SICE東北支部研究集会資料(2012年)

Similar documents
SICE東北支部研究集会資料(2012年)

鉄鋼協会プレゼン

Synthesis and Development of Electric Active Stabilizer Suspension System Shuuichi BUMA*6, Yasuhiro OOKUMA, Akiya TANEDA, Katsumi SUZUKI, Jae-Sung CHO

IHI Robust Path Planning against Position Error for UGVs in Rough Terrain Yuki DOI, Yonghoon JI, Yusuke TAMURA(University of Tokyo), Yuki IKEDA, Atsus

VHDL-AMS Department of Electrical Engineering, Doshisha University, Tatara, Kyotanabe, Kyoto, Japan TOYOTA Motor Corporation, Susono, Shizuok

橡上野先生訂正2

a) Extraction of Similarities and Differences in Human Behavior Using Singular Value Decomposition Kenichi MISHIMA, Sayaka KANATA, Hiroaki NAKANISHI a

Table. Stage model parameters. Mass of pole part m.4 kg Mass of table part M 22 kg Thrust viscous constant c x 2. 2 N s/m Twist dumping constant of jo

Study on Throw Accuracy for Baseball Pitching Machine with Roller (Study of Seam of Ball and Roller) Shinobu SAKAI*5, Juhachi ODA, Kengo KAWATA and Yu

1, 2, 2, 2, 2 Recovery Motion Learning for Single-Armed Mobile Robot in Drive System s Fault Tauku ITO 1, Hitoshi KONO 2, Yusuke TAMURA 2, Atsushi YAM

1 Fig. 1 Extraction of motion,.,,, 4,,, 3., 1, 2. 2.,. CHLAC,. 2.1,. (256 ).,., CHLAC. CHLAC, HLAC. 2.3 (HLAC ) r,.,. HLAC. N. 2 HLAC Fig. 2

IPSJ SIG Technical Report Vol.2012-CG-148 No /8/29 3DCG 1,a) On rigid body animation taking into account the 3D computer graphics came

発表資料

Table 1. Assumed performance of a water electrol ysis plant. Fig. 1. Structure of a proposed power generation system utilizing waste heat from factori

xx/xx Vol. Jxx A No. xx 1 Fig. 1 PAL(Panoramic Annular Lens) PAL(Panoramic Annular Lens) PAL (2) PAL PAL 2 PAL 3 2 PAL 1 PAL 3 PAL PAL 2. 1 PAL

1 Kinect for Windows M = [X Y Z] T M = [X Y Z ] T f (u,v) w 3.2 [11] [7] u = f X +u Z 0 δ u (X,Y,Z ) (5) v = f Y Z +v 0 δ v (X,Y,Z ) (6) w = Z +

UWB a) Accuracy of Relative Distance Measurement with Ultra Wideband System Yuichiro SHIMIZU a) and Yukitoshi SANADA (Ultra Wideband; UWB) UWB GHz DLL

1

SICE東北支部研究集会資料(2012年)

JFE.dvi

( ), ( ) Patrol Mobile Robot To Greet Passing People Takemi KIMURA(Univ. of Tsukuba), and Akihisa OHYA(Univ. of Tsukuba) Abstract This research aims a

光学

Fig. 3: A ball-beam system with the palm circle task. Fig. 5: beam. Geometric parameters of the ball and the Fig. 4: Butterfly task of Cotnact jugglin

Input image Initialize variables Loop for period of oscillation Update height map Make shade image Change property of image Output image Change time L

Vol. 23 No. 4 Oct Kitchen of the Future 1 Kitchen of the Future 1 1 Kitchen of the Future LCD [7], [8] (Kitchen of the Future ) WWW [7], [3

Robot Platform Project(RPP) "Spur" "YP-Spur" rev. 4 [ ] Robot Platform Project(RPP) WATANABE Atsushi 1.,,., Fig. 1.,,,,,.,,,..,,..,,..,,,,. "

29_10_05.dvi

ばらつき抑制のための確率最適制御

ohp_06nov_tohoku.dvi

Vol.55 No (Jan. 2014) saccess 6 saccess 7 saccess 2. [3] p.33 * B (A) (B) (C) (D) (E) (F) *1 [3], [4] Web PDF a m

( ) [1] [4] ( ) 2. [5] [6] Piano Tutor[7] [1], [2], [8], [9] Radiobaton[10] Two Finger Piano[11] Coloring-in Piano[12] ism[13] MIDI MIDI 1 Fig. 1 Syst

ipod touch 1 2 Apple ipod touch ipod touch 3 ( ) ipod touch ( 1 ) Apple ( 2 ) Web 1),2) 3. ipod touch 1 2 ipod touch x y z i

9.プレゼン資料(小泉)R1

MmUm+FopX m Mm+Mop F-Mm(Fop-Mopum)M m+mop MSuS+FX S M S+MOb Fs-Ms(Mobus-Fex)M s+mob Fig. 1 Particle model of single degree of freedom master/ slave sy

1: A/B/C/D Fig. 1 Modeling Based on Difference in Agitation Method artisoc[7] A D 2017 Information Processing

Fig. 2 Signal plane divided into cell of DWT Fig. 1 Schematic diagram for the monitoring system

& Vol.5 No (Oct. 2015) TV 1,2,a) , Augmented TV TV AR Augmented Reality 3DCG TV Estimation of TV Screen Position and Ro

IPSJ SIG Technical Report Vol.2015-MUS-107 No /5/23 HARK-Binaural Raspberry Pi 2 1,a) ( ) HARK 2 HARK-Binaural A/D Raspberry Pi 2 1.

main.dvi

Proposal of Driving Torque Control Method for Electric Vehicle with In-Wheel Motors Masataka Yoshimura (Yokohama National University) Hiroshi Fujimoto

IPSJ SIG Technical Report Vol.2009-DPS-141 No.20 Vol.2009-GN-73 No.20 Vol.2009-EIP-46 No /11/27 1. MIERUKEN 1 2 MIERUKEN MIERUKEN MIERUKEN: Spe

A Study on Throw Simulation for Baseball Pitching Machine with Rollers and Its Optimization Shinobu SAKAI*5, Yuichiro KITAGAWA, Ryo KANAI and Juhachi

mt_4.dvi

知能と情報, Vol.30, No.5, pp

258 5) GPS 1 GPS 6) GPS DP 7) 8) 10) GPS GPS ) GPS Global Positioning System

n-jas09.dvi

,, 2. Matlab Simulink 2018 PC Matlab Scilab 2

高等学校学習指導要領

高等学校学習指導要領

(MIRU2008) HOG Histograms of Oriented Gradients (HOG)

550 Vol. 32 No. 6, pp , Saddle Type Human Body Motion Interface for Personal Mobility Vehicle Sho Yokota 1, Hiroshi Hashimoto 2, D

第 55 回自動制御連合講演会 2012 年 11 月 17 日,18 日京都大学 1K403 ( ) Interpolation for the Gas Source Detection using the Parameter Estimation in a Sensor Network S. T

JIS Z803: (substitution method) 3 LCR LCR GPIB


1 [ 1] (1) MKS? (2) MKS? [ 2] (1) (42.195k) k 2 (2) (3) k/hr [ 3] t = 0 10 ( 1 velocity [/s] 8 4 O

A Feasibility Study of Direct-Mapping-Type Parallel Processing Method to Solve Linear Equations in Load Flow Calculations Hiroaki Inayoshi, Non-member

AFO AFO 4 2.3AFO 5 3 AFO 3.1 AFO

28 Horizontal angle correction using straight line detection in an equirectangular image

第62巻 第1号 平成24年4月/石こうを用いた木材ペレット

HP用h1

A Study of Effective Application of CG Multimedia Contents for Help of Understandings of the Working Principles of the Internal Combustion Engine (The

2 点吊り物理振子の振動解析: 弾性紐の効果 木ノ内 智貴*1 舟田 敏雄*1 桜井 賢人*1 大庭 勝久*1 青木 悠祐*1 宮内 太積*2 望月 孔二*3 An Analysis of Mode Coupling in Three Modes of Bifilar Suspension Phys

1 1.1 [ 1] velocity [/s] 8 4 (1) MKS? (2) MKS? 1.2 [ 2] (1) (42.195k) k 2 (2) (3) k/hr [ 3] t = 0

7章 構造物の応答値の算定

IPSJ SIG Technical Report Vol.2017-ARC-225 No.12 Vol.2017-SLDM-179 No.12 Vol.2017-EMB-44 No /3/9 1 1 RTOS DefensiveZone DefensiveZone MPU RTOS

Fig. 1 KAMOME50-2 Table 1 Principal dimensions Fig.2 Configuration of the hydrofoils (Endurance and sprint foil) Fig. 3 Schematic view of the vortex l


2). 3) 4) 1.2 NICTNICT DCRA Dihedral Corner Reflector micro-arraysdcra DCRA DCRA DCRA 3D DCRA PC USB PC PC ON / OFF Velleman K8055 K8055 K8055

4. C i k = 2 k-means C 1 i, C 2 i 5. C i x i p [ f(θ i ; x) = (2π) p 2 Vi 1 2 exp (x µ ] i) t V 1 i (x µ i ) 2 BIC BIC = 2 log L( ˆθ i ; x i C i ) + q

Proceedings of the 61st Annual Conference of the Institute of Systems, Control and Information Engineers (ISCIE), Kyoto, May 23-25, 2017 The Visual Se


Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels).

5D1 SY0004/14/ SICE 1, 2 Dynamically Consistent Motion Design of Humanoid Robots even at the Limit of Kinematics Kenya TANAKA 1 and Tomo

untitled

原稿.indd


MEC NC High frequency variation speed control of spindle motor for self-excited chattering vibration suppression in NC Machine tools. Teruaki I

23_02.dvi

DPA,, ShareLog 3) 4) 2.2 Strino Strino STRain-based user Interface with tacticle of elastic Natural ObjectsStrino 1 Strino ) PC Log-Log (2007 6)

DEIM Forum 2012 E Web Extracting Modification of Objec

H 975 [8] [9] 4 H [10] H [11] [15] H I H II H Fig. 2 H [16] [18] [19] H [8] Fig. 3 3 b, β, δ d Double U Joint [20] a e A G β 2 z C B

Human-Agent Interaction Simposium A Heterogeneous Robot System U

IPSJ SIG Technical Report Vol.2010-GN-74 No /1/ , 3 Disaster Training Supporting System Based on Electronic Triage HIROAKI KOJIMA, 1 KU

(3.6 ) (4.6 ) 2. [3], [6], [12] [7] [2], [5], [11] [14] [9] [8] [10] (1) Voodoo 3 : 3 Voodoo[1] 3 ( 3D ) (2) : Voodoo 3D (3) : 3D (Welc

IPSJ SIG Technical Report Vol.2014-MBL-70 No.49 Vol.2014-UBI-41 No /3/15 2,a) 2,b) 2,c) 2,d),e) WiFi WiFi WiFi 1. SNS GPS Twitter Facebook Twit


2003/3 Vol. J86 D II No Fig. 1 An exterior view of eye scanner. CCD [7] CCD PC USB PC PC USB RS-232C PC

3_23.dvi

[2] OCR [3], [4] [5] [6] [4], [7] [8], [9] 1 [10] Fig. 1 Current arrangement and size of ruby. 2 Fig. 2 Typography combined with printing

S-6.indd

特-3.indd

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10

2. CABAC CABAC CABAC 1 1 CABAC Figure 1 Overview of CABAC 2 DCT 2 0/ /1 CABAC [3] 3. 2 値化部 コンテキスト計算部 2 値算術符号化部 CABAC CABAC

untitled

1

main.dvi

SICE東北支部研究集会資料(2012年)

Fig. 1. Relation between magnetron anode current and anode-cathod voltage. Fig. 2. Inverter circuit for driving a magnetron. 448 T. IEE Japan, Vol. 11

Fig. 1 Schematic construction of a PWS vehicle Fig. 2 Main power circuit of an inverter system for two motors drive

THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE k

Transcription:

77 (..3) 77- A study on disturbance compensation control of a wheeled inverted pendulum robot during arm manipulation using Extended State Observer Luis Canete Takuma Sato, Kenta Nagano,Luis Canete,Takayuki Takahashi *, ** *Fukushima University, **Graduate School of Fukushima University : (Extended State Observer) (Disturbance Compensation Control) (A Wheeled Inverted Pendulum Robot) : 96-96 Tel.:(4)548-559 Fax.: (4)548-559 E-mail: takukma@rb.sss.fukushima-u.ac.jp., ) 4 I-PENTAR(Inverted PENdulum Type Assistant Robot). I-PENTAR I-PENTAR Fig. Table I-PENTAR 7.5[kg] 3) Pushing Pulling 4) I-PENTAR Fig. Fig.

Pick and Place Tool handling Hand over Front view Side view Fig. Inverted Pendulum Type Assistant Robot(I-PENTAR) Table Hardware Specification of I-PENTAR Size.9.34[W].3[D] [m] Weight 39. [kg] D.O.F Mobie() Arm(6) Waist() Sensor Gyro sensor(), Encoder(9) Actuator DC motor() OS ARTLinux(Sampling time:[ms]) Interface FPGA(PC4) Fig. Target tasks of I-PENTAR using its robot arm. 3. ( ESO:Extended State Observer ) 5, 6) u R y R SISO(Single-Input Single-Outoput) () I-PENTAR I-PENTAR I-PENTAR y (n) (t) = f(y (n ) (t),, y(t), w(t)) bu(t) () w b h f () ẋ = x. ẋ n = x n ẋ n = x n bu ẋ n = h(x, u, w, ẇ) y = x () x = [x, x,, x n ] T R n x n = f ()

(3) ˆx = ˆx l (x ˆx ). ˆx n = ˆx n l n (x ˆx ) ˆx n = ˆx n l n (x ˆx ) bu ˆx n = l n (x ˆx ) (3) ˆx = [ˆx, ˆx,, ˆx n ] T R n l = [l, l,, l n ] T R n () x 3. ESO (4) u = u ˆf b (4) ESO () (4) (5) y (n) (t) = f( ) ˆf u u (5) () (5) n 3. I-PENTAR I-PENTAR τ w I-PENTAR ESO ˆf θw ˆf b 4 b 3 PD PD ˆ, ˆθw d, θ wd u B θw u θw τw B ˆ, ˆ I-PENTAR SYSTEM d, d A θw A C θw C ESO L θw ˆ θw L ˆ ESO Fig. 3 Block diagram of the control system. I-PENTAR () (6) [ ] [ f (, θ =, θ ] [ ] w, τ d ) b 3 w f θw (,, θ w, τ d ) b 4 τ w (6) I-PENTAR τ w τ w u u θw u u θw u u θw f ( ) u θw u f θw ( ) (7) (8) ESO 7, 8) = f (,,, u θ, τ d ) b 3 u (7) = f θw (,,, u, τ d ) b 4 u θw (8) I-PENTAR Fig. 3 A = A θw = B = b3 B θw = b4 C = C θw = [ ] 3

l arm l θ θ l arm l l body l g r ω θ ω Z W X W Σ W Fig. 4 DOF model of I-PENTAR. L R 3 L θw R 3 4. I- PENTAR I-PENTAR I-PENTAR 4. I-PENTAR 3 I-PENTAR Fig.4 M g M M l arm = l l arm = l q [,, θ, θ ] T R 4 Lagrange (9) M(q) R 4 4 H(q, q) R 4 G(q) R 4 τ w τ τ τ d I-PENTAR I-PENTAR E = T = T = D = M (q)( H(q, q) G(q) T τ T τ Dτ d ) f(q, q) R 4 τ w u u θw () q = f(q, q) M (q)eτ w = f(q, q) M (q)e(u u θw ) () ESO () f(q, q) M (q)eu θw ESO () f(q, q) M (q)eu 4. () 5 a i (i =,, 5) () θ d (t) PD t ( ) t f ( ) θ θ f θ d (t) = 5 a i t i () i= M(q) q H(q, q) G(q) = Eτ w T τ T τ Dτ d (9) θ d (t ) = θ θd (t ) = θd (t ) = θ d (t f ) = θ f θd (t f ) = θ d (t f ) = () 4

I-PENTAR ESO.5 θ d θ d [s] [rad] θ d θ d Fig.5 [s] [rad] θ d θ d Fig.6 5[s].5[kg] [s].5 -.5 Link swing up motion Link swing down motion 5 5 5 3 35 Fig. 5 Input trajectories θ d and θ d in case..5.5 -.5 Link swing up motion Link swing down motion Link oscillating motion 5 5 5 3 35 θ d θ d Fig. 6 Input trajectories θ d and θ d in case. 4.3 Fig.7 Fig.8 4.4 3 - r w =.3[m] r w =-.8[m] θ θ Fig.7 Fig.8 ESO 9) - Link weight is increased -3 Link weight is returned 5 5 5 3 35 Fig. 7 Simulation result in case. 5

.5.5 -.5 r w =.9[m] Link weight is increased - r w =-.9[m] -.5 Link weight is returned - 5 5 5 3 35 θ θ Fig. 8 Simulation result in case. 5. 4. I-PENTAR 3 3) 5. I-PENTAR ( RODO:Reduced Order Disturbance Observer) ) x [,,, ] T (6) I-PENTAR (3) (4) [ ] [ ] [ ] [ ] ẋ A D x B = τ d τ d y = [ ] x τ d τ w (3) (4) (3) (4) τ d RODO (5) (6) ż = LDz ( LDL LA)x LBτ w (5) ˆτ d = z Lx (6) L R 4 τ d (7) ) τ d M g gl g (7) d (7) ˆτ d ) ) 5.. 4. 6

3 - - r w =.6[m] Link weight is increased r w =-.5[m] Link weight is returned -3 5 5 5 3 35 θ θ.5..5 -.5 -. -.5 -. -.5 -.3 5 5 5 3 35 d Fig. 9 Simulation result when using RODO for d calculation in case..5.5 -.5 r w =.6[m] Link weight is increased - r w =-.7[m] -.5 Link weight is returned - 5 5 5 3 35 θ θ Fig. Simulation result when using RODO for d calculation in case. Fig.9 Fig. [..] d Fig. 5.. Fig.9 Fig. Fig. Fig. Plot of and d using RODO in case. 5. 5. ( ) Fig.4 I-PENTAR I-PENTAR 7

.5.5 -.5 Link weight is increased Link weight is returned - 5 5 5 3 35 θ θ Fig. Simulation result when using arm and pendulum parameters for d calculation in case. (8) M g L g ()g M L (, θ )g L g l g sin M L (, θ, θ )g = (8) L (l body sin l sin(θ )) L (l body sin l arm sin(θ ) l sin(θ θ )) (8) (9) ( = tan M ) l S θ M l S (θ θ ) M M l C θ M l C (θ θ ) (9) M M g l g (M M )l body M M M sin θ S θ cos θ C θ (9) I-PENTAR d 5.. 4. Fig. Fig.3 d Fig.4.8.6.4. -. -.4 -.6 Link weight is increased -.8 Link weight is returned 5 5 5 3 35 θ θ Fig. 3 Simulation result when using arm and pendulum parameters for d calculation in case..5 -.5 -. -.5 -. -.5 5 5 5 3 35 d Fig. 4 Plot of and d in case. I-PENTAR τ w Fig.5 5.. Fig. Fig.3 Fig.5 τ w 8

Torque[Nm] 6 4 - -4 τ w dd -6 τw w/o -8-5 5 5 3 35.5.5 -.5 - r w =-.9[m] Link weight is increased Link weight is returned -.5 5 5 5 3 35 θ θ r w =.8[m] Fig. 5 Plot of τ w in case. Table Values use for simulating effects of erroneous parameters. M g [%] M [%] M [%] l g [%] l [%] l [%] l body [%] 5.3 5. (9) d Table 5.3. 4. Fig.6 Fig.7 Fig. 6 Simulation result when using d considering parameter error in case..8.6.4. -. -.4 r w =-.6[m] -.6 -.8 Link weight is increased - Link weight is returned 5 5 5 3 35 θ θ r w =.6[m] Fig. 7 Simulation result when using d considering parameter error in case. d Fig.8 5.3. Fig.6 Fig.7 4. Table 9

.5 -.5 -. -.5 -. -.5 5 5 5 3 35 d Fig. 8 Plot of and d in case. 6. I-PENTAR I-PENTAR ( ) ),,,, : EMIEW : ( & ),, Vol.8, No.[P-I3], (8). ),,, : RIBA,, Vol., No.[A-E4], (). 3),, Luis Canete, :,, Vol., No.[P-I4], (). 4) Luis Canete and Takayuki Takahashi: Disturbance compensation in pushing, pulling, and lifting for load transporting control of a wheeled inverted pendulum type assistant robot using the extended state observer, IEEE/RSJ International Conference on Intelligent Robots and Systems, Vol.7, No., (). 5) Q. Zheng, L.Q. Gao, and Z. Gao: On validation of extended state observer through analysis and experimentation, Journal of Dynamic Systems, Measurement, and Control, Vol.34, No.,pp.455. 455.6, (). 6),,, :,, Vol.8, No.,pp.86 93, (). 7) R. Miklosovic and Z. Gao. A dynamic decoupling method for controlling high performance turbofan engines. In Proc. of the 6th IFAC World Congress, pp.4 8, (5). 8) Z. Shen and G. Zhiqiang. Active disturbance rejection control for non-minimum phase systems. In 9th Chinese Control Conference, pp.666 67. IEEE, (). 9),, Luis Canete, :, 77, Vol.77, No., (). ) Luis Canete and Takayuki Takahashi: A disturbance compensation method for pushing control of an inverted pendulum robot, the 9TH Annual Conference of the Robotics Society of Japan, Vol., No.[I3-8], ().