薄膜結晶成長の基礎2.dvi

Similar documents
tnbp59-21_Web:P2/ky132379509610002944

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

薄膜結晶成長の基礎4.dvi

B

研修コーナー

パーキンソン病治療ガイドライン2002

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

85 4


薄膜結晶成長の基礎3.dvi

TOP URL 1

( ) 2.1. C. (1) x 4 dx = 1 5 x5 + C 1 (2) x dx = x 2 dx = x 1 + C = 1 2 x + C xdx (3) = x dx = 3 x C (4) (x + 1) 3 dx = (x 3 + 3x 2 + 3x +

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

limit&derivative

9 5 ( α+ ) = (α + ) α (log ) = α d = α C d = log + C C 5. () d = 4 d = C = C = 3 + C 3 () d = d = C = C = 3 + C 3 =

nsg04-28/ky208684356100043077

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional

untitled

3 3.1 R r r + R R r Rr [ ] ˆn(r) = ˆn(r + R) (3.1) R R = r ˆn(r) = ˆn(0) r 0 R = r C nn (r, r ) = C nn (r + R, r + R) = C nn (r r, 0) (3.2) ( 2.2 ) C

第90回日本感染症学会学術講演会抄録(I)

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

Ł\”ƒ-2005

chap1.dvi

: , 2.0, 3.0, 2.0, (%) ( 2.

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

5 c P 5 kn n t π (.5 P 7 MP π (.5 n t n cos π. MP 6 4 t sin π 6 cos π 6.7 MP 4 P P N i i i i N i j F j ii N i i ii F j i i N ii li i F j i ij li i i i

TOP URL 1



さくらの個別指導 ( さくら教育研究所 ) A a 1 a 2 a 3 a n {a n } a 1 a n n n 1 n n 0 a n = 1 n 1 n n O n {a n } n a n α {a n } α {a


v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1)

TOP URL 1


W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

chap9.dvi

Z: Q: R: C: sin 6 5 ζ a, b

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

°ÌÁê¿ô³ØII

LLG-R8.Nisus.pdf

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

Gmech08.dvi

本文/目次(裏白)

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

201711grade1ouyou.pdf

30

QMII_10.dvi

知能科学:ニューラルネットワーク

知能科学:ニューラルネットワーク

プログラム

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

[ ] (Ising model) 2 i S i S i = 1 (up spin : ) = 1 (down spin : ) (4.38) s z = ±1 4 H 0 = J zn/2 i,j S i S j (4.39) i, j z 5 2 z = 4 z = 6 3


#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

Xray.dvi

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

CG38.PDF

Gmech08.dvi

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

δf = δn I [ ( FI (N I ) N I ) T,V δn I [ ( FI N I ( ) F N T,V ( ) FII (N N I ) + N I ) ( ) FII T,V N II T,V T,V ] ] = 0 = 0 (8.2) = µ (8.3) G

数学概論I

2009 IA I 22, 23, 24, 25, 26, a h f(x) x x a h

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )


2000年度『数学展望 I』講義録

lim lim lim lim 0 0 d lim 5. d 0 d d d d d d 0 0 lim lim 0 d

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

SO(2)

4 Mindlin -Reissner 4 δ T T T εσdω= δ ubdω+ δ utd Γ Ω Ω Γ T εσ (1.1) ε σ u b t 3 σ ε. u T T T = = = { σx σ y σ z τxy τ yz τzx} { εx εy εz γ xy γ yz γ

[1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin Clifford Spin 10 A 12 B 17 1 Cliffo

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±


8 (2006 ) X ( ) 1. X X X 2. ( ) ( ) ( 1) X (a) (b) 1: (a) (b)

untitled

arxiv: v1(astro-ph.co)

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

Note.tex 2008/09/19( )

『共形場理論』

1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l

7

1 y(t)m b k u(t) ẋ = [ 0 1 k m b m x + [ 0 1 m u, x = [ ẏ y (1) y b k m u

( ) ( ) 1729 (, 2016:17) = = (1) 1 1

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2

1 1 u m (t) u m () exp [ (cπm + (πm κ)t (5). u m (), U(x, ) f(x) m,, (4) U(x, t) Re u k () u m () [ u k () exp(πkx), u k () exp(πkx). f(x) exp[ πmxdx

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

Part () () Γ Part ,

6 19,,,

振動工学に基礎

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

Transcription:

2 464-8602 1 2 2 2 N ΔμN ( N 2/3 ) N - (seed) (nucleation) 1.4 2 2.1 1 Makio Uwaha. E-mail:uwaha@nagoya-u.jp; http://slab.phys.nagoya-u.ac.jp/uwaha/ 2 [1] [2] [3](e) 3

2.1: [1] 2.1 ( ) 1 (cluster) ( N S ) 2 ( ) 2.1(a) e δg/kbt 2.1(b) 1 N S N S (thermodynamical critical nucleus) 1. δn S δg < 0 2.

3. N S α R δg(r) = 4π 3 R3 n S Δμ +4πR 2 α (2.1) n S =1/v S Δμ = μ L (T L,P L ) μ S (T L,P L ) (2.2) L T L P L ( ) ((1.5) ) μ S (T L,P L ) μ S (T L,P S ) μ L (T L,P L )=μ S (T L,P S ) P S P L R c δg (2.1) R R c = 2α (2.3) n S Δμ δg c δg(r c ) = 16π 3 = 4π 3 R2 cα α 3 n 2 S (Δμ)2 = 2π 3 R3 cn S Δμ (2.4) 2 δg c 1/3 3 Δμ 1/2 2.2

2.2: ( ) ( ) ( ) (a) (b) (c) [2] N 2.2 Δμ <0 2.2(a) (1.27) (2.1) Δμ eff = (δg) N S =Δμ 2α Rn S (2.5) N S =(4π/3)R 3 n S (4πR 2 )/ N S =2/Rn S Δμ <0 Δμ eff Δμ =0 2.2(b) Δμ >0 2.2(c) N c

(a) (b) 2.3: (a) (b) N 2.2(a) N n N (t) ( 2.2(a)) N =1 ( monomer) N : n N (t) t = n 1 (t)n N 1 (t)σ N 1 n 1 (t)n N (t)σ N +n N+1 (t)λ N+1 n N (t)λ N. (2.6) σ N N N =1 λ N N (Becker-Döring theory) ( 2.3) ( ) λ N N n N (t) = j N 1 (t) j N (t), t (2.7) j N (t) =n 1 (t)n N (t)σ N n N+1 (t)λ N+1 (2.8)

2.4: 4 Nn N (t) [4] ( 2.3(b)) j N (t) N N +1 (2.8) N 1 (2.6) (2.7) N 2 n 1 (t) t = f 2n 2 1 (t)σ 1 n 1 (t) n N (t)σ N +2n 2 (t)λ 2 + N=2 N=3 n N (t)λ N (2.9) f 2 f =0 ( [2] ) 1. N c 2. n 1 j st n 1 σ Nc n 1 e δg Nc /k BT (2.10) n 1 n 1 e δg Nc /k BT n 1 2.4 4 Nn N (t)

2.5: 50 Nn N (t) [4] Nn N (t) ( 2.5) 50 1 N c (t) N c (t) (Ostwald ripening) n N (t) = N c(0) N 2 c (t) ν(n/n c(t)), (2.11) ν(x) ( ) - - (2.3) 2 (1.29) R 2c = Ω 2β (2.12) Δμ ( )Δμ R c t 1/2 R c t 1/3

2.3 2 MBE 2 MBE (molecular beam epitaxy: MBE) ( ) 2 2 MBE N c =1 N c ( 2,3 ) n 1 (t) N c 2 (stable island) n si (t) = N=N c+1 n N (t) (2.13) N c =1 N 2 (2.6) (2.9) n 1 (t) t n si (t) t = f 2D s σ 1 n 2 1 (t) D sσ(t)n 1 (t)n si (t), (2.14) = D s σ 1 n 2 1(t), (2.15) 1 2 N =2 3 D s σ N σ N (capture number) σ(t) σ(t) = 1 n si (t) N=N c+1 σ N n N (t) (2.16)

(2.14) (2.15) n 1 (t) n si (t) (2.16) ( [5]) 2 n 1 (t) ft Ω 2 1 Θ(t) =Ω 2 N=1 Nn N (t) =Ω 2 ft (2.17) 2 (2.14) 2 3 (2.15) n si (t) 1 3 D sσ 1 f 2 t 3 D s Ω 3 2 f σ 1Θ 3 (2.18) 3 (2.14) 2 3 n 1 (t)/ t 0 n si (t) 2 n 1 (t) f D s σ(t)n si (t) (2.19) (2.15) σ(t) n si (t) ( ) f 2/3 (3D s σ 1 t) 1/3 D s σ 1 σ 1/3 ( ) 1 Ω 2 1/3 2 f Ω 2 σ 2/3 Θ 1/3. (2.20) D s 1/3 (f/d s ) 1/3

2.6: 2.4 (homogeneous necleation) (heterogeneous necleation) (epitaxial growth) 2.6 θ α gw = α lw + α lg cos θ (2.21) ( gass wall liquid ) θ α gw α lw α lg cos θ = α gw α lw s (2.22) α lg (wetting) 1. α lw >α gw + α lg : ( 2.6(a)) 2. α lg <α gw α lw <α lg : (2.3) n S n L

2.7: [2] (a) (d) α lw θ ( 2.6(b)) 3. α gw >α lw + α lg : θ =0 δg c =0 ( 2.6(c)) α lw α gw α lw <α gw α gw <α lw ( 2.7) ( ) (a) 1 2 ( 2.6 (c) ) (d) ( 2.6 (a) ) (b) (c) ( 2.6 (b) )

(W) (S) α SW α SW α W α SW α W α(001) <α SW α W α(001) >α SW α W α(ˆn) α S δg c = 1 2 ΔμN c. (2.23) [2] δg c δg c 2.7 (a) (b) (c) (d) [1], 2 ( 2002). [2], 2 ( 2008). [3] : (a), (,, 1984) (b), ( 2002) (c), ( 2003) (d) 7 ( 2002) (e), ( 1997). [4] (2007 1 ) [5] T. Michely and J. Krug, Islands, Mounds, and Atoms: Patterns and Processes in Crystal Growth Far from Equilibrium, (Springer, Berlin, 2004).