(n ) 1. Ungerboe TCM (trellis oded modulation) 3 [4] (i ) (ii) (iii).1 TV [,3]. MPEG PCM 1/10. 3 (B.B.) 1/ B.B. (i ) AC AMI (ii) ( ) (n ) (iii) NRZ (i

Similar documents
Microsoft PowerPoint - 山形大高野send ppt [互換モード]

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

スライド タイトルなし

1 s(t) ( ) f c : A cos(2πf c t + ϕ) (AM, Amplitude Modulation) (FM, Frequency Modulation) (PM, Phase Modulation) 2

untitled

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

TOP URL 1


2 R U, U Hausdorff, R. R. S R = (S, A) (closed), (open). (complete projective smooth algebraic curve) (cf. 2). 1., ( ).,. countable ( 2 ) ,,.,,

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

28 Horizontal angle correction using straight line detection in an equirectangular image

CDMA (high-compaciton multicarrier codedivision multiple access: HC/MC-CDMA),., HC/MC-CDMA,., 32.,, 64. HC/MC-CDMA, HC-MCM, i

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

1 1 3 ABCD ABD AC BD E E BD 1 : 2 (1) AB = AD =, AB AD = (2) AE = AB + (3) A F AD AE 2 = AF = AB + AD AF AE = t AC = t AE AC FC = t = (4) ABD ABCD 1 1

000-OFDM前付き.indd

gr09.dvi

P361

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

Part () () Γ Part ,

meiji_resume_1.PDF

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

201711grade1ouyou.pdf


18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

all.dvi


UWB a) Accuracy of Relative Distance Measurement with Ultra Wideband System Yuichiro SHIMIZU a) and Yukitoshi SANADA (Ultra Wideband; UWB) UWB GHz DLL

koji07-01.dvi

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP

液晶の物理1:連続体理論(弾性,粘性)

Gmech08.dvi

Z: Q: R: C: sin 6 5 ζ a, b

AC Modeling and Control of AC Motors Seiji Kondo, Member 1. q q (1) PM (a) N d q Dept. of E&E, Nagaoka Unive

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

( ) Loewner SLE 13 February

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

sec13.dvi



c y /2 ddy = = 2π sin θ /2 dθd /2 [ ] 2π cos θ d = log 2 + a 2 d = log 2 + a 2 = log 2 + a a 2 d d + 2 = l

05Mar2001_tune.dvi

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

熊本県数学問題正解

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

untitled

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

さくらの個別指導 ( さくら教育研究所 ) A 2 2 Q ABC 2 1 BC AB, AC AB, BC AC 1 B BC AB = QR PQ = 1 2 AC AB = PR 3 PQ = 2 BC AC = QR PR = 1

70 : 20 : A B (20 ) (30 ) 50 1

Gmech08.dvi

高校生の就職への数学II

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

( )

量子力学 問題

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

* n x 11,, x 1n N(µ 1, σ 2 ) x 21,, x 2n N(µ 2, σ 2 ) H 0 µ 1 = µ 2 (= µ ) H 1 µ 1 µ 2 H 0, H 1 *2 σ 2 σ 2 0, σ 2 1 *1 *2 H 0 H

keisoku01.dvi

ver.1 / c /(13)

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

QMII_10.dvi

18 ( ) ( ) [ ] [ ) II III A B (120 ) 1, 2, 3, 5, 6 II III A B (120 ) ( ) 1, 2, 3, 7, 8 II III A B (120 ) ( [ ]) 1, 2, 3, 5, 7 II III A B (

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2.

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2


e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,,

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ


ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,.

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

0406_total.pdf

The Physics of Atmospheres CAPTER :

5b_08.dvi

1 12 ( )150 ( ( ) ) x M x 0 1 M 2 5x 2 + 4x + 3 x 2 1 M x M 2 1 M x (x + 1) 2 (1) x 2 + x + 1 M (2) 1 3 M (3) x 4 +

,, 2. Matlab Simulink 2018 PC Matlab Scilab 2

3-2 PET ( : CYRIC ) ( 0 ) (3-1 ) PET PET [min] 11 C 13 N 15 O 18 F 68 Ga [MeV] [mm] [MeV]

( ) s n (n = 0, 1,...) n n = δ nn n n = I n=0 ψ = n C n n (1) C n = n ψ α = e 1 2 α 2 n=0 α, β α n n! n (2) β α = e 1 2 α 2 1

0 ϕ ( ) (x) 0 ϕ (+) (x)ϕ d 3 ( ) (y) 0 pd 3 q (2π) 6 a p a qe ipx e iqy 0 2Ep 2Eq d 3 pd 3 q 0 (2π) 6 [a p, a q]e ipx e iqy 0 2Ep 2Eq d 3 pd 3 q (2π)

9 5 ( α+ ) = (α + ) α (log ) = α d = α C d = log + C C 5. () d = 4 d = C = C = 3 + C 3 () d = d = C = C = 3 + C 3 =

Note.tex 2008/09/19( )

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

修士論文

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

B

waseda2010a-jukaiki1-main.dvi

Transcription:

Fundamentals of Modulation and Demodulation Tehniques ----- Observations in the time and frequeny domains ----- Yoihi Saito Waayama University Abstra: This tutorial paper presents fundamental aspes of digital modulation and demodulation tehniques. The modem onverts logial symbols (information) into physial signals (radio waves), and vie varsa. In this ontext, the modulated wave is observed from the time and frequeny domains. Moreover, various demodulation tehniques are analyzed from a view point of the power effiieny that is another important faor for wireless systems. AM FM 110% (iii)1 IEEE IRE [1]modulation is the proess or result of the proess whereby some parameter of one wave is varied in aordane with another wave. FDM, TDM, CDM (iv) FM CDMA (v) FDM OFDM (B.B.) 1 (CW) CW (i ) 3 4 (ii)

(n ) 1. Ungerboe TCM (trellis oded modulation) 3 [4] (i ) (ii) (iii).1 TV [,3]. MPEG PCM 1/10. 3 (B.B.) 1/ B.B. (i ) AC AMI (ii) ( ) (n ) (iii) NRZ (iv) ETC (line oding) B.B. NRZ (hannel oding)

tt 4 ( 0) h ideal (T)0 1/t B.B. (.3) [4] (a) H ideal (f) h ideal ( T L ft (1 α) / H ( f ) 0 L ft > (1 + α) / (.3) T L ft 1/ H ideal ( f ) (.1) ( ft 1 + α) π 0 L ft > 1/ T os L elsewhere 4α h ideal sin( πt / T ) ( sin( t / T ) πt / T (.) α (0 α 1) α/t 1/ t 3 os( απt / T ) h( sin( t / T ) (.4) 1 (αt / T ) NRZ H(f) S (f)tsin(ft) H(f)/S(f) 5 3. 4. 5.

(b) I 0 1 1 0 (.6) (ontrolled ISI) j π ft H I ( f ) (1 + e ) H ideal ( f ) 1 jπ ft T os( π ft ) e L ft 1/ (.7) 0 LLLLLL ft > 1/ 6 h I ( sin( t / T ) + sin[( t T ) / T ] sin( π t / T ) (.8) δ ( πt / T (1 t / T ) 1/t n 1 z( δ ( t T) (.5) (.7),(.8) 0 7 8 H(f) H ( f ) Z( f ) H ( f ) H ideal ( f ideal n 1 ) 0 e j ft π (.6) 1 Σ 7. T { } 6. 8.

(CW) f aos(π f t +φ ) a φ B.B. s( os{π f + φ( } (3.1) B.B. m( 3 9. (i) a( m( (ii) φ( m( (iii) dφ( / dt m( [6,7] (APSK) 3. 3.1 s((3.1) (3.1) s( i( os π f t q( sin π f t (3.) jφ ( jπ f s( Re[ a( e e ] (3.4) Re[z]z i( osφ( jφ ( } (3.3) u( e (3.5) q( sinφ( (3.) f (omplex envelope) B.B. i( q( u( tt 9 u(t) B.B. i( q( B.B. (a) (ASK).1 a (3.3) a {0, 1} 1 T DSP NRZ p( ASK OOK(on-off eying) ASK φ (0 B.B. [5] u ASK ( a p( t T) (3.6) s( 0 or 1 u ASK ( u ASK ( CAP (arrierless amplitude and phase modulation) B.B. ADSL ASK

(b) (PSK) BPSK (binary PSK) ASK u(t) 10 a(1 a φ 0 or π BPSK u BPSK ( e ( 1) jφ ( jφ a e p( t T) p( t T) (3.7) ±1 NRZ BPSK ASK B.B. BPSK u BPSK ( u BPSK ( 10. (3.6)(3.7) M PSK 9 8 u ASK ( {1 + u BPSK ( }/ (3.8) PSK 3 1/ B.B. ASK BPSK QPSK ASK BPSK φ ( 3 db () M PSK M a φ 10 φ ( a + 1) π / M, a {0,1, L, M 1} (3.9) M4 QPSK (quadrature PSK) 3.3 a( B.B. jφ uqpsk ( e p( t T ) (3.10) ( i + jq ) p( t T ) i, q ±1 a (a) DSB SSB b, i ( 1) ^b, q ( 1) ^ QPSK 1 9 (3.) NRZ s(

SSB s( a( os π f j π f a( ( e + e jπ f t ) / (3.11) a( A(f) s( 1 F [sgn( f ) A( f )] j / πt jaˆ( (3.13) S( f ) s( e 1 A( f jπ ft dt 1 f ) + A( f + f ) (3.1) 1 SSB DSB sgn(f)a(f) aˆ ( a( B.B. 11 B.B.u ( + jaˆ( (3.14) ±f B.B. (w/w) s( os π f aˆ( sin π f (3.15) f (USB) (LSB) (DSB) (b) USB LSB. USB LSB B.B. FSK (3.)i(, q( [4] 11. B.B. (.3) (.3) S ( f ) H ( f f ) / 4 + H ( f + ) / 4 (3.16) f 1/T 13 14 1. SSB ( g(0, t <0 ) (3.14) DSB 0 [8]

QPSK D( os π f t os(π f + θ ) (4.1) {osθ + os(4π f + θ )} θ θ osθ SNR 16 QPSK BPSK 17 BPSK 13. (f /T) 15. BPSK 14. QPSK B.B. 16. 4.1 (a) BPSK 15 d( LPF D( 17. BPSK

erf(x) (DSB-SC ) erf( x ) exp( z ) dz (4.7) x π PLL γ CNR A / σ CNR [9] (UW) (b) [10] M PSK M mπ / M (m0m 1) (BER) (AWGN) BPSK (M) BPSK BER ψ0 π 0 os(πf t+ψ) BPF ψπ (4.1) d(a(osψ a( AWGN n( QPSK (M4) ψ0, π/, π, 3π/ n( x( os πf y( sin πf (4.) os(πf t+ψ) sin(πf t+ψ) n(, x(, y( 0 σ 1 x(y( BPSK s( I, Q a(osπf t D( {s(+n(}osπf t 1/ d(d( 1. d ( + x( (4.3) (QPSK) tt d α +x BER d (pdf) d α x pdf 1 ( x A) p ( xα A) exp (4.4) d πσ σ 1 ( x + A) pd ( xα A) exp (4.5) πσ σ BPSK BER φ 1 1 0 1 n tt Pe pd ( xα A) dx + pd ( xα A) dx 0 Φ 1 erf( γ CNR ) (4.6) (differential PSK) 1 Φ φ 1 φ (mod.π) (4.8)

+ 1 φ Φ φ (mod.π) (4.9) 18. BPSK A a a 1 (mod.) (4.11) BER (4.6) 4. ( 1)^A 1 NRZ (4.10) 1 Φ φ φ 1 (mod.π) (4.11) A 18 a A +a 1 (mod.) a {0,1} φ φ a π QPSK BPSK s( BPSK os(πf t+φ ) 1/ 1 QPSK D( s( s( t T ) π/4 os( φ φ 1) + os(4πf + φ + φ 1 ) 4 0, π/, π, 3π/ (4.10) π/ 1 1 d(d( π/4-dqpsk 1 π/4 π/4 B.B. φ Φ i (mod.π) 19 π/4- i DQPSK B.B. 0,1 d(i(+jq(

0(a) (BSC) BSC X 0,1 Y P(X Y) p (a) 0 19. π/4- DQPSK B.B. B.B. (b) S{s 0, s 1 } r * {ρ}ρ BSC g( d( d ( t T ) (4.1) * f P ( s d(e jπ ft 0 r ρ ) > P( s1 r ρ) Sˆ s0 (4.15) (MAP) g(e jπ ft [4] B.B. AFC 1 BER BER P( si ) pr ( ρ si ) S. Stein P ( si r ρ) (4.16) pr ( ρ) [4] P e 1 γ P e e (BPSK) (4.13) 1 a + b Q( a, b) exp I 0 ( ab) (QPSK) (4.14) s i rρ n γ E b /N 0 Q(a, b) ρs i +n s i Q I 0 ( ) 1 0 n ρ s i a ( ) γ, b ( + )γ (4.15) BER 1 (E b /N 0 ) 4.3 0.

pr ( ρ si ) pn ( ρ si si ) pn ( ρ si ) 1 ( ρ s ) i exp πσ σ (4.17) 1 s i ρ B.B. BPSK S{s 0, s 1 }{ A, A} ρ0 ρ >0 Ŝ s 1 ρ <0 Ŝ s 0 (ML) BER (4.6) MLSE [1] IRE Diionary of Eleronis Terms and Symbols, The IEEE In., 1961. [] 1998. 1 (4.17) [3] ρ s i ρ s i [11] BP 1996. (MLSE) [4] [1] 1996. 1 BER [5] MWE 97 ML Mirowave Worshop Digest, pp.361-370, 1997. MLSE ML [6] xdsl vol.84, No., pp.84-91, Feb. 001. [7] IV SSB RCS00-188, pp.41-46, Nov. 00. [8] 003. [9] W.C.Lindsey and M.K.Simon: Teleommuniation Systems Engineering, Prentie-Hall, 1971. [10] RLS B-II, 1, pp.97-935, De.1993. [11]Wozenraft and Jaobs: Priniples of Communiation Engineering, John Wiley & Sons, In., 1965. [1]G.D.Forney, Jr.: The Viterbi Algorithm, IEEE Trans. Inf. Theory, vol.it-61, pp.68-78, Mar. 1973. 1.