[10] 2 [11][12] Fig.1 2 (Panasonic: PT-D5700L) deg Fig. 1: Experimental environment. 65 cd/m 2 20 % 1500 mm 2560 mm ( )

Similar documents
& Vol.5 No (Oct. 2015) TV 1,2,a) , Augmented TV TV AR Augmented Reality 3DCG TV Estimation of TV Screen Position and Ro

27 VR Interaction between visual and vestibular perception in VR environment

122 丸山眞男文庫所蔵未発表資料.indd

2). 3) 4) 1.2 NICTNICT DCRA Dihedral Corner Reflector micro-arraysdcra DCRA DCRA DCRA 3D DCRA PC USB PC PC ON / OFF Velleman K8055 K8055 K8055


24 Depth scaling of binocular stereopsis by observer s own movements

main.dvi

Gaze Head Eye (a) deg (b) 45 deg (c) 9 deg 1: - 1(b) - [5], [6] [7] Stahl [8], [9] Fang [1], [11] Itti [12] Itti [13] [7] Fang [1],

情報処理学会研究報告 IPSJ SIG Technical Report Vol.2011-MBL-57 No.27 Vol.2011-UBI-29 No /3/ A Consideration of Features for Fatigue Es

1(a) (b),(c) - [5], [6] Itti [12] [13] gaze eyeball head 2: [time] [7] Stahl [8], [9] Fang [1], [11] 3 -

75 unit: mm Fig. Structure of model three-phase stacked transformer cores (a) Alternate-lap joint (b) Step-lap joint 3 4)

2007/8 Vol. J90 D No. 8 Stauffer [7] 2 2 I 1 I 2 2 (I 1(x),I 2(x)) 2 [13] I 2 = CI 1 (C >0) (I 1,I 2) (I 1,I 2) Field Monitoring Server

2 The Characteristics of Two Negative Peaks on Visual Evoked Potentials with Depth Perception Yoichi MIYAWAKI, Yasuyuki YANAGIDA, Taro MAEDA, and Susu

(MIRU2008) HOG Histograms of Oriented Gradients (HOG)

28 Horizontal angle correction using straight line detection in an equirectangular image

DPA,, ShareLog 3) 4) 2.2 Strino Strino STRain-based user Interface with tacticle of elastic Natural ObjectsStrino 1 Strino ) PC Log-Log (2007 6)

xx/xx Vol. Jxx A No. xx 1 Fig. 1 PAL(Panoramic Annular Lens) PAL(Panoramic Annular Lens) PAL (2) PAL PAL 2 PAL 3 2 PAL 1 PAL 3 PAL PAL 2. 1 PAL

Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels).

IPSJ SIG Technical Report Vol.2012-CG-148 No /8/29 3DCG 1,a) On rigid body animation taking into account the 3D computer graphics came


ron.dvi

: u i = (2) x i Smagorinsky τ ij τ [3] ij u i u j u i u j = 2ν SGS S ij, (3) ν SGS = (C s ) 2 S (4) x i a u i ρ p P T u ν τ ij S c ν SGS S csgs

塗装深み感の要因解析

04-p45-67cs5.indd

日本感性工学会論文誌

(a) (b) (c) Canny (d) 1 ( x α, y α ) 3 (x α, y α ) (a) A 2 + B 2 + C 2 + D 2 + E 2 + F 2 = 1 (3) u ξ α u (A, B, C, D, E, F ) (4) ξ α (x 2 α, 2x α y α,

- (20 ) 400 () 3DCG No.51 No.61 No.62 No.11 P 2 16

旭硝子のリグラスカタログ

258 5) GPS 1 GPS 6) GPS DP 7) 8) 10) GPS GPS ) GPS Global Positioning System

1 Web [2] Web [3] [4] [5], [6] [7] [8] S.W. [9] 3. MeetingShelf Web MeetingShelf MeetingShelf (1) (2) (3) (4) (5) Web MeetingShelf

Optical Lenses CCD Camera Laser Sheet Wind Turbine with med Diffuser Pitot Tube PC Fig.1 Experimental facility. Transparent Diffuser Double Pulsed Nd:

H(ω) = ( G H (ω)g(ω) ) 1 G H (ω) (6) 2 H 11 (ω) H 1N (ω) H(ω)= (2) H M1 (ω) H MN (ω) [ X(ω)= X 1 (ω) X 2 (ω) X N (ω) ] T (3)

97-00

1-20**

1: A/B/C/D Fig. 1 Modeling Based on Difference in Agitation Method artisoc[7] A D 2017 Information Processing

SICE東北支部研究集会資料(2012年)

IHI Robust Path Planning against Position Error for UGVs in Rough Terrain Yuki DOI, Yonghoon JI, Yusuke TAMURA(University of Tokyo), Yuki IKEDA, Atsus

表1-表4宅建98.indd

01.12期・井須英次1.doc

1.3期・井上健0.doc

日立評論2009年6月号 : 開拓者たちの系譜 13


IPSJ SIG Technical Report Vol.2017-HCI-173 No.5 Vol.2017-EC-44 No /6/1 1,a) 1,2,b) 3,c) 1,d) 3D * 1* Graduate School of Engineerin


(a) 1 (b) 3. Gilbert Pernicka[2] Treibitz Schechner[3] Narasimhan [4] Kim [5] Nayar [6] [7][8][9] 2. X X X [10] [11] L L t L s L = L t + L s

SFCJ2-MisaGrace

4) 5) ) ( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 ) ( 6 ) )8) ( 1 ) ( 2 ) ( 3 ) ( 200 9) ( 10) 1 2 (

Ł\”ƒ53_4C

Convolutional Neural Network A Graduation Thesis of College of Engineering, Chubu University Investigation of feature extraction by Convolution

2/13

特別寄稿.indd


23_02.dvi

Transcription:

RJ-004 FIT2013( 第 12 回情報科学技術フォーラム ) The effect of rotationally moving sound on the circular vection Zhenglie Cui Hiroyuki Yagyu Shuichi Sakamoto Yukio Iwaya Yôiti Suzuki 1 [1] Virtual Reality: VR Wallach[2] Carpenter [3] 2 Harris [4] 2 Edwards [5] [6] 2 Lackner[7] Sakamoto [8] VR VR ( ) [9] HMD 33

[10] 2 [11][12] 2 1 2 2 2-2.1 2.2 Fig.1 2 (Panasonic: PT-D5700L) 1 0.75 0.75 deg Fig. 1: Experimental environment. 65 cd/m 2 20 % 1500 mm 2560 mm ( ) 1700 mm 180 deg -35 32 deg (Fig.1 ) EON Professional[13] 20 40 60 3 (Fig.1 ) 36 72 108 deg (Simulation environment For Acoustic 3DSoftware: SiFASo)[14] SiFASo SiFASo EON Professional (Sennheiser HDA200) 1500 mm 0deg 0deg 180 deg 120 deg 3 3 1 2 14 db 1 34

100 0 120 24 5 1 1 2 1 18 ( ) 5 2.4 Fig. 2: Experimental environment. [15] A 70 db [16] 15 Hz (D-BOX Technologies: D-BOX) D-BOX Fig.2 2.3 30 deg/s Dynamic(same) Dynamic(opposite) Static No sound 4 3 4 12 3 36 ME 36 deg 120 100 120 5 1 3 Fig.3 5 Fig.5 108 deg Fig.3 36 deg Fig.4 76 deg Fig.5 108 deg 3 4 3 (F (2, 8) = 19.372, p<.001) (F (23, 92) = 8.280, p<.001) (F (3, 12) = 2.638, p<.10) Fig. 3: Mean strength of circular vection (36 deg). 35

3-3.1 Fig. 4: Mean strength of circular vection (72 deg). 1 108 deg 2 1 108 deg Fig. 5: Mean strength of circular vection (108 deg). [17] F (6, 24) = 2.635, p<.05) 108 deg F (3, 36) = 6.467, p<.005) Static 2.5 (36 deg 72 deg) 108 deg 3.2 1 2 (30 deg/s) 2 (60 deg/s) 0.5 (15 deg/s) 3 2 3 6 3 18 ( ) 6 ( 5 1 ) 3.3 Fig.6 2 (F (1, 5) = 0.991, n.s) (F (2, 10) = 1.011, n.s.) 0.5 2 36

Fig. 6: Mean estimated strength of circular vection. 2 [18] 4 108 deg [10] (130deg) 102 deg Palmisano [19] [20] 1 Fig.5 108 deg Ernst [18] optimal weighting 5 37

(19001004) [1] M. H. Fischer and A. E. Kornmüller, Optokinetic ausgelöste Bewegungswahrnehmungen und opto-kinetischer Nystagmus, Journal für Psychologieund Neurologie (Leipzig), Vol. 41, pp. 273-308 (1930). [2] H. Wallach, The role of head movements and vestibular and visual cues in sound localization, Journal Exp Psychol, Vol. 27, pp. 339-368 (1940). [3] T.R.Carpenter-Smith,R.G..Futamura,D.E. Parker, Intertial acceleration as a measure of linear vection: An alternative to magnitude estimation, Perception and Psychophysics, Vol. 57, No. 1, pp. 35-42 (1995). [4] L. R. Harris, M. Jenkin, and D. C. Zikovitz, Vestibular cues and virtual environments: choosing the magnitude of the vestibular cue, IEEE Vistual Reality Conference, pp. 229-236 (1999). [5] M. Edwards, S. O Mahony, M. R. Ibbotson, S. Kohlhagen, Vestibular stimulation affects opticflow sensitivity, Perception, Vol. 39, No. 10, pp. 1303-1310 (2010). [6],,,,,,, Vol. 18, No. 1, pp. 27-35 (2013). [7] J. R. Lackner, Induction of illusory self-rotation and nystagmus by a rotating sound-field, Aviation space and enviromental medicine, Vol. 48, No. 2, pp. 129-131 (1977). [8] S. Sakamoto, Y. Osada, Y. Suzuki, J. Gyoba, The effects of linearly moving sound images on self-motion perception, Acoustic Science & Technology, Vol. 25, No. 1, pp. 100-102 (2004). [9],,,,,, HIP,, Vol. 104, No. 526, pp. 31-36 (2004). [10],,, A, Vol. J83-A, No. 7, pp. 912-919 (2000). [11] J. Schulte-Pelkum, B. E. Riecke, H. H. Bülthoff, Vibrational cues enhance believability of egomotion simulation, International Multisensory Research Forum (IMRF 2004). [12] B. E. Riecke, J. Schulte-Pelkum, F. Caniard, H. H. Bülthoff, Towards lean and elegant selfmotion simulation in virtual reality, IEEE Virtual Reality, pp. 131-138 (2005). [13] EON Professional: http://www.eonreality.com/ productsprofessional.html. [14] Y. Iwaya, Y. Suzuki, Rendering moving sound with the doppler effect in sound space, Applied Acoustics, No. 68, pp. 916-922 (2007). [15] Y. Iwaya, Sound space perception in virtual environments with head movements, Proc.IW- PASH, (2009). [16] J. Schulte-Pelkum, B. E. Riecke, H. H. B ulthoff, Vibrational cues enhance believability of egomotion simulation, International Multisensory Research Forum (IMRF), (2004). [17] F. Lestienne, J. Soechting, A. Berthoz, Postural readjustments induced by linear motion of visual scenes, Experimental Brain Research, Vol. 28, pp. 363-84 (1977). [18] M. O. Ernst, M. S. Banks, Humans integrate visual and haptic information in a statistically optimal fashion, Nature, Vol. 415, No. 6870, pp. 429-433 (2002). [19] S. Palmisano, B. J. Gillam, S. G. Blackburn, Global-perspective jitter improves vection in central vision, Perception, Vol. 29, No. 1, pp. 57-67 (2000). [20],,, Vol. 108, No. 182, pp. 15-18 (2008). 38