H B λ max Z 2 Onsager (O-77) (O-82) (O-83) Kramers-Wannier 1 1 Ons

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

SO(2)

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

meiji_resume_1.PDF

1


R = Ar l B r l. A, B A, B.. r 2 R r = r2 [lar r l B r l2 ]=larl l B r l.2 r 2 R = [lar l l Br ] r r r = ll Ar l ll B = ll R rl.3 sin θ Θ = ll.4 Θsinθ

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±


Transcription:

( 1) 1 ( [1] ) [] ( ) (AC) [3] [4, 5, 6] 3 (i) AC (ii) (iii) 3 AC [3, 7] [4, 5, 6] 1.1 ( e; e>0) Ze r v [ 1(a)] v [ 1(a )] B = μ 0 4π Zer v r 3 = μ 0 4π 1 Ze l m r 3,

μ 0 l = mr v ( l s ) s μ s = μ B s [μ B = e /(m) g ] μ s B = μ 0 Ze 4π m ( l s) r3 1 H SO = μ 0 Ze 4π m ( l s). (1) r3 E = 1 4πε 0 Ze r r r, U ( F = ee = U) H SO = e m s (p E) = c 4m σ (p U) () c c =1/ μ 0 ε 0 σ : s =(1/)σ. () [8] Z : () mc 1MeV [8] 1. ( ) ( ) GaAs, InAs p ( l =1) (1) p H SO l s l, s l z, s z j = l + s l s = 1 [(l + s) l s ] = 1 (j l s ). H SO j j z p j = l + s =3/ (j z = ±3/, ±1/), j = l s =1/ (j z = ±1/) 1 1/ ( ) [L. H. Tomas (196)] [ : (, 1974)]

(a) (a') +Ze e e +Ze (b) (b') + + + e + + = J J B 1: (a) : (a ) (b) ± : (b ) k p [9] Γ [k =(0, 0, 0) ] j =3/ j =1/ split-off Γ j z = ±3/ eavy-ole j z = ±1/ ligt-ole s (l =0) 1.3 ( ) ( ) ( ) ( ) m (GaAs 0.067 ) GaAs k p () ( [7] ) H SO = P [ 1 3 E 0 ] 1 (E 0 +Δ 0 ) 1 σ (p U). (3) P E 0 Δ 0 j =3/ j =1/ ( ) ( ) (Bloc ), Scrödinger (Bloc ) 3

E E 0 Δ 0 k HH LH split-off band : GaAs eavy-ole (HH) ligt-ole (LH) split-off 3 InGaAs, InAs : InGaAs/GaAs (Rasba) ( ) xy z H RSO = ᾱ σ (p ẑ) =ᾱ (p yσ x p x σ y ) (4) k α /k F, k α = mα (m k F Fermi ) InGaAs α =(3 4) 10 11 evm, Δ R k F α =15 0 mev k α /k F =Δ R /(4E F ) 0.1 [10, 11] 1(b) ± z x x [ 1(b )] y [ (4) ] y x : (Dresselaus) [1] III-V 3 x, y, z 4

[100], [010], [001] H (3D) DSO = γ ] [p x (p y p z)σ x + p y (p z p x)σ y + p z (p x p y)σ z [001] z H DSO = γ β = γ p z, p z =0 [ ] p x (p y p z )σ x + p y ( p z p x )σ y = β ( p xσ x + p y σ y )+(p 3 ). (5) GaAs [13] InGaAs 1.4 Datta Das [14] 3(a) (FET) ( ) 3 x y (4) gμ B s B eff = γ s B eff [g g (GaAs g 0.4); γ = gμ B / μ s = γ s ] s γ B eff = ᾱ (p ẑ), ds dt = μ s B eff = γ s B eff x k x 4 y ω = γ B eff =αk x / x L Δθ = αk x Δt = αk x L ( k x /m) = αml. (6) ω ( k x /m) k x Δθ k x (6) α Δθ 3 3 : ( ) ( ) ( ) 4 y 1 ( ) [14] 5

(a) z y x (b) E (c) E k k + k k 3: (a) Datta Das ( ) ( ) ( ) (b) 1 k ± (c) : E k,± = k /(m) ± gμ B B/. x Hamiltonian H = p x m ᾱ p xσ y. ψ k,± = e ikx χ (y) ±, E k,± = k αk = m m (k k α) kα m. χ (y) ± y : σ yχ (y) ± = ±χ (y) ±. E k,± 3(b) (i) k ± k + k α = k + k α ( k 0 ). (ii) 1 E k,± k k=k± (iii) Kramers ( ) 5 : E k,+ = E k,. [E k,± = k /(m) ± gμ B B/] 3(c) 5 J. J. Sakurai: ( 1989) 4 6

(i) (iii) x χ (x) + x =0 χ (x) + = 1 [χ (y) + + iχ (y) ] χ (x) = 1 [iχ (y) + + χ (y) ] ψ = 1 [e ik +x χ (y) + + ieik x χ (y) ] = 1 e ik 0x [e ikαx χ (y) + + ie ikα χ (y) ] = e ik 0x [cos(k α x)χ (x) + + sin(k α x)χ (x) ]. x = L k α (AC) (AB) B A (B = rota) 4(a) AB Aaronov Caser AB [15] ( ) ( ) (AC) [ ] AB AB AC AB AC.1 AB 4(a) A B Φ B(r) A(r) Hamiltonian H = 1 m [p + ea(r)] + V (r). (7) C i (i =1, ) A =0 ψ (0) i (r) A 0 [ ψ i (r) =ψ (0) i (r) exp i ē ] r A(r ) dr (8) r A (C i ) 7

(a) A Φ C 1 B (b) ϕ C (c) A B B eff 4: (a) A B Φ (b) (c) (B eff p ẑ) AC Hamiltonian (7) ψ i (r) 6 : (p + ea)ψ i (r) =( i + ea)ψ i (r) =[ i ψ (0) i (r)]e i ē A dr, etc. B ψ(r B )=ψ 1 (r B )+ψ (r B ), ψ(r B ) = ψ 1 + ψ + cos(θ 1 θ +Δφ) θ 1, θ ψ (0) 1 (r B), ψ (0) (r B) Δφ = ē r B A(r) dr + ē r B A(r) dr r A (C 1 ) r A (C ) = ē A(r) dr = ē rota ds = ē B ds =π Φ. Φ 0 3 Φ Φ 0 = /e (quantum flux) Φ Φ 0 C 1 C ( ψ 1 = ψ, θ 1 = θ ) Landauer [16] [ G = e 1 + cos (π Φ )] (9) Φ0 6 (8) B = rota =0, χ(r) A = rχ (8) r 8

. AC AB (4) p p + ea [ () [8]] 4(a) [ 4(b)] 7 r ϕ p x = i 1 r sin ϕ ϕ, p y = i 1 r cos ϕ ϕ. A =(Br/)e ϕ =(Φ/πr)e ϕ (e ϕ ϕ Φ =πr ) Hamiltonian H = = ( mr i ϕ + Φ ) + α ( Φ 0 r (cos ϕσ x + sin ϕσ y ) i ϕ + Φ ) Φ 0 iα(cos ϕσ y sin ϕσ x ) 1 (10) r [ mr i ϕ + Φ + mrα ] Φ 0 (cos ϕσ x + sin ϕσ y ) mα. (11) [ (10) r / r 1/r [17] H 8 ] Hamiltonian (11) i ϕ + Φ + mrα Φ 0 (cos ϕσ x + sin ϕσ y )= i ϕ + Φ + mrα ( 0 e iϕ Φ 0 e iϕ 0 ψ(ϕ +π) =ψ(ϕ) ψ = 1 ( π C1 e inϕ C e i(n+1)ϕ Hamiltonian (11) E n,± = ψ n,+ = ψ n, = ) ( mr n + Φ ) Φ + ΦAC ± mα 0 π, (1) ( ) 1 cos(θα /)e i(n 1)ϕ π sin(θ α /)e inϕ, ( 1 π sin(θα /)e inϕ cos(θ α /)e i(n+1)ϕ 7 4(a) z (χ (z) ± ) A ψ1(rb) = A 1χ (z) + + B1χ(z), ψ(rb) =Aχ(z) + + Bχ(z) A1/B1 = A/B AC [C 1χ (z) + + Cχ(z), ] A1/B1 = A/B B 8 ). ) 9

± = π 1 Φ AC (mrα ) +1, (13) tan θ α = mrα/ (π/ <θ α π; α =0 θ α = π) (α =0) e ikx ( x = rϕ) k /(m). πrk =πn, AB πrk πφ/φ 0 =πn. n n +Φ/Φ 0 (1) 9 ( [16] ) 10 (1) Φ AC ± [ 4(c) (B eff p ẑ) ] (±) AC 4(a) (mrα ) G = e 1 cos π +1. (14) α AC [3, 18, 19] AB [0] AC Qian Su [1] 11 non-abelian AC [] (007 1 ) G. E. W. Bauer [1] : 43, 1 (008). [] : 18 ( 1993). [3] T. Bergsten: 4, 331 (007). 9 Kramers : E n,+ = E n, 10 Kramers : E n,+ = E n,. 11 [1] Aaronov-Anandan (AA) AC (13) AA π(1 cos θ α) 10

[4] : 39, 7 (004). [5] : 6, (007). [6] : 4, 873 (007). [7] : 40, 189 (005). [8] : (II) ( 1969). [9] : ( ) ( 1991). [10] D. Grundler, Pys. Rev. Lett. 84, 6074 (000). [11] Y. Sato, T. Kita, S. Gozu and S. Yamada, J. Appl. Pys. 89, 8017 (001). [1] G. Dresselaus: Pys. Rev. 100, 580 (1955). [13] J. B. Miller, D. M. Zumbül, C. M. Marcus, Y. B. Lyanda-Geller, D. Goldaber-Gordon, K. Campman and A. C. Gossard, Pys. Rev. Lett. 90, 76807 (003). [14] S. Datta and B. Das, Appl. Pys. Lett. 56, 665 (1990). [15] Y. Aaronov and A. Caser, Pys. Rev. Lett. 53, 319 (1984). [16] : ( 003). [17] F. E. Meijer, A. F. Morpurgo and T. M. Klapwijk, Pys. Rev. B 66, 33107 (00). [18] M. König et al., Pys. Rev. Lett. 96, 76804 (006). [19] T. Bergsten, T. Kobayasi, Y. Sekine and J. Nitta, Pys. Rev. Lett. 97, 196803 (006). [0] : 4, 1 (007). [1] T. Z. Qian and Z. B. Su, Pys. Rev. Lett. 7, 311 (1994). [] N. Hatano, R. Sirasaki and H. Nakamura, Pys. Rev. A 75, 03107 (007). 11