chap03.dvi

Similar documents
Gmech08.dvi


II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

meiji_resume_1.PDF

Note.tex 2008/09/19( )

Gmech08.dvi

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

振動と波動

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

chap1.dvi

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

QMI_09.dvi

QMI_10.dvi

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =

TOP URL 1

Untitled


t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT


量子力学 問題


KENZOU

Euler Appendix cos, sin 2π t = 0 kx = 0, 2π x = 0 (wavelength)λ kλ = 2π, k = 2π/λ k (wavenumber) x = 0 ωt = 0, 2π t = 0 (period)t T = 2π/ω ω = 2πν (fr

,., 5., ,. 2.2,., x z. y,.,,,. du dt + α p x = 0 dw dt + α p z + g = 0 α dp dt + pγ dα dt = 0 α V dα dt = 0 (2.2.1), γ = c p /c

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)


08-Note2-web

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

pdf

keisoku01.dvi


QMII_10.dvi

29

d (K + U) = v [ma F(r)] = (2.4.4) t = t r(t ) = r t 1 r(t 1 ) = r 1 U(r 1 ) U(r ) = t1 t du t1 = t F(r(t)) dr(t) r1 = F dr (2.4.5) r F 2 F ( F) r A r

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

, 1.,,,.,., (Lin, 1955).,.,.,.,. f, 2,. main.tex 2011/08/13( )

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

I 1

Gmech08.dvi

( ) ( )

phs.dvi

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π

30

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x


x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

36 3 D f(z) D z f(z) z Taylor z D C f(z) z C C f (z) C f(z) f (z) f(z) D C D D z C C 3.: f(z) 3. f (z) f 2 (z) D D D D D f (z) f 2 (z) D D f (z) f 2 (

b3e2003.dvi

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( )

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d


x E E E e i ω = t + ikx 0 k λ λ 2π k 2π/λ k ω/v v n v c/n k = nω c c ω/2π λ k 2πn/λ 2π/(λ/n) κ n n κ N n iκ k = Nω c iωt + inωx c iωt + i( n+ iκ ) ωx

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

( ) s n (n = 0, 1,...) n n = δ nn n n = I n=0 ψ = n C n n (1) C n = n ψ α = e 1 2 α 2 n=0 α, β α n n! n (2) β α = e 1 2 α 2 1

0 0. 0

t (x(t), y(t)), a t b (x(a), y(a)) t ( ) ( ) dy s + dt dt dt [a, b] a a t < t 1 < < t n b {(x(t i ), y(t i ))} n i ( s(t) ds ) ( ) dy dt + dt dt ( ) d

Korteweg-de Vries

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s


Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

1 [ 1] (1) MKS? (2) MKS? [ 2] (1) (42.195k) k 2 (2) (3) k/hr [ 3] t = 0 10 ( 1 velocity [/s] 8 4 O


II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

dynamics-solution2.dvi

i

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

master.dvi


ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d


1 1.1 [ 1] velocity [/s] 8 4 (1) MKS? (2) MKS? 1.2 [ 2] (1) (42.195k) k 2 (2) (3) k/hr [ 3] t = 0

1 yousuke.itoh/lecture-notes.html [0, π) f(x) = x π 2. [0, π) f(x) = x 2π 3. [0, π) f(x) = x 2π 1.2. Euler α

B 38 1 (x, y), (x, y, z) (x 1, x 2 ) (x 1, x 2, x 3 ) 2 : x 2 + y 2 = 1. (parameter) x = cos t, y = sin t. y = f(x) r(t) = (x(t), y(t), z(t)), a t b.

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

ẍ = kx, (k > ) (.) x x(t) = A cos(ωt + α) (.). d/ = D. d dt x + k ( x = D + k ) ( ) ( ) k k x = D + i D i x =... ( ) k D + i x = or ( ) k D i x =.. k.

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α


( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

TOP URL 1

Xray.dvi

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

Transcription:

99 3 (Coriolis) cm m (free surface wave) 3.1 Φ 2.5 (2.25) Φ

100 3 r =(x, y, z) x y z F (x, y, z, t) =0 ( DF ) Dt = t + Φ F =0 onf =0. (3.1) n = F/ F (3.1) F n Φ = Φ n = 1 F F t Vn on F = 0 (3.2) Φ (3.1) (kinematic condition) z = ζ(x, y, t) (3.1) F F = z ζ (x, y, t) = 0 (3.3) (3.1) (3.2) Φ ζ (x, y, t) (dynamic condition) 2.4 (2.18) Φ t + 1 Φ Φ + gζ =0 onz = ζ (x, y, t). (3.4) 2 (3.1) (3.4) ζ Φ (3.4)

3.1 101 (ζ) (3.4) Φ ζ Φ ζ (3.4) (3.1) ζ 2 Φ t 2 ζ = 1 Φ g t + O(Φ2 ), (3.5) ζ t + Φ + O(ζΦ)=0. z (3.6) + g Φ z + O(Φ2 )=0 onz = ζ (3.7) z = ζ ζ z =0 ( ) Φ Φ(x, y, z, t) =Φ(x, y, 0, t)+ζ +. (3.8) z z=0 (3.7) z =0 O(Φ 2 ) (linearized free-surface condition) 2 Φ t 2 + g Φ z =0 onz =0. (3.9) Φ z = ζ (3.5) ) ( )[ D p Φ = Dt( ρ t + Φ t + 1 ] 2 Φ Φ + gz =0 onz = ζ. (3.10)

102 3 2 Φ t 2 + g Φ ( Φ ) z +2 Φ + 1 t 2 Φ ( Φ Φ ) =0 onz = ζ. (3.11) O(Φ 2 ) (3.9) (3.8) ζ (3.5) z =0 (3.11) O(Φ 2 ) 2 Φ t 2 + g Φ z = 2 Φ Φ t + 1 Φ g t ( 2 Φ z t 2 + g Φ ) z on z =0. (3.12) 3.1 (3.2) F (x, y, z) = 0 n = F/ F x = a cos θ, y = b sin θ cos ϕ, z = b sin θ sin ϕ n 1 = ɛ cos θ/, n 2 = sin θ cos ϕ/, n 3 = sin θ sin ϕ/. = sin 2 θ + ɛ 2 cos 2 θ, ɛ= b/a. 3.2 (3.1) (3.4) ζ (3.8) (3.12) 3.2 ( z = h ) x 3.1 a ω z = ζ(x, t) =a cos(ωt kx) (3.13)

3.2 103 z k (wavenumber) SF O c λ k = x 2π/λ S-oo Soo (3.13) ωt kx SB -h x 3.1 t + δt x x + δx ωt kx = ω(t + δt) k(x + δx), δx δt = ω c>0 (3.14) k (3.14) c (phase velocity) x ωt + kx f(ωt kx) f t + c f x = ( ω ck ) f = 0 (3.15) Φ Φ 3.1 S F S B x ± S ± Φ [L] [F ] [B] 2 Φ x + 2 Φ = 0 2 z2 for z 0, (3.16) 2 Φ t + g Φ =0 2 z onz =0, (3.17) Φ =0 z onz = h. (3.18)

104 3 S ± x f(ωt kx) Φ(x, z, t) =Z(z) sin(ωt kx). (3.19) (3.16) Z(z) d 2 Z dz 2 k2 Z = 0 (3.20) Z(z) =D 1 e kz + D 2 e kz (3.21) D 1 D 2 [ F ] [ B ] } D 1(ω 2 gk)+d 2(ω 2 + gk) =0, (3.22) D 1 e kh D 2 e kh =0. D 1 = D 2 =0 ω 2 gk ω 2 + gk e kh e kh =0, (3.23) k tanh kh = ω2 g K (3.24) k ω, g D 1 e kh = D 2 e kh 1 2 D (3.25) Φ(x, z, t) =D cosh k(z + h) sin(ωt kx) (3.26)

3.2 105 [ F ], [ B ] D (3.13) (3.5) ζ = 1 ( ) Φ = D ω cosh(kh) cos(ωt kx) g t z=0 g = a cos(ωt kx). (3.27) ga D = (3.28) ω cosh kh Φ = ga cosh k(z + h) sin(ωt kx). (3.29) ω cosh kh Φ(x, z, t) =Re [ φ(x, z) e iωt ], (3.30) φ(x, z) = iga cosh k(z + h) e ikx (3.31) ω cosh kh e iωt (3.30) φ(x, z) f(z) (3.24) (3.14) (3.24) c c = ω g k = k tanh kh = gλ 2πh tanh 2π λ (3.32) λ (3.32)

106 3 (3.32) (3.24) (dispersion relation) (3.24) k y = tanh kh (3.24) K k tanh kh k 3.2 1 k = k 0 (h ) tanh kh 1 k 0 = K k O K k0 K<k 0 3.2 k 0 K (3.32) (h ) (h 0) gλ c = ( h ), (3.33) 2π c = gh ( h 0 ) (3.34) h/λ 0 (3.33) tanh kh 1 kh =2πh/λ 2.65 λ 2.4h 1.0% 3.3 r 0(t) =(x 0(t),z 0(t)) d r 0 dt = u( r 0,t) (3.35)

3.3 107 r 0 r =(x, z) O(a) r =(x, z) d r 0 dt = u(r, t)+(r 0 r ) u + O(a 3 ) (3.36) u(r,t)= Φ O(a) (3.29) Φ cosh k(z + h) (x 0 x) = dt = a sin(ωt kx), x sinh kh (3.37) Φ sinh k(z + h) (z 0 z) = dt = a cos(ωt kx) z sinh kh (3.37) (3.36) (3.24) (3.29) dx 0 dt dz 0 dt cosh k(z + h) = aω cos(ωt kx) sinh kh + 1 cosh 2k(z + h) cos 2(ωt kx) 2 ωka2 + O(a 3 ), sinh 2 kh (3.38) sinh k(z + h) = aω sin(ωt kx)+o(a 3 ) sinh kh (3.39) O(a 2 ) (Stokes drift) (3.38) T E 1 T T 0 Edt (3.40) M = ρ 0 h dx 0 dt dz = 1 ρωa 2 2 tanh kh = 1 1 2 ρga2 c (3.41)

108 3 c (3.32) O(a 2 ) O(a 2 ) ([ Note - 3.1 ] ) O(a 2 ) M = ζ ρ Φ x a Φ dz ρ (ζ + a) x z=0 (3.41) [ Note - 3.1 ] = 1 2 ρga2 k ω (3.42) O(a 2 ) Φ (2) Φ (2) (3.12) (3.12) (3.30) (3.31) 2 Φ (2) t 2 + g Φ(2) = Q on z =0, (3.43) z [ Q 2 Φ Φ t + 1 ( Φ 2 Φ g t z t 2 + g Φ )] z z=0 [ =Re i 3 g 2 a 2 2 ω k2( ) ] 1 tanh 2 kh e i 2(ωt kx) (3.44) z = h 2(ωt kx) [ ] Φ (2) =Re φ (2) (x, z) e i 2ωt, φ (2) (x, z) =D cosh 2k(z + h) cosh 2kh i 2kx e D (3.43) D = i 3 g 2 a 2 4 ω k(1 tanh 2 kh ) ( 2 tanh kh tanh 2kh ) (3.45) (3.46) (3.45) φ (2) (x, z) =i 3 8 ωa2 cosh 2k(z + h) sinh 4 kh e i 2kx. (3.47)

3.4 109 (h ) (3.44) Q =0 (3.47) h Φ (2) 3.3 O(a 2 ) (3.8) (3.4) ( ζ = 1+ζ + ){ z 1 ( Φ g t + 1 2 )}z=0 Φ Φ = 1 ( Φ g t + 1 2 Φ Φ 1 ) Φ 2 Φ + O(Φ 3 ) g t z t z=0 3.4 3.2 ω k (3.32) ω, k δω = ω 2 ω 1, δk = k 2 k 1 (3.48) [ ] ζ =Re A 1 e i (ω 1t k 1 x) + A 2 e i (ω 2t k 2 x) [ { } ] =Re A 1 1+ A2 e i (δω t δk x) e i (ω 1t k 1 x) A 1 (3.49) (3.49) { } δk δω (group velocity) (3.14) c g = δω (3.50) δk

110 3 2π δk cg 2π k c= ω k 3.3 δω/δk δω 0 δk 0 δω t δk x t x (3.49) c g c g = dω dk = d(kc) = c + k dc dk dk = c λ dc dλ. (3.51) (3.24) c g c c g = 1 2 c [ 1+ 2kh sinh 2kh (3.52) (h ) (h 0) ]. (3.52) c g = 1 c 2 ( h ), (3.53) c g = c ( h 0 ) (3.54) (ω 1,k 1) (ω 2,k 2) k

3.4 111 [ ] α ζ =Re A e α(k k) 2 e i {ω(k )t k x} dk π (3.55) α α α lim α π e αk2 = δ(k) (3.56) α 1 k = k ω(k )=ω(k)+(k k) dω dk (3.57) (3.55) α(k k) 2 + i {ω(k )t k x} = i (ωt kx) 1 ( x dω ) 2 4α dk t α { (k k)+ i ( x dω )} 2 2α dk t (3.58) k [ { ζ Re A exp 1 ( x dω ) 2 } ] 4α dk t e i (ωt kx). (3.59) oo α cg=d ω/dk 2π k c= k ω 3.4 (3.59) x =(dω/dk)t dω/dk

112 3 x =(dω/dk)t dω/dk (3.51) 3.4 c (3.32) (3.52) c = tanh kh, (3.60) c c g = c [ 1 1+ 2kh ] (3.61) c c 2 sinh 2kh kh 0 kh 3 (3.60) kh (3.61) kh (3.61) kh 3.5 V ] [ ] 1 1 E = ρ[ 2 q2 + gz dv = 2 Φ Φ + gz dv. (3.62) V (t) V ρ V (t) (3.62) V S U n de dt = ρ d [ 1 ] dt 2 q2 + gz dv V (t) [ ] [ ] 1 1 = ρ t 2 q2 + gz dv + ρ 2 q2 + gz U n ds. (3.63) S

3.5 113 V(t) S n ( 1 p 2 q2 + gz = ρ + Φ ). (3.64) t [ 1 ] ( Φ ) t 2 q2 = t Φ (3.65) 3.5 [ ( de Φ dt S = ρ Φ p t n ρ + Φ ] )U n ds. (3.66) t S S F S H S S on S C U n =0, Φ on S H = Un = Vn, n (3.67) Φ on S F = Un, p =0 n V n (3.2) (3.67) (3.66) de dt = Φ Φ pv n ds + ρ ds (3.68) S H S t n (3.68) (3.68) W D de/dt 0 0 Φ Φ W D pv n ds = ρ ds. (3.69) S H S t n

114 3 (V n =0) (3.69) 0 (3.69) 0 3.6 y x (3.62) ζ [ 1 ] E = ρ 2 Φ Φ + gz dz. (3.70) h ζ = 1 Φ (3.71) g t h o z SF SB a z=0 δx z=ζ(x,t) n S+ n x 3.6 Φ (3.70) E = 1 0 [ ( Φ ) 2 ( Φ ) 2 ] 2 ρ + dz + 1 x z 2 ρg ζ2 + O(Φ 3 ) (3.72) h

3.6 115 (3.30) Re [ Ae iωt] Re [ Be iωt] = 1 2 Re[ AB ]. (3.73) B B (3.31) z E = 1 ( ) gak 2 0 1 4 ρ cosh 2k(z + h) dz + 1 ω cosh 2 kh 4 ρga2 h = 1 4 ρga2 + 1 4 ρga2 = 1 2 ρga2 (3.74) ρga 2 /4 (3.74) (3.41) E = Mc (3.75) M c (3.68) (3.68) y x δx S(x) S(x + δx) ( E ) Φ t δx = ρ Φ t x dz S(x+δx) S(x) = ρ x 0 h Φ Φ t x dz δx + O(Φ3 ) (3.76)

116 3 Φ (3.30) (3.31) (3.73) E t = 1 2 ρ [ 0 ( ) φ ] Re iωφ x x dz = x h [ 1 4 ρga2 ω k (3.52) (3.74) { 1+ 2kh sinh 2kh }] (3.77) E t + ( ) cge = 0 (3.78) x (3.15) (3.78) E c g 3.5 (3.73) (3.77) 3.7 x x =0 z O Reflected Wave Incident Wave x x =0 Φ =0 atx = 0 (3.79) x -h x 3.7 (3.29) Φ s = ga cosh k(z + h) { } sin(ωt + kx) + sin(ωt kx) ω cosh kh = 2ga cosh k(z + h) cos kx sin ωt (3.80) ω cosh kh

3.7 117 (3.79) ζ s = 1 ( ) Φs =2acos kx cos ωt (3.81) g t z=0 (3.80) (3.81) (standing wave) x = mπ/k (m =0, ±1, ±2, ) x =(m + 1 )π/k (x =0) 2 (loop) (node) (3.79) x = mπ/k Φ/ x =0 (3.80) x = mπ/k x l λ/2 l λ =2l/m (m =1, 2, ) ω m (3.24) ω m = g mπ ( ) mπh tanh (3.82) l l T m T m = 2π = 2 l 1, ( m =1, 2, ) (3.83) ω m m gh m =1 (seiche) (x, y)

118 3 h λ h z 0 z ( ) ( Φ 2 ) Φ = h z x + 2 Φ (3.84) 2 y 2 z=0 z = h (3.84) c = gh 2 Φ t 2 ( 2 ) = Φ c2 x + 2 Φ, c = gh (3.85) 2 y 2 Φ z Φ = Φ(x, y, t) (3.85) (x, y) C B Φ (3.85) φ Φ =0 oncb (3.86) n Φ(x, y, t) =φ(x, y) sin ωt (3.87) 2 φ x + 2 φ 2 y + 2 k2 φ =0, k = ω c (3.88) (Helmholtz s equation) (3.88) C B x =0,a y =0,b (3.86) φ x =0, φ y =0, at x =0,a at y =0,b (3.89)

3.7 119 (3.88) φ(x, y) =X(x)Y (y) (3.88) X + p 2 X =0, Y + q 2 Y = 0 (3.90) k 2 = p 2 + q 2 (3.89) X = C cos(px), p = mπ a Y = D cos(qy), q = nπ (3.91) b C D φ(x, y) =X(x)Y (y) φ(x, y) =A mn cos mπ a x cos nπ b y (3.92) {( ) m 2 ( ) n 2 } k 2 = π 2 + (3.93) a b y x=0 O y=b y=0 x=a 3.8 x m, n A mn (3.93) k y (3.83) (3.92) 3.6 (3.80) (3.79) x =0 x =0 (p =0)

120 3 3.7 x =0 α x =0 α 0 α ((3.80) [ 3.6]) 3.8 x =0 (3.69) 0 Φ Φ W D = ρ t x dz = ρ 0 2 Re iωφ φ dz x h x=0 h x=0 W D