1 2 2 (Dielecrics) Maxwell ( ) D H

Similar documents
( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e


LAN Micro AVS LAN i

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a

TOP URL 1

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

TOP URL 1

Note.tex 2008/09/19( )

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

The Physics of Atmospheres CAPTER :

II (No.2) 2 4,.. (1) (cm) (2) (cm) , (

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

Part () () Γ Part ,

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

Radiation from moving charges#1 Liénard-Wiechert potential Yuji Chinone 1 Maxwell Maxwell MKS E (x, t) + B (x, t) t = 0 (1) B (x, t) = 0 (2) B (x, t)

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

i

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

all.dvi

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)


201711grade1ouyou.pdf

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

( ) ,

総研大恒星進化概要.dvi

Keysight Technologies 誘電体測定の基礎

23 1 Section ( ) ( ) ( 46 ) , 238( 235,238 U) 232( 232 Th) 40( 40 K, % ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

液晶の物理1:連続体理論(弾性,粘性)

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

³ÎΨÏÀ

PDF


(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

keisoku01.dvi

( )

A

マイクロ波領域の誘電緩和で何がわかるか

LLG-R8.Nisus.pdf

Microsoft Word - 章末問題

TOP URL 1

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

QMII_10.dvi

高知工科大学電子 光システム工学科

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

x E E E e i ω = t + ikx 0 k λ λ 2π k 2π/λ k ω/v v n v c/n k = nω c c ω/2π λ k 2πn/λ 2π/(λ/n) κ n n κ N n iκ k = Nω c iωt + inωx c iωt + i( n+ iκ ) ωx

2 Part A B C A > B > C (0) 90, 69, 61, 68, 6, 77, 75, 20, 41, 34 (1) 8, 56, 16, 50, 43, 66, 44, 77, 55, 48 (2) 92, 74, 56, 81, 84, 86, 1, 27,

IA

0406_total.pdf

gr09.dvi

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

( ) ( )

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional


Microsoft Word - 11問題表紙(選択).docx

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

: , 2.0, 3.0, 2.0, (%) ( 2.

Untitled

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

main.dvi

Bethe-Bloch Bethe-Bloch (stopping range) Bethe-Bloch FNAL (Fermi National Accelerator Laboratory) - (SciBooNE ) SciBooNE Bethe-Bloch FNAL - (SciBooNE

OHO.dvi

1 1.1 / Fik Γ= D n x / Newton Γ= µ vx y / Fouie Q = κ T x 1. fx, tdx t x x + dx f t = D f x 1 fx, t = 1 exp x 4πDt 4Dt lim fx, t =δx 3 t + dxfx, t = 1

cm λ λ = h/p p ( ) λ = cm E pc [ev] 2.2 quark lepton u d c s t b e 1 3e electric charge e color charge red blue green qq

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

Mott散乱によるParity対称性の破れを検証

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1)


42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 =

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1)


main.dvi

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

E 1/2 3/ () +3/2 +3/ () +1/2 +1/ / E [1] B (3.2) F E 4.1 y x E = (E x,, ) j y 4.1 E int = (, E y, ) j y = (Hall ef

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C602E646F63>

スライド タイトルなし

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

,,..,. 1

newmain.dvi

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

iBookBob:Users:bob:Documents:CurrentData:flMŠÍ…e…L…X…g:Statistics.dvi

Transcription:

2003.02.13

1 2 2 (Dielecrics) 4 2.1... 4 2.2... 5 2.3... 6 2.4... 6 3 Maxwell ( ) 9 3.1... 9 3.2 D H... 11 3.3... 13 4 14 4.1... 14 4.2... 14 4.3... 17 4.4... 19 5 22 6 THz 24 6.1... 24 6.2... 25 7 26 7.1 THz... 27 8 30 30 1

1 1.1 Wave length and Frequency of Electromagnetic wave λ Wave length Frequency ν λν=c log10 [m] log10 [Hz] 1000km 6 VLF 3 3 khz 1km 3 LF MF HF 6 3 MHz Radio wave 1m 1cm 1mm 1µm 1nm 1A 1pm 0-3 -6-9 -12 VHF UHF SHF EHF FIR IR UV X-ray 9 12 3 THz Visible 0.77 Light 0.64 15 0.59 0.55 0.49 18 1keV 0.43 0.38 21 3 GHz 30 GHz 1MeV 4.2K 300K µ Red Orange Yellow Green Blue Indigo Violet Micro wave Radiant ray Light γ -ray 1fm -15 1GeV 1.1: 2

3 1.2 10 6 10 9 10 12 10 15 Hz 1km 1m 1cm 1mm 1µm 1nm Radio wave Dielectric Dispersion TDR FIR IR Microwave UV FT-IR THz-TDS Visible Light Low-frequency Raman X-ray Ultrasonic Brillouin Raman Neutron Scattering FT-IR 20 cm -1 ~ 4000 cm -1 Raman 1 cm -1 ~ 4000 cm -1 Brillouin 0.01 cm -1 ~ 10 cm -1 Neutron 1 µev ~ 1000 mev -1 1 cm = 30 GHz 1 mev = 8 cm -1 Dielectric Relaxation 10 µ Hz ~ 10 10 Hz TDR 10 6 Hz ~ 10 10 Hz THz-TDS 0.2 THz ~ 3 THz 1.2: THz

2 (Dielecrics) 2.1 X V Q C 0 C 0 = Q V (2.1) C 0 C 0 = ε 0 S d (2.2) ε 0 S d C = ε S d (2.3) 4

2.2 5 ε r = ε ε 0 (2.4) ε κ 2.2 (dipole moment) d d 2.1: 2.1 P N P = Nq δ q δ

2.3 6 2.3 A δ P ± ± ± ± ± ± ± ± E 2.2: 2.2 2.2 δ A N q e ANδq e =(NAδ)q e =(Aδ)Nq e σ = Nq e δ P σ = P (2.5) 2.4

2.4 7 + _ + _ + _ + _ + _ + _ + _ + _ + _ 2.3: 2.3 P P (r) [1] P P P ( ) P [2] [1] σ n σ = P n (2.6) 2.5

2.4 8 S V ρ Q P σ 2.4: Q 2.4 S ρ σ n S Q Q = P nds = σ ds (2.7) S Q = S ρ dv (2.8) V ρ dv = P nds = P dv (2.9) V S V ρ = P (2.10) ρ ρ ρ ρ = ρ + ρ j = P t (2.11)

3 Maxwell ( ) 3.1 Maxwell M I S m = IS j M 3.1 I M j = M (3.1) M z z S y a z I a x a y x 3.1: m m = IS = Ia x a y = M z (a x a y a z ) I = M z a z 9

3.1 10 a y M z M z + M z a z I 2 M x + M x a z I 1 I 2 a z I 1 M x a x a x a x a y (a) (b) 3.2: 3.2(a) 3.2(b)??(a) I = I 1 I 2 = M z (M z + M z ) = M z a z = M z x a xa z j y = I = M z a x a z x (3.2)??(b) I = I 2 I 1 =(M x + M x ) M x = M x a x = M x z a za x j y = I = M x a z a x z (3.3) j y = M x z M z x (3.4) z j z x j x

3.2 D H 11 j = M (3.5) ( ) 2.10 j j ( 2.11) j j = j + j + j 3.2 D H E B Maxwell E = ρ ε 0 (3.6) E = B t (3.7) B = 0 (3.8) c 2 B = j + E ε 0 t (3.9) ρ j P M ρ = ρ + ρ (3.10) j = j + j + j (3.11) P = ρ P t = j (3.12) M = j (3.13)

3.2 D H 12 3.6 3.12 E = ρ + ρ ε 0 = ρ P ε 0 (3.14) (ε 0 E + P )=ρ (3.15) D D = ε 0 E + P Maxwell D = ρ (3.16) E D 3.9 3.11 3.12 3.13 ε 0 c 2 B = j + M + P t + (ɛ 0E) t (3.17) (ɛ 0 c 2 B M) = j + (ɛ 0 E + P ) t (3.18) H = ɛ 0 c 2 B M H B = µ 0 ( H + M) ɛ 0 µ 0 = 1 c 2 H 3.9 H = j + D t (3.19) j H D t H B H 0 H 3.9 B

3.3 13 3.3 E ρ P P = ρ χ P = χɛ 0 E (3.20) D = ε 0 E + P D =(1+χ)ε 0 E = ɛε 0 E (3.21) ɛ χ = ɛ 1 (3.22)

4 4.1 P E D P = χε 0 E =(ε 1) ε 0 E D ε 0 E + P = ε 0 E + χε 0 E =(1+χ) ε 0 E = εε 0 E ε 1= P ε 0 E = χ (4.1) χ ( ) ε χ ε = = = (polar molecule) H 2 O (non-polar molecule) 4.2 14

4.2 15 r 0 4.1 4.1: 4.1 E x Gauss q e x q e ( x r 0 ) 3 q e 4πε 0 x 2 = q2 e x = k 4πε 0 r0 3 e x (4.2) k e = q2 e 4πε 0 r 3 0 (4.3) k e x = q e E (4.4) p e α p e = q e x = αε 0 E α =4πr 3 0 (4.5)

4.2 16 m e m e d 2 x dt 2 = k ex k e = q2 e 4πε 0 r 3 0 (4.6) ω e ( ) ke q 2 1/2 e ω e = = (4.7) m e 4πε 0 r0m 3 e q e e a B r 0 = ab = 4πε 0 m e e 2 = 0.53 10 10 m ( 0.5 A ) (4.8) ω e = 4.1 10 16 s 1 λ =2πc/ω e = 460 A F = q e E x ( d 2 x m e dt + γ dx ) 2 dt + ω2 e x = q e E (4.9) m e γ ω 2 ex E = E 0 e iωt x = x 0 e iωt x = q 2 e/m e (ω 2 e ω 2 )+iγω E (4.10) p el p el = q e x = ε 0 αe

4.3 17 α(ω) = q 2 e/m e ε 0 (ω 2 e ω 2 )+iγω (4.11) χ el α P el P el = Np el = Nq 2 e /m e (ω 2 e ω2 )+iγω E = ε 0χ el E N ε(ω) ε(ω) 1=χ el (ω) = Nq 2 e /m eε 0 (ω 2 e ω 2 )+iγω ε (ω) =1+ ω2 e (ε 1) (ω 2 e ω 2 )+iγω (4.12) ε ε =1+ Nq2 e ε 0 m e ωe 2 =1+χ el (0) (4.13) µ =1) ε (3.12) Imε ωε ωε ω = ω e ω e 4.3 NaCl Na + Cl F = q 0 E

4.3 18 X ( ) d 2 X M dt +Γdx 2 dt + ω2 0 X = q 0 E (4.14) M Γ ω 2 0 x ω 0 q 0 E = E 0 e iωt X = X 0 e iωt X = q 0 /M (ω 2 0 ω 2 )+iγω E (4.15) p ion p ion = q 0 X = q 2 0 /M (ω 2 0 ω2 )+iγω E N P ion P ion = Np ion = Nq 2 0 /M (ω 2 0 ω2 )+iγω E = ε 0χ ion E (4.16) χ ion P P = P el + P ion =(χ el + χ ion ) ε 0 E =(ε(ω) 1) ε 0 E (4.17) ω 0 ω e ω 0 χ el (0) ε (ω) = (1 + χ el (0)) + χ ion = ε + Nq 2 0/Mε 0 (ω 2 0 ω 2 )+iγω (4.18) ε (ω) =ε + ε(0) ε (ω 2 0 ω 2 )+iγω = ε (ω) iε (ω) (4.19)

4.4 19 ε (ω) ε + (ε(0) ε )(ω 2 0 ω2 ) (ω 2 0 ω 2 ) 2 +Γ 2 ω 2 (4.20) ε (ω) (ε(0) ε )Γ 2 ω 2 (ω 2 0 ω 2 ) 2 +Γ 2 ω 2 (4.21) ε(0) ε Na Na g 10 23 M K 30 Nm 1 M 20 6 10 23 g 3 10 26 kg ω 0 K 30 M 3 10 3 26 1013 s 1 (4.22) ω e = 3 10 13 s 1 λ =2πc/ω e = 60µm 4.21 ωε ωε ω = ω 0 ω 0 4.4

4.4 20 τ 1/τ 1/τ P or (t) P d (t) P (t) P (t) =P d (t)+p or (t) (4.23) t t 4.2: 4.2 P d (t) P d (t) P or (t) P d (t) =ε 0 χ d E(t) (4.24)

4.4 21 dp or (t) dt = 1 τ (ε 0χ or E(t) P or (t)) (4.25) τ χ d =χ el +χ ion E(t) =E 0 e iωt P or (t) =P 0 e iωt iωp or = 1 τ (ε 0χ or E P or ) (4.26) P or = ε 0χ or 1+iωτ (4.27) P ( P = ε 0 χ d + χ ) or E 1+iωτ = ε 0 (ε(ω) 1) E (4.28) χ or ε(ω) = (1 + χ d )+ 1+iωτ ε(0) ε( ) = ε( )+ 1+iωτ (4.29) = ε (ω) iε (ω) (4.30) ε (ω) ε( )+ ε(0) ε( ) 1+ω 2 τ 2 (4.31) ε (ω) = (ε(0) ε( )) ωτ 1+ω 2 τ 2 (4.32) Debye ε (ω) 1/τ ωε (ω) Debye 4.25

5 χ(ω) ε(ω) Debye 5.1 C. J. F. Böttcher and P. Bordewijk Theory of electric polarization, vol. II [1] ε(0) ε( ) ε ε (ω) 1/τ ω ω 5.1: 22

23 5.1 ε( ) ε(0) ε

6 THz 6.1 5.1 ω(q) THz THz-TDS 24

6.2 25 overdamped limit narrowing limit THz THz 1 cm 1 (90 GHz) 6.2 [2] (displacive) (order-disorder : OD ) k (critical slowing down)

7 (KH 2 PO 4 KDP) KDP PO 4 1.8 [3][4] OD [5][6][7] [1] PO 4 C 2 [2] [3] [4] KDP x(yx)y PO 4 PO 4 PO 4 [5] KDP DKDP(KD 2 PO 4 ) KDP DKDP 26

7.1 THz 27 PO 4 [6] KDP DKDP 1/1.37 1.37 O-H O-D O-H [7] KDP DKDP KDP DKDP [8] KDP PO 4 H D [8] H D 7.1 THz THz [2] [3] [4] KDP Kaminow Damen [9] Kaminow Damen x(yx)y log 7.1

7.1 THz 28 7.1: KDP T=295K x(yx)y log 180 cm-1 B2(z) 180 cm 1 Kaminow Damen x(yx)y 180 cm 1 D 2d B 2 (z) KDP D 2d x(yx)y B 2 (z)

7.1 THz 29 KDP x(yx)y A 1 ( ) B 2 (z) factorized form [10] PO 4 H 2 PO 4 A 1 B 2 (z) PO 4 A 1 PO 4 PO 4 [11]

8 THz THz THz THz-TDS THz 30

[1] C. J. F. Böttcher and P. Bordewijk, Theory of electric polarization, vol. II. Elsevier, second ed., 1978. 22 [2], p.14.,, 1988. 25 [3] R. Blinc J. Phys. Chem. Solids,vol. 13, p. 204, 1960. 26 [4], 7 I,p. 206, 1973.,, 1973 26 [5] and, vol. 18,p. 725, 1983. 26 [6], vol. 39, p. 520, 1984. 26 [7] and, vol. 40,p. 26, 1998. 26 [8] H. Sugimoto and S. Ikeda Phys. Rev. Lett., vol. 67, p. 1306, 1991. 27 [9] I. P. Kaminow and T. C. Damen, Phys. Rev. Lett. vol. 20,p. 1105, 1968. 27 [10] Y. Tominaga, A. Agui and S. Shin, Ferroelectrics vol. 152, p. 397, 1994. 29 [11] Y. Tominaga, H. Urabe and M. Tokunaga, Solid State Commun. vol. 48, p. 265, 1983. 29 31