Outline I. Introduction: II. Pr 2 Ir 2 O 7 Like-charge attraction III.

Similar documents
[ ] (Ising model) 2 i S i S i = 1 (up spin : ) = 1 (down spin : ) (4.38) s z = ±1 4 H 0 = J zn/2 i,j S i S j (4.39) i, j z 5 2 z = 4 z = 6 3

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

References: 3 June 21, 2002 K. Hukushima and H. Kawamura, Phys.Rev.E, 61, R1008 (2000). M. Matsumoto, K. Hukushima,

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

TOP URL 1

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

Untitled

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

GJG160842_O.QXD

ʪ¼Á¤Î¥È¥Ý¥í¥¸¥«¥ë¸½¾Ý (2016ǯ¥Î¡¼¥Ù¥ë¾Þ¤Ë´ØÏ¢¤·¤Æ)

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

TOP URL 1

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

PDF

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat

反D中間子と核子のエキゾチックな 束縛状態と散乱状態の解析

1 1.1,,,.. (, ),..,. (Fig. 1.1). Macro theory (e.g. Continuum mechanics) Consideration under the simple concept (e.g. ionic radius, bond valence) Stru

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

untitled

a L = Ψ éiγ c pa qaa mc ù êë ( - )- úû Ψ 1 Ψ 4 γ a a 0, 1,, 3 {γ a, γ b } η ab æi O ö æo ö β, σ = ço I α = è - ø çèσ O ø γ 0 x iβ γ i x iβα i

TOP URL 1

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

中央大学セミナー.ppt

2016 ǯ¥Î¡¼¥Ù¥ëʪÍý³Ø¾Þ²òÀ⥻¥ß¥Ê¡¼ Kosterlitz-Thouless ž°Ü¤È Haldane ͽÁÛ

23 1 Section ( ) ( ) ( 46 ) , 238( 235,238 U) 232( 232 Th) 40( 40 K, % ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4

³ÎΨÏÀ

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

LLG-R8.Nisus.pdf

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論

TOP URL 1

(τ τ ) τ, σ ( ) w = τ iσ, w = τ + iσ (w ) w, w ( ) τ, σ τ = (w + w), σ = i (w w) w, w w = τ w τ + σ w σ = τ + i σ w = τ w τ + σ w σ = τ i σ g ab w, w

201711grade1ouyou.pdf

meiji_resume_1.PDF

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

,,..,. 1

iBookBob:Users:bob:Documents:CurrentData:flMŠÍ…e…L…X…g:Statistics.dvi

H.Haken Synergetics 2nd (1978)

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

Formation process of regular satellites on the circumplanetary disk Hidetaka Okada Department of Earth Sciences, Undergraduate school of Scie

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

E 1/2 3/ () +3/2 +3/ () +1/2 +1/ / E [1] B (3.2) F E 4.1 y x E = (E x,, ) j y 4.1 E int = (, E y, ) j y = (Hall ef

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

¼§À�ÍýÏÀ – Ê×ÎòÅŻҼ§À�¤È¥¹¥Ô¥ó¤æ¤é¤® - No.7, No.8, No.9

Bethe-Bloch Bethe-Bloch (stopping range) Bethe-Bloch FNAL (Fermi National Accelerator Laboratory) - (SciBooNE ) SciBooNE Bethe-Bloch FNAL - (SciBooNE

抄録/抄録1    (1)V

D v D F v/d F v D F η v D (3.2) (a) F=0 (b) v=const. D F v Newtonian fluid σ ė σ = ηė (2.2) ė kl σ ij = D ijkl ė kl D ijkl (2.14) ė ij (3.3) µ η visco

i 18 2H 2 + O 2 2H 2 + ( ) 3K

(Onsager )

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

chap10.dvi

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

転位の応力場について

0406_total.pdf

[ ] [ ] [ ] [ ] [ ] [ ] ADC

d > 2 α B(y) y (5.1) s 2 = c z = x d 1+α dx ln u 1 ] 2u ψ(u) c z y 1 d 2 + α c z y t y y t- s 2 2 s 2 > d > 2 T c y T c y = T t c = T c /T 1 (3.

The Physics of Atmospheres CAPTER :

gr09.dvi

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )


1/2 ( ) 1 * 1 2/3 *2 up charm top -1/3 down strange bottom 6 (ν e, ν µ, ν τ ) -1 (e) (µ) (τ) 6 ( 2 ) 6 6 I II III u d ν e e c s ν µ µ t b ν τ τ (2a) (

untitled

JKR Point loading of an elastic half-space 2 3 Pressure applied to a circular region Boussinesq, n =


( ) I( ) TA: ( M2)

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

JMP V4 による生存時間分析

untitled

Part () () Γ Part ,

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1)

* 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) *

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

放射線化学, 92, 39 (2011)

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論

I II III IV V

( ) ,

i

chap9.dvi

Gmech08.dvi

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

B

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m


液晶の物理1:連続体理論(弾性,粘性)

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2

スケーリング理論とはなにか? - --尺度を変えて見えること--

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

ad bc A A A = ad bc ( d ) b c a n A n A n A A det A A ( ) a b A = c d det A = ad bc σ {,,,, n} {,,, } {,,, } {,,, } ( ) σ = σ() = σ() = n sign σ sign(

総研大恒星進化概要.dvi

4/15 No.

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt


Transcription:

Masafumi Udagawa Dept. of Physics, Gakushuin University Mar. 8, 16 @ in Gakushuin University Reference M. U., L. D. C. Jaubert, C. Castelnovo and R. Moessner, arxiv:1603.02872

Outline I. Introduction: II. Pr 2 Ir 2 O 7 Like-charge attraction III.

Introduction

: Ising? Ising (J > 0) H = J i,j σ i σ j (σ j = ±1) = J 4 & (σ i + σ j + σ k ) 2 + Const. i k j (Wannier) S = 0.323k B /spin (NOT 0.338!)

: Dy 2 Ti 2 O 7, Ho 2 Ti 2 O 7 : 2-in 2-out (Ramirez) : 0.229k B /spin Pauling ( Bethe ) S Pauling = k B 2 log 3 2 0.203k B/spin

: Fe 3 O 4 Fe 3 O 4 A-site Fe 3+ B-site Fe 2+, Fe 3+ T c =120K (Verway) B-site spinel T c (1eV 10 4 K) - (Anderson) T c E/ S

: LiV 2 O 4 Li V O 2 4 Specific heat C J. Kondo et al. (1999) C. Urano et al. (2000) γ = C/T m* S = T C T dt γ T m* = 200me

Winding Number w = ( # of ) - ( # of )

Winding Number w = ( # of ) - ( # of )

Winding Number w = ( # of ) - ( # of )

Winding Number w = ( # of ) - ( # of )

Winding Number w = ( # of ) - ( # of )

Winding Number w = ( # of ) - ( # of )

Winding Number w = ( # of ) - ( # of )

Winding Number w = ( # of ) - ( # of )

Winding Number w = ( # of ) - ( # of )

Winding Number w = ( # of ) - ( # of )

Winding Number w = ( # of ) - ( # of )

Winding Number w = ( # of ) - ( # of )

Winding Number w = ( # of ) - ( # of )

Winding Number w = ( # of ) - ( # of )

Winding Number w = ( # of ) - ( # of )

Short summary : : : : /

Collaborators Dr. Ludovic D. C. Jaubert (OIST) Dr. Claudio Castelnovo (Cambridge) Prof. Roderich Moessner (MPI PKS Dresden)

Pr 2 Ir 2 O 7 : Ir: Itinerant site center of IrO octahedron 6 = Pr: Spin ice Fig.: Matsuhira (2008) A sub.: Pr spin ice B sub.: Ir e - Pr Ir

Pr 2 Ir 2 O 7 : Hall Anisotropy in σ xy (Machida 2007) 1e-04 8e-05 6e-05 [100] [111] Spin ice to Kagome ice crossover P triangle ~ 0.5 P triangle ~ 1.0 σ 4e-05 H 2e-05 H ~ 0 : spin ice : kagome ice Liquid-Gas crossover of monopoles 0-2e-05 0 1 2 3 4 H / J spin Monopole gas Monopole liquid M. U. and R. Moessner (2013). Hall : σ xy J y = σ xy E x

Pr 2 Ir 2 O 7 : Hall conductivity ( Ω 1 cm 1 ) -10-5 0 0.1 1 0.3 2 Temperature (K) B = 0 10 0.02 0.01 0.00 Magnetization µ Β per Pr atom ( ) : 0.3K < T < 2K B [111]: 7 Tesla 0: (M = 0) Machida (2010)

(ac ) : Dipolar (Jaubert et al.) Exp. (Snyder et al.) Arrhenius Matsuhira (2004), Snyder (2004), Jaubert (2010)

: RKKY ( ) 2-in 2-out

Dy 2 Ti 2 O 7, Ho 2 Ti 2 O 7 : µ 0 [ Si S j 4π rij 3 3(S i r ij )(S j r ij ) ] rij 5 i<j

Dy 2 Ti 2 O 7, Ho 2 Ti 2 O 7 : µ 0 [ Si S j 4π rij 3 3(S i r ij )(S j r ij ) ] rij 5 i<j = +1-1

Dy 2 Ti 2 O 7, Ho 2 Ti 2 O 7 : µ 0 [ Si S j 4π rij 3 3(S i r ij )(S j r ij ) ] rij 5 i<j = +1-1

Dy 2 Ti 2 O 7, Ho 2 Ti 2 O 7 : µ 0 [ Si S j 4π rij 3 3(S i r ij )(S j r ij ) ] rij 5 i<j = +1-1

Dy 2 Ti 2 O 7, Ho 2 Ti 2 O 7 : µ 0 [ Si S j 4π r 3 3(S i r ij )(S j r ij ) ] i<j ij rij 5 Q i Q j r i<j ij = +1-1 : dipolar interaction : Coulomb interaction

: non-contractible pair (ac ) : Dipolar (Jaubert et al.) Exp. (Snyder et al.) Arrhenius Matsuhira (2004), Snyder (2004), Jaubert (2010) H = µ i Q 2 i i<j Q i Q j r ij Castelnovo (2010)

J 1 -J 2 -J 3 spin ice model RKKY : but fast-decaying: r 3 sign-alternating H = J 1 S i S j + J 2 S i S j + J 3 S i S j n.n. 2nd. 3rd. = J 1 η i η j + J 2 η i η j + J 3 η i η j n.n. 2nd. 3rd. J3 J1 J2 η i = +1( 1), for S i out (in) for sublattice A sublattice A 2-in 2-out Q = 0 Tetrahedral Charge: Q ( p 1 ) H = 2 J Q 2 p J Q p Q q p,q for J 2 = J 3 = J H. Ishizuka & Y. Motome (2013) p 3-in 1-out 1-in 3-out Q = -2 Q = +2

N M = 2 N : Ω 1, Ω M d dt P (Ω j) = 1 [P (Ω i )W (Ω i Ω j ) P (Ω j )W (Ω j Ω i )] τ 0 i j W (Ω i Ω j ): Thermal bath W (Ω i Ω j ) = exp( βe(ω j )) exp( βe(ω i )) + exp( βe(ω j ))

Results

Results: (J 2 = J 3 = 0): T quench: T = 10 0 Monopole density monopole density 10 0 1 0.1 10-1 0.01 10-2 0.001 10-3 0.0001 10-4 10-5 1e-05-1 0 1 2 3 4 log(time) [MCstep] 10-1 10 0 10 1 10 2 10 3 10 4 Time Mean-field : ρ ρ 0 /(1 + 3 3 4 gρ 0t), with ρ 0 = 0.4869146729 (T = 10) d c.f. mean-field model: dt n + = d dt n = λn + n Castelnovo (2010)

Results: (J 2 = J 3 = 0): H quench: H = 100 0 [111] Monopole density 1 1.0 0.8 0.6 monopole density 0.4 0.2 0.0 0 10-3 10-2 10-1 10 0 10 1 10 2 10 3 10 4 log(time) [MCstep] 10-3 10-1 10 2 10 3 10-2 10 0 10 1 10 4 Time T T=0.1 = 0.1 T=0.01 0.01 Initial state Kagome Triangular Kagome

Results: J 1 J 2 J 3 model, (J 2 = J 3 = 0.1, T = 0.10): H quench Monopole density monopole density 1.0 0.8 0.6 0.4 0.2 0.0 0.8 0.6 0.4 0.2 10 0 10 5 10 10 10 15 10 20 0.0 time [MCstep] monopole M 1.0 0.0 10 5 10 10 10 15 10 20 10 0 Time Magnetization Normalized magnetization

Results: J 1 J 2 J 3 model, J = 0.10, T = 0.10 Monopole density monopole density 1.0 0.8 0.6 monopole density 0.4 0.2 0.2 0.0 10 0 Time J=-0.1, T=0.10 monopole magnetization tri magnetization (sat: 0.5) kag magnetization (sat: 0.5) 0 Magnetization (Triangular) Magnetization (Kagome) 0.0 10 5 10 10 10 15 10 20 0 5 10 0 10 5 time [MCstep] 10 10 10 15 10 20 time [MCstep] 1.0 0.8 0.6 Normalized magnetization 0.4 0.2 Magnetization ( 1 ) H = 2 + J Q 2 p + J Q p Q q p,q p Kagome Triangular Kagome

Results: J 1 J 2 J 3 model, J = 0.10, T = 0.10 Monopole density monopole density 1.0 0.8 0.6 monopole density 0.4 0.2 0.2 0.0 10 0 Time J=-0.1, T=0.10 monopole magnetization tri magnetization (sat: 0.5) kag magnetization (sat: 0.5) 0 Magnetization (Triangular) Magnetization (Kagome) 0.0 10 5 10 10 10 15 10 20 0 5 10 10 10 0 10 5 time [MCstep] 10 10 10 15 10 20 time [MCstep] 1.0 0.8 0.6 Normalized magnetization 0.4 0.2 Magnetization ( 1 ) H = 2 + J Q 2 p + J Q p Q q p,q p -

Results: J 1 J 2 J 3 model, J = 0.10, T = 0.10 Monopole density monopole density 1.0 0.8 0.6 monopole density 0.4 0.2 0.2 0.0 10 0 Time J=-0.1, T=0.10 monopole magnetization tri magnetization (sat: 0.5) kag magnetization (sat: 0.5) 0 Magnetization (Triangular) Magnetization (Kagome) 0.0 10 5 10 10 10 15 10 20 0 5 10 10 10 0 10 5 time [MCstep] 10 10 10 15 10 20 time [MCstep] 1.0 0.8 0.6 Normalized magnetization 0.4 0.2 Magnetization ( 1 ) H = 2 + J Q 2 p + J Q p Q q p,q p Exhaustion problem flip

Results: J 1 J 2 J 3 model, J = 0.10, T = 0.10 Monopole density monopole density 1.0 0.8 0.6 monopole density 0.4 0.2 0.2 0.0 10 0 Time J=-0.1, T=0.10 monopole magnetization tri magnetization (sat: 0.5) kag magnetization (sat: 0.5) 0 Magnetization (Triangular) Magnetization (Kagome) 0.0 10 5 10 10 10 15 10 20 0 5 10 10 10 0 10 5 time [MCstep] 10 10 10 15 10 20 time [MCstep] 1.0 0.8 0.6 Normalized magnetization 0.4 0.2 Magnetization ( 1 ) H = 2 + J Q 2 p + J Q p Q q p,q p 0 J < 0

Results: J 1 J 2 J 3 model, J > 0: H quench (J 2 = J 3 = J = 0.05, 0.10, 0.15, 0.20, J/T = 0.125) Monopole density 1.0 monopole density 1.0 0.8 0.6 0.6 0.4 0.4 0.2 0.2 1.0 0.8 0.6 0.4 0.2 Magnetization 0.0 0.0 0.0 10-4 10-2 10 0 10 2 10 4 10 6 10 10-4 10-2 10 0 time 10 2 [MCstep] 10 4 10 6 10 8 Time 0.0 J/T 1

Results: J 1 J 2 J 3 model, J > 0: H quench (J 2 = J 3 = J 0.25, J/T = 0.125) Monopole density 1.0 monopole density 1.0 0.8 0.8 0.6 0.6 0.4 0.4 0.2 0.2 0.0 1.0 0.6 0.4 0.2 0.0 0.0 10-4 10-2 10 0 10 2 10 4 10 6 10 10-4 10-2 10 0 time 10 2 [MCstep] 10 4 10 6 10 8 Time J = 0.25 0.24 0.225 0.20 0.8 0.0 Magnetization 1

Results: J 1 J 2 J 3 model, J 2 = J 3 = J > 0: H quench H = @J = 1/4 H = 1 4 ( 1 ) 2 J Q 2 p J Q p Q q p,q p Q 2 p 1 4 p p,q Q p Q q = :

Results: Experimental Implication T How to estimate?

Results: Experimental Implication [00k] 4 2 0-2 -4 T = 0.1 K -4-2 0 2 4 [hh0] T = 0.3 K -4-2 0 2 4 [hh0] T = 1 K -4-2 0 2 4 [hh0] 1.6 1.4 1.2 1 0.8 0.6 0.4 pinch point B µ (0)B ν (r) = 1 3x µ x ν r 2 δ µν 4πK r 5 S µν (q) 1 ( δ µν q ) µq ν K q 2

Summary: J 1 J 2 J 3