x ( ) x dx = ax

Similar documents
1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

DVIOUT

2 1 x 1.1: v mg x (t) = v(t) mv (t) = mg 0 x(0) = x 0 v(0) = v 0 x(t) = x 0 + v 0 t 1 2 gt2 v(t) = v 0 gt t x = x 0 + v2 0 2g v2 2g 1.1 (x, v) θ

mugensho.dvi

pdf

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

Microsoft Word - 触ってみよう、Maximaに2.doc

Gmech08.dvi

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0,

2.2 ( y = y(x ( (x 0, y 0 y (x 0 (y 0 = y(x 0 y = y(x ( y (x 0 = F (x 0, y(x 0 = F (x 0, y 0 (x 0, y 0 ( (x 0, y 0 F (x 0, y 0 xy (x, y (, F (x, y ( (

Gmech08.dvi

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)

d (K + U) = v [ma F(r)] = (2.4.4) t = t r(t ) = r t 1 r(t 1 ) = r 1 U(r 1 ) U(r ) = t1 t du t1 = t F(r(t)) dr(t) r1 = F dr (2.4.5) r F 2 F ( F) r A r

2011de.dvi

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

応力とひずみ.ppt

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

08-Note2-web

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 -

1.1 ft t 2 ft = t 2 ft+ t = t+ t d t 2 t + t 2 t 2 = lim t 0 t = lim t 0 = lim t 0 t 2 + 2t t + t 2 t 2 t + t 2 t 2t t + t 2 t 2t + t = lim t 0

v er.1/ c /(21)

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.



5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

I 1

A

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

1 8, : 8.1 1, 2 z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = n i=1 a ii x 2 i + i<j 2a ij x i x j = ( x, A x), f =

i

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

DE-resume



y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P



変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

A

< 1 > (1) f 0 (a) =6a ; g 0 (a) =6a 2 (2) y = f(x) x = 1 f( 1) = 3 ( 1) 2 =3 ; f 0 ( 1) = 6 ( 1) = 6 ; ( 1; 3) 6 x =1 f(1) = 3 ; f 0 (1) = 6 ; (1; 3)



I ( ) 2019

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

CALCULUS II (Hiroshi SUZUKI ) f(x, y) A(a, b) 1. P (x, y) A(a, b) A(a, b) f(x, y) c f(x, y) A(a, b) c f(x, y) c f(x, y) c (x a, y b)

( ) ( )

slide1.dvi

dy + P (x)y = Q(x) (1) dx dy dx = P (x)y + Q(x) P (x), Q(x) dy y dx Q(x) 0 homogeneous dy dx = P (x)y 1 y dy = P (x) dx log y = P (x) dx + C y = C exp

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2

i

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

dynamics-solution2.dvi

LCR e ix LC AM m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x (k > 0) k x = x(t)

Maxwell


, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

(1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9

notekiso1_09.dvi

6. Euler x

ac b 0 r = r a 0 b 0 y 0 cy 0 ac b 0 f(, y) = a + by + cy ac b = 0 1 ac b = 0 z = f(, y) f(, y) 1 a, b, c 0 a 0 f(, y) = a ( ( + b ) ) a y ac b + a y


x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

Note.tex 2008/09/19( )

高等学校学習指導要領

高等学校学習指導要領

Fubini

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

C:/KENAR/0p1.dvi

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y

( ) x y f(x, y) = ax

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+

K E N Z OU

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

ohp_06nov_tohoku.dvi

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

Part () () Γ Part ,

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2.

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

x x x 2, A 4 2 Ax.4 A A A A λ λ 4 λ 2 A λe λ λ2 5λ + 6 0,...λ 2, λ 2 3 E 0 E 0 p p Ap λp λ 2 p 4 2 p p 2 p { 4p 2 2p p + 2 p, p 2 λ {

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

untitled

lecture

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1)

KENZOU

Transcription:

x ( ) x dx = ax

1 dx = a x log x = at + c x(t) = e at C (C = e c ) a > 0 t a < 0 t 0 (at + b )

h dx = lim x(t + h) x(t) h 0 h x(t + h) x(t) h x(t) t x(t + h) x(t) ax(t) h x(t + h) x(t) + ahx(t) 0, h, 2h, 3h,...

Mathematica a=1;h=0.1; For[i = 1; x = 1; kinji = {{0, x}};, i <= 10, i++, x += a*x*h; AppendTo[kinji, {i*h, x}]]; ListPlot[kinji,PlotJoined >True]

dx = x Figure: 1 1 2 1 0.2 0.4 0.6 0.8 1-1 -2

dx = ax bx2

h ( ) Figure: h = 0.1 ( ) 2.75 2.5 2.25 2 1.75 1.5 1.25 0.2 0.4 0.6 0.8 1

2 2 dx dy = ax + by = cx + dy

dx dy = ax + by = cx + dy d ( ) a b A = c d ( ) x = A y ( ) x y

( ) ( ) ( ) λ 0 X x A P 1 AP = = P 0 µ Y 1 y ( ) d X = d ( ) ( ) ( ) x Y P 1 = P 1 x A = P 1 X AP y y Y dx dy = λx = µy 2

dx dy = 7 3 x 2 3 y = 1 3 x + 8 3 y A = ( 7 3 2 3 1 3 8 3 )

A = {{7/3, 2/3}, { 1/3, 8/3}} Eigenvalues[A] Q=Eigenvectors[A] Q P=Transpose[Q]

Inverse[P].A.P ( 3 ) 0 0 2 ( ) ( ) X = P 1 x Y y dx dy = 3X = 2Y

dx dy = x y = x + y

Mathematica h = 0.1; For[i = 1; x = 0.1; y = 0; kinji = {{x, y}}, i <= 67, i++, x += h(x - y); y += h(x + y); AppendTo[kinji, {x, y}]]; ListPlot[kinji, PlotJoined > True, Ticks > None]

x y x += h(x -y); y += h(x + y); x y x

Mathematica x x u y x u x h = 0.1; For[i = 1; x = 0.1; y = 0; kinji = {{x, y}}, i <= 67, i++, u=x+ h(x - y); y += h(x + y);x=u; AppendTo[kinji, {x, y}]]; ListPlot[kinji, PlotJoined > True, Ticks > None]

Figure: (0.1, 0)

A = ( ) 1 2 1 1 A dx dy = x + 2y = x + y

F = ma 3 F = G mm r 2

mg m d 2 y 2 = mg dy dv = v = g v y 0 v y 0 v(t) = v y 0 gt y(t) = y 0 + v 0 t 1 2 gt2

x d 2 x 2 = 0 x x 0 v x 0 x(t) = x 0 + v x 0 t t y(t) = y 0 + v y 0 v0 x (x(t) x 0 ) 1 ( ) x(t) 2 2 g x0 v0 x

Mathematica x, y 4 x, y g=1;h = 0.1; For[i = 1; x = 0; y = 0;vx=0.5;vy=20; kinji = {{x, y}}, i <= 100, i++,ux=x+ h*vx; vx += 0; uy=y+h*vy;vy+=-g*y; x=ux;y=uy; AppendTo[kinji, {x, y}]]; ListPlot[kinji, PlotJoined > True, Ticks > None]

( ) m dx 2 2 = kx dx = v dv = kx v x(t) = A sin(bt + C) x(t) = A sin( kt + C) v(t) = A cos( kt + C) A, C

m d 2 x = mg sin x 2 x 0 sin x x

dx dy dz = 10x + 10y = 29x y xz = 8 3 z + xy xy

Mathematica h = 0.01; For[i = 1; x = 0.1; y = 0.1; z = 0.1; kinji = {{x, y}}, i < 5000, i++, u=x + h(-10x + 10y); v=y + h(28x - y - x*z); z += h(-8z/3 + x*y); x=u; y=v; AppendTo[kinji, {x, y}] ] ListPlot[kinji, PlotJoined > True]

20 10-15 -10-5 5 10 15 20-10 -20

dx dy = y = εy(1 x 2 ) x

h = 0.1; m = 2; For[i = 1; x = 0.1; y = 0; kinji = {{x, y}}, i <=1000, i++, u =x+ h*y; y += h(m*(1 -x 2 )*y - x); x=u AppendTo[kinji, {x, y}]]; ListPlot[kinji, PlotJoined > True, Ticks > None]

Figure:

x(t + h) x(t) + x (t)h x(t + h) x(t + h) = x(t) + x (t)h + x (t) 2 h2 + 2

y = f (x, y) h y(0) x T, 0, h, 2h,... T /h m y m x m = mh l y m y m y m l+1 y 0 = y(0) y 1,..., y l 1 y m+1 y m+1 = f (x m+1, y m+1 ) y m+1

( ) ( ) y m+1 = y m + hy m (y m = f (x m, y m )) y m+1 = y m + h 2 (y m + y m+1) y m y m y m+1 h h

x m < x < x m+1 y(x) = y m + (x x m )y m y m+1 = y m + h 2 y m + h 2 y m+1 = y m + h 2 y m + h 2 (y m + hy m + ) = y m + hy m + h2 2 y m + y(x) = y m + (x x m )y m + (x x m) y m + 2 2 y m+1 = f (x m+1, y m+1 ) y m+1

y m+1 = y m + hy m+1 y m+1 = y m 1 + 2hy m y m+1 = y m hy m + h2 2 y m + + 2hy m = y m + hy m + h2 2 y m + 2

y 1 y 1 z y 1 = y 0 hy 0 z = y hy y w w = y y y = z + 2h y y y 1 z = w

2 y (x) y (x+h) y (x) h y (x) y (x h) h h = y (x + h) 2y (x) + y (x h) h 2 2 2 2