高知工科大学電子 光システム工学科

Similar documents
卒業研究報告 題 目 Hamiltonian 指導教員 山本哲也教授 報告者 汐月康則 平成 14 年 2 月 5 日 1

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.


N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

meiji_resume_1.PDF

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

IA

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2

x E E E e i ω = t + ikx 0 k λ λ 2π k 2π/λ k ω/v v n v c/n k = nω c c ω/2π λ k 2πn/λ 2π/(λ/n) κ n n κ N n iκ k = Nω c iωt + inωx c iωt + i( n+ iκ ) ωx

gr09.dvi

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

Note.tex 2008/09/19( )

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence


Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1)

eto-vol1.dvi

TOP URL 1

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

Microsoft PowerPoint - 卒業論文 pptx

B ver B

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

1 1 u m (t) u m () exp [ (cπm + (πm κ)t (5). u m (), U(x, ) f(x) m,, (4) U(x, t) Re u k () u m () [ u k () exp(πkx), u k () exp(πkx). f(x) exp[ πmxdx

5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â 0 = Tr Âe βĥ0 Tr e βĥ0 = dγ e βh 0(p,q) A(p, q) dγ e βh 0(p,q) (5.2) e βĥ0

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

Radiation from moving charges#1 Liénard-Wiechert potential Yuji Chinone 1 Maxwell Maxwell MKS E (x, t) + B (x, t) t = 0 (1) B (x, t) = 0 (2) B (x, t)

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

untitled

i

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

SFGÇÃÉXÉyÉNÉgÉãå`.pdf


A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

( ) ,

( ) s n (n = 0, 1,...) n n = δ nn n n = I n=0 ψ = n C n n (1) C n = n ψ α = e 1 2 α 2 n=0 α, β α n n! n (2) β α = e 1 2 α 2 1

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

量子力学 問題

液晶の物理1:連続体理論(弾性,粘性)

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1.

振動と波動

II 2 II

量子力学A

eto-vol2.prepri.dvi

arxiv: v1(astro-ph.co)

3 filename=quantum-3dim110705a.tex ,2 [1],[2],[3] [3] U(x, y, z; t), p x ˆp x = h i x, p y ˆp y = h i y, p z ˆp z = h

II (No.2) 2 4,.. (1) (cm) (2) (cm) , (


QMII_10.dvi

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

パーキンソン病治療ガイドライン2002

研修コーナー

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

201711grade1ouyou.pdf

本文/目次(裏白)

( ) ) AGD 2) 7) 1

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

1


6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2



: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

08-Note2-web

2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

物性物理学I_2.pptx

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

19 /

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

/Volumes/NO NAME/gakujututosho/chap1.tex i

1: 3.3 1/8000 1/ m m/s v = 2kT/m = 2RT/M k R 8.31 J/(K mole) M 18 g 1 5 a v t πa 2 vt kg (

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re


The Physics of Atmospheres CAPTER :

物性物理学I_2.pptx

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R


chap9.dvi

QMI_10.dvi

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,


128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

pdf

QMI_09.dvi

Transcription:

卒業研究報告 題 目 量子力学に基づいた水素分子の分子軌道法的取り扱いと Hamiltonian 近似法 指導教員 山本哲也 報告者 山中昭徳 平成 14 年 月 5 日

高知工科大学電子 光システム工学科. 3. 4.1 4. 4.3 4.5 6.6 8.7 10.8 11.9 1.10 1 3. 13 3.113 3. 13 3.3 13 3.4 14 3.5 15 3.6 15 3.7 17 3.8 18 3.9 18 3.10 1 3.11 3.1 3 3.13 3 4. 4 1

4.1 4 4. 5 4.3 8 4.4 30 4.6 30 4.7 30 6 31 7. 3 8. 33

1. 3

.1. m v p = mv h E = hν, p = (-1) λ (3-1)- -34 E ν h 6.65 10 J s h λ = p.3 u x φ = Asin πν t (-) u A x t x 4

φ 4π ν x = Asin πν t x u u 4πν = φ u -3 t φ x = 4πν Asinπν t t u = 4 πνφ -4 (-3)(-4) φ 1 φ = (-5) x u t (-) x t ψ x t φ( x, t) = ψ( x) T( t) (-6) x t φ () d ψ = Tt x dx φ dt = ψ (-7) t dt -5 1 () d ψ Tt = ψ d T dx u dt -8 d 1 d T ψ = ψ ( x) dx u T ( t) dt -9 k d ψ 1 d T = = k ψ ( x) dx u T( t) dt -10 d ψ = k ψ ( x) (-11) dx 5

dt kutt () = (-1) dt k z z = k (-13) + k = 0 (-14) (-10) z =± ik ( i = 1) (-15) ψ ( x) = Aexp( ikx) + Bexp( ikx) (-17) (-11) -6 Tt ( ) = Cexp( ikut) + Dexp( ikut) (-18) φ( xt, ) = ψ( xtt ) ( ) = A exp ik x ut + A ik x ut { ( )} exp ( ) ( ) exp { } { } { ( )} 1 + A exp ik x+ ut + A ik x+ ut 3 4 A 1 A 4 (-14) (-18) πν π k = = (-19) u λ kx ( ut) x kx ( ut) = πν t u x = π νt λ λ ν (-10) k π = λ (-0) 6

d ψ 4π = ( x) ψ (-1) dx λ d ψ 4π + ( x) 0 ψ = (-) dx λ.4 h p λ p = λ E T V p E = T + V = + V m (-3) p = mv p me V = ( ) (-4) 1 p m ( E V ) λ = h = h (-5) (-18) d ψ 8π m + ( E V ) ψ ( x ) = 0 (-6) dx h ψ 1 3 ψ ψ 8π m + + ( ) (, ) 0 E V ψ x y = (-7) x y h ψ ψ ψ 8π m + + + ( ) (,, ) 0 E V ψ x y z = 3 (-8) x y z h 7

8π m E h ψ + ( V ) ψ = 0 (-9).5 r t ψ (,) rt t r dv ψ (r,t ) dv (-30) ψ r ψ = 0 ψ ψ ψ (,) rt dr= 1 (-31) 1 ψ 8

ψ ψ ψ ψ ψ ψ (-31) ψ 1 ( x, yz, ) q t ψ q q+ dq ψ ( qt, ) dq (-3) F ˆf F f ˆf ˆf ψ = fψ (-33) fˆ( Ψ+Φ ) = fˆψ+ fˆφ (-34) ˆf 9

Ψ1, Ψ,, Ψn Ψ Ψ Ψ= c1ψ+ 1 cψ + + cnψn n (-35) = c Ψ i= 1 i i n n i i i i i= 1 i= 1 (-36) fˆψ= fˆ( cψ ) = c ( fˆψ).6 3.6.3 (-5) x φ( x, t) = Aexpπi νt (-37) λ -1 (, ) exp i φ x t = A ( px Et) (-38) h = π (-38) x t x φ ip i = exp ( px Et) x 10

ip = φ (-39) t φ ie i = Aexp ( px Et) t ie = φ (-40) (-38),(-39) φ i = pφ x (-41) φ i = Eφ (-4) t p i E i x t i p i E x t E.7 1 T = mv p = mv p p v = (-43) m T p T = (-44) m p i x p T = m = + + m x y z 11

= m (-45) p 3 T m T V Ĥ Ĥ = T + V (-46) T (-45) ˆ H = + V (-47) m Ĥ (-4) Ĥ Ĥφ = Eφ (-48) ψ Ĥψ = Eψ (-49) (-4)(-49) ˆ ψ Hφ = + Vφ = i (-50) m t.8.9 1

3. 3.1 3. 1, Hˆ ψ(1, ) = Eψ(1, ) (3-1) 3.3 3.3.1 13

3.3.1 Ĥ Hˆ m = + V ˆ H = + + M m ( A B) ( 1 ) e e 4πε r 4πε r 01A 01B e e 4πε r 4πε r 0 A 0 B e e + + 4πε r 4πε R 01 0 e (3-) (3-3) M m e A B 1 1 3 6 F QQ 1 F = (3-4) 4πε0r Q 1, Q r ε 0 1 ε 0 = 8.854 10 14

3.4 7 31 1.67 10 kg 9.109 10 kg 1840 (3-3) R (3-3) ˆ H = + m e ( 1 ) e e 4πε r 4πε r 01A 01B e e 4πε r 4πε r 0 A 0 B e + + 4πε r 01 (3-5) e 4πε r 01 3.5 15

3.6 1 φ(1) φ() 1 r1 V( r) = e dv (3-6) φ(1) r1 V( r ) = e dv (3-7) V( r 1 ) V( r ) r 1, r Ĥ 1 Hˆ = hˆ + hˆ 1 ˆ e e h ( ) 1 = 1 + V r1 me 4πε0ra1 4πε0rb 1 ˆ e e h ( ) = + V r me 4πε0ra 4πε0rb (3-8) E φ(1) φ() Hˆ φ(1) φ() dv dv = φ φ (1) () dv dv 1 1 (3-9) Ĥ = h ˆ ˆ 1+ h Ĥ 16

E = { ˆ + ˆ } φ(1) φ() h h (1) φ() dv dv = 1 1 φ(1) φ() dv dv 1 φ(1) hˆφ(1) dv φ() dv + φ(1) dv φ() hˆφ() dv φ(1) φ() dv1dv 1 1 1 (1) ˆ (1) () (1) () ˆ φ hφ dvφ dv φ dvφ hφ() dv = + φ(1) dv φ() dv φ(1) dv φ() dv 1 1 1 1 1 (3-10) (3-11) ( 3-1) (1) ˆ (1) () ˆ φ hφ dv φ hφ() dv = + φ(1) dv φ() dv 1 1 1 1 (3-13) = ε + ε (3-14) Ĥ ˆ hφ (1) = ε φ (1) (3-15) 1 1 h ˆ φ () = ε φ () (3-16) (3-14) ˆ φ( jh ) jφ( jdv ) j ε j =, j = 1, (3-17) φ( j) dv j 3.7 17

Ψ1, Ψ,, Ψn Ψ Ψ= cψ+ c Ψ + + c Ψ 1 1 n = c Ψ i= 1 i i n n (3-18) Ψ 3.8 ψ(1, ) = Cφ(1) + C φ() (3-19) 1 φ(1), φ() C 1, C 3.9 hφ = εφ (3-0) (3-17) ε φĥφdv = φ dv (3-1) ε (3-19) 18

= ˆ{ } { Cφ(1) + C φ() } dv Cφ(1) + C φ() h ( Cφ(1) + C φ() dv 1 1 1 (3-) Ch + CCh + Ch = CS CS CS 1 11 1 1 1 11+ 1 1 + (3-3) h = 11 1 1 φhˆ φdv h = φ hˆ φ dv h = φhˆ φ dv 1 1 S = S = φφ dv 1 1 (3-4) h11 h h 1 S 1 S (3-3) C ( h εs ) + CC ( h εs ) + C ( h εs ) = 0 (3-5) 1 11 11 1 1 1 ε ε = = 0 (3-6) c c 1 C ( h S ε) + C ( h S ε) = 0 (3-7) 1 11 11 1 1 19

C ( h S ε) + C ( h S ε) = 0 (3-8) 1 1 1 h εs h εs 11 11 1 1 h εs h εs 1 1 = 0 (3-9) (3-9) ε ε ε = (3-30) ( h11 S11)( h S) ( h1 S1) 0 h h S S 11 1 11 1 = h = α = β = S = 1 = S (3-31) (3-30) α ε β εs = (3-3) ( ) ( ) 0 αε± β ε (3-33) ε ε 1, ε α + β ε1 = (3-34) 1 + S α β ε = (3-35) 1 S α, β ε > ε 1 (3-34)(3-7) C1 = C(3-36) (3-35)(3-8) C1 = C(3-37) (-31) ψ (,) rt dr= 1 (3-38) dr = dτ (3-39) 0

(3-19) ψ (,) rt dτ = 1 (3-40) { } { } ψ ψ d τ = C φ 1 (1) + C φ () C φ 1 (1) + C φ () d τ = 1 (3-41) { } C φ 1 (1) + C φ () d τ = 1 (3-4) (3-43) ( C ) χ dτ + CC χ χ dτ + ( C ) χ dτ = 1 1 1 1 1 φ(1) = χ1, φ() = χ 1 1 χ d τ = χ d τ = 1, χ χ d τ = S ( C1) + CC 1 S+ ( C) = 1 (3-44) (3-36)(3-44) C = C = 1 ε 1 ψ 1 χ1+ χ ψ1 = + S C 1 + S (3-45) (3-46) (3-37)(3-46) 1 = 1 S (3-47) 1 C = S (3-48) ε ψ χ1 χ ψ = S (3-49) 3.10 1

α + β ε1 = 1 + S α β ε = 1 S χ1+ χ ψ1 = + S χ1 χ ψ = S ψ 1 ψ 3.10.1 p.114 6.6

3.11 3.1 3.13 3

4. 4.1 4. R 4

4..1 { a( R R ) } V(R)=D 1 exp e (4-1) D A R R D 4.35 ev A 1.94 R =0.74 e e 4.3 5

F F = kr ( R e ) (4-) R e R k R e R V R R k V = FdR= k( R Re) dr ( R Re) R = (4-3) e Re ab, M a, M b a dr a a kr ( Re) = M (4-4) dt b dr b b kr ( Re) = M (4-5) dt R, R a b Ra + Rb = R, MaRa = MbRb R a R b M b Ra = R M + M a b (4-6) R b M a = M + M a b R (4-7) (5-6)(5-7)(5-4)(5-5) MM a b µ = M + M a b MM dr dr a b kr ( Re ) = =µ M + M dt dt a b (4-8) µ 6

Hˆ 1 V = µ + (4-9) (4-9) Hˆ 1 V = µ + (4-10) (5-1) { a( R R ) } V(R)=D 1 exp e (4-11) x = 0 e 3 n x x x x = 1+ x+ + + + (4-1)! 3! n! x = ar ( R e ) V(R)=D 1 { exp a( R Re ) } D{ 1 1 ( a( R Re )) } + = D a ( R R ) e (4-13) 7

4..1 4.3.1 4.4 4.3.1 1 ev 1 ev 10 10 1 ev 4.4.1 8

4.4.1 核間距離モース曲線二次曲線 誤差 核間距離モース曲線二次曲線 誤差 0.6003 0.4154 0.31951 0.1003 0.75038 0.00177 0.00176-3.51E-05 0.6053 0.38794 0.9704 0.09091 0.75538 0.003758 0.00387-0.000114 0.61031 0.35604 0.7538 0.08066 0.76038 0.006537 0.0068-0.00063 0.61531 0.358 0.5455 0.0715 0.76538 0.010043 0.010548-0.000505 0.6031 0.9717 0.3453 0.0663 0.77039 0.01454 0.015115-0.000861 0.6531 0.7011 0.1534 0.05477 0.77539 0.019149 0.0050-0.001353 0.6303 0.4459 0.19696 0.04763 0.78039 0.04708 0.06708-0.00 0.6353 0.056 0.17941 0.04115 0.78539 0.03091 0.033734-0.0084 0.6403 0.19799 0.1667 0.0353 0.7904 0.037736 0.041579-0.003843 0.6453 0.17684 0.14675 0.03009 0.7954 0.045167 0.05043-0.005076 9

0.65033 0.15707 0.13165 0.0541 0.8004 0.053184 0.05977-0.006543 0.65533 0.13864 0.11738 0.017 0.8054 0.061768 0.07003-0.0086 0.66033 0.1153 0.1039 0.01761 0.81041 0.07090 0.081153-0.01051 0.66533 0.10569 0.09175 0.01441 0.81541 0.080568 0.093095-0.0156 0.67034 0.091091 0.079455 0.01164 0.8041 0.09075 0.10586-0.015106 0.67534 0.077704 0.068453 0.0095 0.8541 0.10143 0.11944-0.018006 0.68034 0.065495 0.0587 0.007 0.8304 0.1159 0.13384-0.0144 0.68534 0.054431 0.048909 0.0055 0.8354 0.14 0.14906-0.04835 0.69035 0.04448 0.040366 0.0041 0.8404 0.1363 0.1651-0.08794 0.69535 0.035618 0.0364 0.0098 0.8454 0.1488 0.18195-0.033137 0.70035 0.0781 0.05738 0.0007 0.85043 0.16175 0.19963-0.037878 0.70535 0.0107 0.019653 0.00137 0.85543 0.1751 0.1813-0.043033 0.71036 0.01544 0.014388 0.00086 0.86043 0.18883 0.3745-0.048615 0.71536 0.01043 0.00994 0.00049 0.86543 0.094 0.5758-0.054638 0.7036 0.006561 0.006315 0.0005 0.87044 0.174 0.7854-0.061115 0.7536 0.003609 0.003508 0.0001 0.87544 0.35 0.30031-0.06806 0.73037 0.001549 0.0015.87E-05 0.88044 0.474 0.391-0.075485 0.73537 0.000354 0.000351 3.17E-06 0.88544 0.69 0.3463-0.083404 0.74037.4E-06.4E-06-1.61E-09 0.89045 0.787 0.37055-0.09188 0.74537 0.00046768 0.0004758-4.89E-06 0.89545 0.9484 0.3956-0.10077 0.60.89 (4-1) (4-13) (4-1)(4-13) D 4.35 ev A 1.94 R e =0.74 ev, ev ev 5.6 30

0.60.89 5.7 { } a( R R ) V(R)=D 1 exp e MM a b µ = M + M a b 0.60.89 5. 31

6. M1 3

7. 1.. 3. 4. Donald A.McQuarrie John D.Simon 33