2016 ǯ¥Î¡¼¥Ù¥ëʪÍý³Ø¾Þ²òÀ⥻¥ß¥Ê¡¼ Kosterlitz-Thouless ž°Ü¤È Haldane ͽÁÛ

Similar documents
ʪ¼Á¤Î¥È¥Ý¥í¥¸¥«¥ë¸½¾Ý (2016ǯ¥Î¡¼¥Ù¥ë¾Þ¤Ë´ØÏ¢¤·¤Æ)

S=1 Bilinear-Biquadratic

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

第10章 アイソパラメトリック要素

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

TOP URL 1

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

( ) I( ) TA: ( M2)

Aharonov-Bohm(AB) S 0 1/ 2 1/ 2 S t = 1/ 2 1/2 1/2 1/, (12.1) 2 1/2 1/2 *1 AB ( ) 0 e iθ AB S AB = e iθ, AB 0 θ 2π ϕ = e ϕ (ϕ ) ϕ

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

2017 II 1 Schwinger Yang-Mills 5. Higgs 1

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

[1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin Clifford Spin 10 A 12 B 17 1 Cliffo

Gmech08.dvi

l µ l µ l 0 (1, x r, y r, z r ) 1 r (1, x r, y r, z r ) l µ g µν η µν 2ml µ l ν 1 2m r 2mx r 2 2my r 2 2mz r 2 2mx r 2 1 2mx2 2mxy 2mxz 2my r 2mz 2 r

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

第1章 微分方程式と近似解法

i 18 2H 2 + O 2 2H 2 + ( ) 3K

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1)


19 /



W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

TOP URL 1

0. Intro ( K CohFT etc CohFT 5.IKKT 6.

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1)

量子力学 問題

Z: Q: R: C: sin 6 5 ζ a, b

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

Onsager SOLUTION OF THE EIGENWERT PROBLEM (O-29) V = e H A e H B λ max Z 2 Onsager (O-77) (O-82) (O-83) Kramers-Wannier 1 1 Ons

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

°ÌÁê¿ô³ØII

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

3 3.1 R r r + R R r Rr [ ] ˆn(r) = ˆn(r + R) (3.1) R R = r ˆn(r) = ˆn(0) r 0 R = r C nn (r, r ) = C nn (r + R, r + R) = C nn (r r, 0) (3.2) ( 2.2 ) C

(1) D = [0, 1] [1, 2], (2x y)dxdy = D = = (2) D = [1, 2] [2, 3], (x 2 y + y 2 )dxdy = D = = (3) D = [0, 1] [ 1, 2], 1 {

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

lim lim lim lim 0 0 d lim 5. d 0 d d d d d d 0 0 lim lim 0 d

0 ϕ ( ) (x) 0 ϕ (+) (x)ϕ d 3 ( ) (y) 0 pd 3 q (2π) 6 a p a qe ipx e iqy 0 2Ep 2Eq d 3 pd 3 q 0 (2π) 6 [a p, a q]e ipx e iqy 0 2Ep 2Eq d 3 pd 3 q (2π)

30

( )

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

DVIOUT-fujin

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( )

SO(3) 49 u = Ru (6.9), i u iv i = i u iv i (C ) π π : G Hom(V, V ) : g D(g). π : R 3 V : i 1. : u u = u 1 u 2 u 3 (6.10) 6.2 i R α (1) = 0 cos α


18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

3 filename=quantum-3dim110705a.tex ,2 [1],[2],[3] [3] U(x, y, z; t), p x ˆp x = h i x, p y ˆp y = h i y, p z ˆp z = h

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1

0406_total.pdf

201711grade1ouyou.pdf

φ s i = m j=1 f x j ξ j s i (1)? φ i = φ s i f j = f x j x ji = ξ j s i (1) φ 1 φ 2. φ n = m j=1 f jx j1 m j=1 f jx j2. m

( ) ) AGD 2) 7) 1

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

sec13.dvi

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

量子力学A


05Mar2001_tune.dvi

A

構造と連続体の力学基礎

Radiation from moving charges#1 Liénard-Wiechert potential Yuji Chinone 1 Maxwell Maxwell MKS E (x, t) + B (x, t) t = 0 (1) B (x, t) = 0 (2) B (x, t)

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

arxiv: v1(astro-ph.co)

AC Modeling and Control of AC Motors Seiji Kondo, Member 1. q q (1) PM (a) N d q Dept. of E&E, Nagaoka Unive

TOP URL 1

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,,

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

chap10.dvi

all.dvi

応力とひずみ.ppt

Morse ( ) 2014

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

meiji_resume_1.PDF

IA

: , 2.0, 3.0, 2.0, (%) ( 2.

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

振動と波動

Transcription:

2016 Kosterlitz-Thouless Haldane Dept. of Phys., Kyushu Univ. 2016 11 29

2016 Figure: D.J.Thouless F D.M.Haldane J.M.Kosterlitz TOPOLOGICAL PHASE TRANSITIONS AND TOPOLOGICAL PHASES OF MATTER

( ) ( ) (Dirac, t Hooft-Polyakov)

BKT J. M. Kosterlitz, and D.J. Thouless: Journal of Physics C 6 p. 1181-1203 (1973). 2 XY 2 U(1) XY O(2) ) 2 (Mermin-Wagner (1966)) But, 2 XY 2 ( ( ) Berezinskii: Sov. Phys. JETP, 32, p.493 (1971); Sov. Phys. JETP, 34, p.610 (1972)

BKT Kosterlitz (1973) Kosterlitz-Thouless (1973) Kosterlitz (1974) J. M. Kosterlitz: J. Phys. C, 7, pp. 1046-1060 (1974). Anderson-Yuval :Phys. Rev. Lett, 23, (1969) 89 ; Anderson-Yuval-Hamann :Phys. Rev. B, 1, (1970) 4464 2

Haldane F.D.M. Haldane: Phys. Letters A, 93, p.464 (1983); Physical Review Letters, 50, p.1153 (1983) 1950-1970 1 S=1/2 1 ) ( )

TKNN D. J. Thouless, Mahito Kohmoto, M.P. Nightingale, and M Den Nijs: Physical Review Letters, 49(6):405, (1982) ( )

1. 2. 1. 3. 2. (winding number) Figure: : -2, : -1, : 0 Figure: :1, : 2, : 3

2 3. 2. ( ) 3.1 ( 1 ( x 2π C r 2 dy y ) r 2 dx 3.2 ( ) 1 2πi dz z a C (1) (2) 3.3 ( ) ( )

2 XY XY : H XY = J <i,j> S i S j = J <i,j> cos(θ i θ j ) (3) ( θ j (0 θ j < 2π) S j (cos θ j, sin θ j ). < i, j > )

2 XY 2 XY

2 XY (vortex) (anti-vortex) 1. 1 XY 2. 1 XY 3. ( 4.

2 XY BKT 1. 2. 3.

2 XY BKT 1. 2. 3. 2 ( ) ( )

BKT 2 1. c 1 (T < T c ) S(r) S(r ) c 2 r r η (T = T c ) c 3 exp( r r /ξ(t )) (T > T c ) (4) 1.1 1.2 1.3 T c 2. 2 XY S(r) S(r ) { c 1 r r η(t ) (T T c ) c 2 exp( r r /ξ(t )) (T > T c ) (5)

(3) cos(θ i θ j ) 1 (θ i θ j ) 2 /2 1 ( θ) 2 /2. H = E 0 + J d 2 r( θ(r)) 2 (6) 2 (E 0 = 2JN ) (β = 1/(k B T )) ( Z = exp( βe 0 ) D[θ] exp β J ) d 2 r( θ(r)) 2 (7) 2 Green 2 ln(r) = 2πδ(r) Γ(r r) θ(r )θ(r) = 1 2π ln r r (8)

2 ( ) 1. 1 W (h) = dθ exp( 1 2 Aθ2 + ihθ) = (2π/A) 1/2 exp( 1 2 A 1 h 2 ) (9) exp(ihθ) W (h) W (0) = exp( 1 2 A 1 h 2 ) (10) 2. N exp( 1 2 N i=1 N j=1 θ ia i,j θ j ) exp(i i h i θ i ) = exp 1 2 N i=1 j=1 N h i (A 1 ) i,j h j (11)

3 ( ) 3. exp( 1 2 θ(r)a(r, r )θ(r )d d rd d r ) W (h) exp(i h(r)θ(r)d d r) ( = exp 1 ) h(r)a 1 (r, r )h(r )d d rd d r 2 (12) A 1 A 1 (r, r )A(r, r )d d r = δ d (r r ) (13) 4. θ(r )θ(r) = δ2 W (h) δh(r 1 )δh(r 2 ) = A 1 (r 1, r 2 ) (14)

4 XY S(r) S(r ) = exp(i(θ(r) θ(r ))) = exp( k BT 2πJ Γ(r r )) ( ) a kb T/2πJ = r r (15)

< θ < θ 1

< θ < θ 1 But, θ = θ + 2π ( ) v v 1 2π C dl θ(r) (16) S(r)(= exp(iθ(r))) v = n (n: )

2πn = dl θ(r) = 2πr θ (17) θ = n/r θ(r = n/r E vor E 0 = J d 2 r( θ(r)) 2 2 C = Jn2 2 2π 0 dθ L a rdr ( ) 1 2 = Jπn 2 ln L r a (18) (L a )

( +1) ( -1) ( 0 ( r 2πJ ln a) (19) (r )

( ) ( ) L L 2 F = E T S Jπ ln k B T ln a a 2 (20) T KT Jπ/(2k B )

S = 1 ( µ θ) 2 d 2 x, (θ θ + 2π) (21) 2g θ θ sw θ vortex θ(x) = θ sw (x) + θ vortex (x) (22) dθ sw (x) = 0, (23) dθ vortex (x) = v (v : ) (24) ψ ( ) ϵ µν ν ψ = µ θ vortex (25)

v = dθ vortex (x) = 1 2π 2 ψd 2 x (26) 2 ψ = 2π j v j δ(x x j ) (v j : ) (27) 2 Green 1 2π ln x ψ(x) = 2π j v j 1 2π ln x x j = j v j ln x x j (28) θ vortex (x) = Im j v j ln(x x j ) (29) ( )

2D Coulomb gas Action S vortex = 2π 2g v i v j ln z i z j (30) i,j (2 ( )) Action sine-gordon ( < χ < ) L = 1 2g ( χ)2 2 cos( 2πχ g ) (31)

2 sine-gordon ( ) α α = α exp(dl) α(1 + dl) L l 0 = ln L (1/ ln L) dy 1 (l) = y 2 dl 2(l) dy 2 (l) = y 1 (l)y 2 (l) (32) dl

: K. Nomura: J. Phys. A, Vol. 28, pp.5451-5468 (1995); Nomura and A. Kitazawa: J. Phys. A: Vol. 31 (1998) pp.7341

Haldane 1 H = J j S j S j+1 (33) Néel (S=1/2,3/2,...) (S=1,2,...) 0 π

Haldane : 1 2g dtdx ( 1 v ( ) φ 2 v t ( ) ) φ 2 x (φ (φ 1, φ 2, φ 3 ), φ 2 = 1) (34) Wick 1 2g dx 2 ( φ) 2 (35) 2 )

Haldane : 1 2g dtdx ( 1 v ( ) φ 2 v t ( ) ) φ 2 x (φ (φ 1, φ 2, φ 3 ), φ 2 = 1) (34) Wick 1 2g dx 2 ( φ) 2 (35) 2 ) massless(gapless)

Haldane : 1 2g dtdx ( 1 v ( ) φ 2 v t ( ) ) φ 2 x (φ (φ 1, φ 2, φ 3 ), φ 2 = 1) (34) Wick 1 2g dx 2 ( φ) 2 (35) 2 ) massless(gapless) But φ 2 = 1

Haldane : 2 ( ) φ

Haldane : 2 ( ) φ Figure: ( ) gap

Haldane : 2 ( ) φ Figure: ( ) gap 4 Yang-Mills ( ) 2

Haldane :, 0 π ˆφ 2i 1 2s (Ŝ2i+1 Ŝ2i) a 0, s ˆl 2i 1 2a (Ŝ2i+1 + Ŝ2i) (36) [ˆl a (x), ˆl b (y)] = iϵ abcˆlc δ(x y) [ˆl a (x), ˆφ b (y)] = iϵ abc ˆφ c δ(x y) [ ˆφ a (x), ˆφ b (y)] = iϵ abcˆlc a2 δ(x y) 0 (37) s2 δ(x y) = lim a 0 δ x,y a

Haldane : 2 ˆφ 2i ˆl 2i = 1 2s (Ŝ2i+1 Ŝ2i) 1 2a (Ŝ2i+1 + Ŝ2i) = 1 2sa (Ŝ2 2i+1 + Ŝ2i+1 Ŝ2i Ŝ2i+1 Ŝ2i Ŝ2 2i) = 0 ˆφ (38) ( ˆφ 2i ) 2 = 1 4s 2 [Ŝ2 2i + Ŝ2 2i+1 2Ŝ2i Ŝ2i+1] = 1 4s 2 [2Ŝ2 2i + 2Ŝ2 2i+1 4a 2 (ˆl 2i )) 2 ] = 1 + 1/s a 2ˆl/s 2 (39)

Haldane : 3 Ŝ 2i Ŝ2i+1 = 2a 2ˆl2 2i + s(s + 1) (40) Ŝ 2i 1 Ŝ2i = s 2 ˆφ 2i 2 ˆφ 2i as [ˆl2i 2 ˆφ 2i ˆφ 2i 2 ˆl ] 2i + a 2ˆl2i 2 ˆl 2i a 2 ( 2s 2 ( ˆφ ) 2 2s(ˆl ˆφ + ˆφ ˆl) + 2ˆl 2) s(s + 1) 2a 2 s 2 ( ˆφ ˆφ ) (41) ( ˆφ 2 = 1 + 1/s aˆl 2 /s 2 ˆφ ˆφ = ( ˆφ ˆφ) ( ˆφ ) 2 )

Haldane : 4 Ĥ = aj 2 dx[4ˆl 2 + 2s 2 ( ˆφ ) 2 2s(ˆl ˆφ + ˆφ ˆl)] (42) Ĥ = dxĥ, (43) [ Ĥ = v ( g ˆl θ ) ] 2 2 4π ˆφ + ( ˆφ ) 2 (44) g v = 2Jas, g = 2/s, θ = 2πs

Haldane : 5 Hamiltonian (44) Lagrangian L = 1 2g µ ˆφ µ ˆφ + θ 8π ϵµν ˆφ ( µ ˆφ ν ˆφ) = 1 2g ( 0φ 0 φ 1 φ 1 φ) + θ 4π φ ( 0φ 1 φ) (45) ( v = 1 [ ] Π ( ) L ( 0 φ) = 1 g 0φ + θ 4π ( 1φ φ) (46)

Haldane : 6 H 0 φ Π L = g ( φ Π θ ) 2 2 4π ( 1φ) + 1 2g ( 1φ) 2 (47) l φ Π Ĥ = v 2 [ ( dx g ˆl θ ) ] 2 4π ˆφ + ( ˆφ ) 2 g Q.E.D.

Haldane : 7 Lagrangin Wick Euclid L = 1 2g µ ˆφ µ ˆφ + iθ 8π ϵµν ˆφ ( µ ˆφ ν ˆφ) = 1 2g ( 0φ 0 φ 1 φ 1 φ) + θ 4π φ ( 0φ 1 φ) (48) ( ) ( Z = Dφ exp ) d 2 xl (49)

Haldane : (S 0 ) Q = 1 d 2 xϵ µν ˆφ ( µ ˆφ ν ˆφ) (50) 8π ( exp(s 0 + iθq) θ = 2πs gapped gapless

Haldane : 2. φ = (sin α cos β, sin α sin β, cos α) Q = 1 d 2 xϵ µν ˆφ ( µ ˆφ ν ˆφ) 8π = 1 d 2 x sin αϵ µν µ α ν β 4π = 1 D(α, β) sin α 4π D(x 0, x 1 ) dx 0dx 1 = 1 ds int (51) 4π ( D(α,β) D(x 0,x 1 ) ) : Q

Q µ φ + ϵ µν (φ ν φ) = 0 (52) φ 1 = 1 w ( w = φ 1 + iφ 2 1 + φ 3 (53) Figure:

2 (52) z w = 0, (z = x 0 + ix 1 ) (54) w(z) = Q j=1 z a j z b j (55)

Haldane : 1. S=1/2 Bethe 2. (S=3/2,5/2, ) Lieb-Schultz-Mattis I.Affleck, E.H. Lieb: Lett. Math. Phys, p. 57 (1986)

Haldane : Haldane 1. 2. 3. AKLT(Affleck-Kennedy-Lieb-Tasaki) I. Affleck, T. Kennedy, E.H.Lieb, H.Tasaki: Physical Review Letters. 59, p.799(1987).

1. 1.1 BKT 1.2 Haldane ( ) 1.3 TKNN(Thouless-Kohmoto-Nightingale-denNijs) 2.?(Umklapp )? 3. 4. 4.1 4.2 SPTP 4.3 4.4 4.5

2 1., 2. ( ) 3.