PowerPoint Presentation

Size: px
Start display at page:

Download "PowerPoint Presentation"

Transcription

1 ヘテロジニアスな環境におけるソフトウェア開発

2 Agenda 今日の概要 ヘテロジニアスな環境の登場 ホモジニアスからヘテロジニアスへ ヘテロジニアスなアーキテクチャ GPU CUDA OpenACC, XeonPhi 自分のプログラムを理解するために デバッガ 共通の操作体験 TotalView 続きはブースで

3 より速く ホモジーニアスな並列 HPC 銀河生成 金融のリスク計算 車の衝突解析 製薬 大規模 複雑なアルゴリズム 高速 単一のCPUコアはクロック数が頭打ち ~ 3GHz ホモジーニアスな並列 マルチスレッド (OpenMP, pthreads) CPUクラスタ マルチプロセス (MPI) 高い汎用性 長年の実績とノウハウ メモリアクセス速度のボトルネック 高価なインターコネクト 複雑な非同期プログラミング The Free Lunch Is Over By Herb Sutter

4 専用の外付けデバイス より速く シンプルで高速な演算器 高い並列化効率 費用対効果 省電力 新しい言語拡張の理解 ハードウェアの理解 GPU アクセラレータ ヘテロジニアスな開発環境 MIC コプロセッサ

5 Top 500, Green 500, より速く

6 GPU と XeonPhi ヘテロジニアスな環境 GPU CUDA と OpenACC Device, SM, CUDA Core, Warp, Lane block, thread, global memory, shared, Xeon Phi offload ディレクティブ symmetric モード native モード 512bit のベクトル

7 ハードウェア ホストCPUのアクセラレータとして あるいはホストをGPU 演算の補助装置として 数千コアの並列 グリッド ( デバイス ) SM CUDAコア (SP) 複数 CPU x 複数 GPU 製品ライン GeForce, Quadro, Tesla, アーキテクチャ Kepler, Fermi, Maxwell, GPU アーキテクチャ

8 GPU アーキテクチャ ハードウェア階層 Grid SM (16 個 / Grid) (Fermi) CUDAコア (SP, 32 個 / SM) (Fermi) Warp( 縦糸, 32スレッド ) 制御単位 ベクトル Thread ( 撚り糸, 3D, レーン ) CUDAコアとregisterの組 軽量 メモリの種類 オフチップ Video memory オンチップ shared memory (64kB/SM) register constant cache, texture cache SM (Streaming Multiprocessor) Grid CUDA コア

9 CUDA NVIDIA CUDA GPUベンダーのNVIDIA 公式 ( 信頼 ベンダーロック ) 無償の開発環境 cufftやcublasなどの数値計算ライブラリ付属 OpenCV, MATLAB, IMSLなどツール経由でCUDA 利用することも ホストはWindows, Linux, Mac レイヤーが低く コードが複雑 CUDA Dynamic Parallelism Cuda 6.0 Unified Memory

10 CUDA の論理階層 グリッド ( デバイス ) スレッドブロック (2D/3D) SMへの割付単位 スレッド (3D) CUDA アーキテクチャ Kernel 関数 ホスト側 ( 呼び出し ) MatMulKernel<<<dimGrid, dimblock>>>(mata, matb, matc); デバイス側 ( 実装 ) global void MatMulKernel(Matrix A, Matrix B, Matrix C) {... } 論理構造を明示的に指定

11 メモリ階層 ( 論理的 ) 開発者が明示的に指定 Memory Scope Locality Global Device External Shared Block Chip Local Thread Chip Constant Device Chip (cache) Texture Device Chip (cache) Register Thread Chip shared 16kB CUDA アーキテクチャ

12 CUDA プログラミング 言語 C 言語の拡張 コンパイラNVCC Python,Javaなどのバインディング ホストコードとデバイスコード 同一ファイル内に混在可能 NVCCが振り分けてくれる メモリ修飾子 device, constant, shared 関数修飾子 global, device, host

13 CUDA プログラミング 単純なプログラムの例 CUDA サンプル vectoradd 2つの配列の足し算 データを計算単位に分割する 組み込み変数 blockidx, threadidxごとに分ける 何番目のBlock (3D), 何番目のThread (3D) にいるのか?( 論理階層 ) 何番目のdevice, SM, Warp, Laneにいるのか?( 物理階層 ) kernel 関数の定義 ホストメモリ確保 ホストデータ初期化 デバイスメモリ確保 メモリ転送 kernel 関数呼び出し デバイスメモリ解放 ホストメモリ解放

14 OpenACC OpenACC の特徴 Fortran, C/C++ 有償 ディレクティブ指向 OpenMPとの類似 ホストコードのみ記述 通常のCPUコードとしても使える コンパイラが多くの仕事を担当 ループの検出 GPUの側のメモリ管理 CPUとGPUの間のデータ移動 Kernel 関数を作成するかどうか オープン規格 Cray, PGI, NVIDIAがサポート CUDAと組み合わせることができる OpenACC CUDA gang threadblock worker warp vector warp 内のスレッド OpenACC の論理階層

15 Xeon Phi Intel Xeon Phi コプロセッサ ホストCPU にPCI Expressで接続するボード MICアーキテクチャのx86 互換のコプロセッサ 汎用的なCPU 用に書かれたコードの移植性が高い コアごとに512bitのSIMD 処理 (16 命令 /clock, ベクトル長 ) 独立したOS(Linux) が動作し sshなどによるアクセス 柔軟な実行モデル Offloadモデル ディレクティブ 必要な部分だけコプロセッサに投げる シンメトリックモデル ホストとコプロセッサの間でMPIなどを使ってやりとりする Nativeモデル コプロセッサ上でのみ実行 既存のコードをそのまま使える

16 Xeon Phi offload のコード例 host offload void test08() { float pi = 0.0f; const int count = 10000; int i; OpenMP MIC t0 t1 t2 t3 MIC #pragma offload target (mic) #pragma omp parallel for num_threads(4) private(i) reduction(+:pi) for (i = 0; i < count; ++i) { float t = (float)((i + 0.5f) / count); pi += 4.0f / (1.0f + t * t); } pi /= count; } host

17 コードを理解する 様々なヘテロジニアス環境 ハードウェアやプログラミングモデルの特性を理解 メモリの制約を理解してエラーを回避する 複数言語 複数パラダイム クラスタ スレッド ヘテロジニアス vector 自分のコードがどう振る舞うか プログラムは意図したとおりではなく書かれたとおりに動く At Operation. 仕様書ではなくコードが全て 複数人による作業 引き継ぎ 移植 γνῶθι σεαυτόν ( 汝自身を知れ, Know thyself)

18 コードを理解する 自分のコードと仲良くなるために code reading, ペアプログラミング ベアプログラミング どの処理がデバイス上でどのように振舞っているか想像する デバッグはコーディングの2 倍大変 開発時間の制約 手ぶらで立ち向かうのは危険 効率的なデバッガ

19 TotalView TotalView 幅広いコンパイラ プラットフォーム C, C++, Fortran 77 & 90 Unix, Linux, MacOS X, ラップトップからスパコンまで 並列デバッグ マルチスレッド MPIデバッグ CUDA, Intel Xeon Phi, OpenACC メモリ デバッグ機能 : MemoryScape リバース デバッグ機能 : ReplayEngine パワフルで軽量 使いやすい GUI パッチ機能 breakpoint: Evaluation Point スクリプト用の CLI, バッチ デバッグ リモートデバッグ

20 TotalView 世界中の企業や研究機関 HPCwire 影響力のあるミドルウェア 20 (2014/6)

21 TotalView 様々な動作画面 OpenACC CUDA ( デバイスコード ) ホスト XeonPhi コプロセッサ 同じインターフェイス breakpoint, ステップ実行, 関数の呼出履歴 配列の表示,

22 CUDA のデバッグ画面 TotalView CUDA グリッドとブロックの次元 warp/ レーン warp/sm warp 数 GPU フォーカススレッドの論理座標 スタックトレースとインライン関数 パラメータ レジスタ 局所変数と共有変数 warp の PC

23 TotalView CUDA:2 つの座標をマッピング Grid, SM, Warp, Lane Grid, Block, Thread 物理座標 論理座標

24 Summary ヘテロジニアスな環境 開発は大変 開発者や研究者はGPU, Xeon-Phiなどの新しいデバイスになじまなければならない 同時に従来のOpenMPやMPIの手法も知っておく必要がある それぞれの環境ごとのプログラムの挙動の違いをイメージする これらを限られた時間の制約の中で行わなければならない コードを知るにはデバッガが便利! TotalViewは複数のホストとデバイス 幅広いアーキテクチャに対し同一の操作体験 Accelerating Great Code 結論 TotalView で定時に帰ろう!!

25 XeonPhi

26 Xeon Phi The spectrum of models CPU 中心 マルチコアのホスト offload Intel Xeon Phi 中心 シンメトリック メニーコアのホスト 汎用的なシリアル および並列計算 ディレクティブで並列化 対等な MPI ネイティブ ホスト コプロセッサ Main( ) Foo( ) MPI_*() Main( ) Foo( ) MPI_*() Foo( ) Main( ) Foo( ) MPI_*() Main( ) Foo( ) MPI_*() Main() Foo( ) MPI_*() PCIe

27 How can TotalView help you? Effective Debugging requires the capability to control and examine specific instances of program execution in detail Threads and/or MPI Deadlocks and hangs Race conditions It provides Asynchronous thread control Powerful group mechanism Fortran and/or C++ Complex data structures Diving and recursive dive STL Collection Classes STLView Rich class hierarchies Powerful type-casting features Memory Analysis Leaks and Bounds Errors Automatic error detection tools Out of Memory Errors Analysis of heap memory usage by file, function and line Numerical errors Extensible data visualization Slicing and filtering of arrays Powerful expression system Conditional watchpoints TotalView provides an answer to the question : What is my program really doing?

28 TotalView NVIDIA CUDA CUDA 4.2, 5.0, 5.5, 6.0 対応 CUDAの統一メモリ (unified memory) CUDAの動的モードのプログラム 1つのセッション内でホストとデバイスのコードをデバッグ TeslaやFermiなどのハードウェア上のCUDA LinuxおよびGPUデバイス上のスレッドを可視化 デバイス ブロック スレッドメモリの階層構造を完全に可視化 デバイスのスレッドを論理座標とデバイス座標の両方で操作可能 CUDAの関数呼び出し ホストのピン止めされたメモリ領域 CUDAコンテクストを可視化 CUDAの関数をインラインでもスタック上でもハンドリング 使いやすい軽量なGUIと 自動化に適したCLI( コマンドライン ) 複数のNVIDIAデバイスを使うアプリケーション CUDAで高速化されたクラスタ上のMPIアプリケーション 統一された仮想アドレスとGPUDirect メモリエラーを検知してレポート CUDAの例外をハンドリング

29 CUDA のデバッグ画面 TotalView スレッド (x,y,z) ブロック (x,y,z) ボックスの中にある行番号をクリックして breakpoint を置く GPU フォーカス スレッド セレクタで CUDA スレッドのブロック (x,y) やスレッド (x,y,z) インデクスを変更する TotalView のスレッド ID 0 以上 : ホストスレッド 0 より小さい : GPU スレッド

30 TotalView CUDA の例 GPU フォーカススレッドの論理座標 CUDA グリッドとブロックの次元 レーンあたりの warp SM あたりのワープ ワープ数などなど スタックトレースとインライン関数 パラメータ レジスタ 局所変数と共有変数 warp の PC を指す矢印

31 TotalView GPU デバイスの情報を表示 デバイス情報 論理情報

32 TotalView OpenACC ホストCPU/GPUどちらでもステップ実行 コンパイラ Cray CCE 8.x OpenACC

33 TotalView Intel Xeon Phi シンメトリックモデルのデバッグができる初め てのデバッガ 付属のMemoryScapeでネイティブおよびシンメトリックモデルのメモリデバッグ ( オフロードは8.13では未対応 ) ホストとコプロセッサ両方のスレッドを完全に可視化 MPI プログラムの完全サポート オフロードコードによる異種混合アプリケーションのシンメトリックデバッグ Xeon Phi ネイティブ アプリケーションのリモートデバッグ Xeon および Xeon Phi 両方の非同期スレッド制御 マルチホスト マルチカード リバースデバッグは未対応

34 TotalView 1 つのデバッグセッションで同じ操作体験 ホスト コプロセッサ

1. GPU コンピューティング GPU コンピューティング GPUによる 汎用コンピューティング GPU = Graphics Processing Unit CUDA Compute Unified Device Architecture NVIDIA の GPU コンピューティング環境 Lin

1. GPU コンピューティング GPU コンピューティング GPUによる 汎用コンピューティング GPU = Graphics Processing Unit CUDA Compute Unified Device Architecture NVIDIA の GPU コンピューティング環境 Lin Windows で始める CUDA 入門 GTC 2013 チュートリアル エヌビディアジャパン CUDA エンジニア森野慎也 1. GPU コンピューティング GPU コンピューティング GPUによる 汎用コンピューティング GPU = Graphics Processing Unit CUDA Compute Unified Device Architecture NVIDIA の GPU コンピューティング環境

More information

GPU チュートリアル :OpenACC 篇 Himeno benchmark を例題として 高エネルギー加速器研究機構 (KEK) 松古栄夫 (Hideo Matsufuru) 1 December 2018 HPC-Phys 理化学研究所 共通コードプロジェクト

GPU チュートリアル :OpenACC 篇 Himeno benchmark を例題として 高エネルギー加速器研究機構 (KEK) 松古栄夫 (Hideo Matsufuru) 1 December 2018 HPC-Phys 理化学研究所 共通コードプロジェクト GPU チュートリアル :OpenACC 篇 Himeno benchmark を例題として 高エネルギー加速器研究機構 (KEK) 松古栄夫 (Hideo Matsufuru) 1 December 2018 HPC-Phys 勉強会 @ 理化学研究所 共通コードプロジェクト Contents Hands On 環境について Introduction to GPU computing Introduction

More information

TSUBAME2.0 における GPU の 活用方法 東京工業大学学術国際情報センター丸山直也第 10 回 GPU コンピューティング講習会 2011 年 9 月 28 日

TSUBAME2.0 における GPU の 活用方法 東京工業大学学術国際情報センター丸山直也第 10 回 GPU コンピューティング講習会 2011 年 9 月 28 日 TSUBAME2.0 における GPU の 活用方法 東京工業大学学術国際情報センター丸山直也第 10 回 GPU コンピューティング講習会 2011 年 9 月 28 日 目次 1. TSUBAMEのGPU 環境 2. プログラム作成 3. プログラム実行 4. 性能解析 デバッグ サンプルコードは /work0/gsic/seminars/gpu- 2011-09- 28 からコピー可能です 1.

More information

Microsoft PowerPoint - GPGPU実践基礎工学(web).pptx

Microsoft PowerPoint - GPGPU実践基礎工学(web).pptx GPU のプログラム構造 長岡技術科学大学電気電子情報工学専攻出川智啓 今回の内容 GPU プログラミング環境 (CUDA) GPU プログラムの実行の流れ CUDA によるプログラムの記述 カーネル (GPU で処理する関数 ) の構造 記述方法とその理由 GPU 固有のパラメータの確認 405 GPU(Graphics Processing Unit) とは 画像処理専用のハードウェア 具体的には画像処理用のチップ

More information

Slide 1

Slide 1 CUDA プログラミングの基本 パート I - ソフトウェアスタックとメモリ管理 CUDA の基本の概要 パート I CUDAのソフトウェアスタックとコンパイル GPUのメモリ管理 パートII カーネルの起動 GPUコードの具体項目 注 : 取り上げているのは基本事項のみです そのほか多数の API 関数についてはプログラミングガイドを ご覧ください CUDA インストレーション CUDA インストレーションの構成

More information

Slide 1

Slide 1 CUDA プログラミングの基本 パート II - カーネル CUDA の基本の概要 パート I CUDAのソフトウェアスタックとコンパイル GPUのメモリ管理 パート II カーネルの起動 GPUコードの具体像 注 : 取り上げているのは基本事項のみです そのほか多数の API 関数についてはプログラミングガイドを ご覧ください GPU 上でのコードの実行 カーネルは C 関数 + 多少の制約 ホストメモリはアクセスできない戻り値型は

More information

Debugging Common Issues in Multithreaded Applications

Debugging Common Issues in Multithreaded Applications TotalView による Intel Xeon Phi コードデバッグ Debugging Intel Xeon Phi Tutorial ( 日本語参考訳 ) Rogue Wave provides software development tools for mission-critical applications. Our trusted solutions address the growing

More information

熊本大学学術リポジトリ Kumamoto University Repositor Title GPGPU による高速演算について Author(s) 榎本, 昌一 Citation Issue date Type URL Presentation

熊本大学学術リポジトリ Kumamoto University Repositor Title GPGPU による高速演算について Author(s) 榎本, 昌一 Citation Issue date Type URL Presentation 熊本大学学術リポジトリ Kumamoto University Repositor Title GPGPU による高速演算について Author(s) 榎本, 昌一 Citation Issue date 2011-03-17 Type URL Presentation http://hdl.handle.net/2298/23539 Right GPGPU による高速演算について 榎本昌一 東京大学大学院工学系研究科システム創成学専攻

More information

NUMAの構成

NUMAの構成 GPU のプログラム 天野 アクセラレータとは? 特定の性質のプログラムを高速化するプロセッサ 典型的なアクセラレータ GPU(Graphic Processing Unit) Xeon Phi FPGA(Field Programmable Gate Array) 最近出て来た Deep Learning 用ニューロチップなど Domain Specific Architecture 1GPGPU:General

More information

Slides: TimeGraph: GPU Scheduling for Real-Time Multi-Tasking Environments

Slides: TimeGraph: GPU Scheduling for Real-Time Multi-Tasking Environments 計算機アーキテクチャ第 11 回 マルチプロセッサ 本資料は授業用です 無断で転載することを禁じます 名古屋大学 大学院情報科学研究科 准教授加藤真平 デスクトップ ジョブレベル並列性 スーパーコンピュータ 並列処理プログラム プログラムの並列化 for (i = 0; i < N; i++) { x[i] = a[i] + b[i]; } プログラムの並列化 x[0] = a[0] + b[0];

More information

GPU GPU CPU CPU CPU GPU GPU N N CPU ( ) 1 GPU CPU GPU 2D 3D CPU GPU GPU GPGPU GPGPU 2 nvidia GPU CUDA 3 GPU 3.1 GPU Core 1

GPU GPU CPU CPU CPU GPU GPU N N CPU ( ) 1 GPU CPU GPU 2D 3D CPU GPU GPU GPGPU GPGPU 2 nvidia GPU CUDA 3 GPU 3.1 GPU Core 1 GPU 4 2010 8 28 1 GPU CPU CPU CPU GPU GPU N N CPU ( ) 1 GPU CPU GPU 2D 3D CPU GPU GPU GPGPU GPGPU 2 nvidia GPU CUDA 3 GPU 3.1 GPU Core 1 Register & Shared Memory ( ) CPU CPU(Intel Core i7 965) GPU(Tesla

More information

並列・高速化を実現するための 高速化サービスの概要と事例紹介

並列・高速化を実現するための 高速化サービスの概要と事例紹介 第 4 回 AVS 可視化フォーラム 2019 並列 高速化を実現するための 高速化サービスの概要と事例紹介 株式会社アーク情報システム営業部仮野亮ソリューション技術部佐々木竜一 2019.08.30 はじめに アーク情報システムの紹介 高速化サービスとは? 事例紹介 コンサルティングサービスについて アーク情報システムの紹介 設立 資本金 :1987 年 10 月 :3 億 600 万円 従業員数

More information

GPGPUクラスタの性能評価

GPGPUクラスタの性能評価 2008 年度理研 HPC シンポジウム第 3 世代 PC クラスタ GPGPU クラスタの性能評価 2009 年 3 月 12 日 富士通研究所成瀬彰 発表の概要 背景 GPGPU による高速化 CUDA の概要 GPU のメモリアクセス特性調査 姫野 BMT の高速化 GPGPU クラスタによる高速化 GPU Host 間のデータ転送 GPU-to-GPU の通信性能 GPGPU クラスタ上での姫野

More information

Microsoft PowerPoint - GPUシンポジウム _d公開版.ppt [互換モード]

Microsoft PowerPoint - GPUシンポジウム _d公開版.ppt [互換モード] 200/0/9 数値流体解析の並列効率とその GPU による高速化の試み 清水建設 ( 株 ) 技術研究所 PHAM VAN PHUC ( ファムバンフック ) 流体計算時間短縮と GPU の活用の試み 現 CPUとの比較によりGPU 活用の可能性 現 CPU の最大利用 ノード内の最大計算資源の利用 すべてCPUコアの利用 適切なアルゴリズムの利用 CPU コア性能の何倍? GPU の利用の試み

More information

スパコンに通じる並列プログラミングの基礎

スパコンに通じる並列プログラミングの基礎 2018.09.10 furihata@cmc.osaka-u.ac.jp ( ) 2018.09.10 1 / 59 furihata@cmc.osaka-u.ac.jp ( ) 2018.09.10 2 / 59 Windows, Mac Unix 0444-J furihata@cmc.osaka-u.ac.jp ( ) 2018.09.10 3 / 59 Part I Unix GUI CUI:

More information

GPGPUイントロダクション

GPGPUイントロダクション 大島聡史 ( 並列計算分科会主査 東京大学情報基盤センター助教 ) GPGPU イントロダクション 1 目的 昨今注目を集めている GPGPU(GPU コンピューティング ) について紹介する GPGPU とは何か? 成り立ち 特徴 用途 ( ソフトウェアや研究例の紹介 ) 使い方 ( ライブラリ 言語 ) CUDA GPGPU における課題 2 GPGPU とは何か? GPGPU General-Purpose

More information

スパコンに通じる並列プログラミングの基礎

スパコンに通じる並列プログラミングの基礎 2016.06.06 2016.06.06 1 / 60 2016.06.06 2 / 60 Windows, Mac Unix 0444-J 2016.06.06 3 / 60 Part I Unix GUI CUI: Unix, Windows, Mac OS Part II 0444-J 2016.06.06 4 / 60 ( : ) 6 6 ( ) 6 10 6 16 SX-ACE 6 17

More information

Insert your Title here

Insert your Title here マルチコア マルチスレッド環境での静的解析ツールの応用 米 GrammaTech 社 CodeSonar によるスレッド間のデータ競合の検出 2013 GrammaTech, Inc. All rights reserved Agenda 並列実行に起因する不具合の摘出 なぜ 並列実行されるプログラミングは難しいのか データの競合 デッドロック どのようにして静的解析ツールで並列実行の問題を見つけるのか?

More information

TSUBAME2.0におけるGPUの 活用方法

TSUBAME2.0におけるGPUの 活用方法 GPU プログラミング 基礎編 東京工業大学学術国際情報センター 1. GPU コンピューティングと TSUBAME2.0 スーパーコンピュータ GPU コンピューティングとは グラフィックプロセッサ (GPU) は グラフィック ゲームの画像計算のために 進化を続けてきた 現在 CPU のコア数は 2~12 個に対し GPU 中には数百コア その GPU を一般アプリケーションの高速化に利用! GPGPU

More information

3次多項式パラメタ推定計算の CUDAを用いた実装 (CUDAプログラミングの練習として) Implementation of the Estimation of the parameters of 3rd-order-Polynomial with CUDA

3次多項式パラメタ推定計算の CUDAを用いた実装 (CUDAプログラミングの練習として)  Implementation of the Estimation of the parameters of 3rd-order-Polynomial with CUDA 3 次多項式パラメタ推定計算の CUDA を用いた実装 (CUDA プログラミングの練習として ) Estimating the Parameters of 3rd-order-Polynomial with CUDA ISS 09/11/12 問題の選択 目的 CUDA プログラミングを経験 ( 試行錯誤と習得 ) 実際に CPU のみの場合と比べて高速化されることを体験 問題 ( インプリメントする内容

More information

スパコンに通じる並列プログラミングの基礎

スパコンに通じる並列プログラミングの基礎 2018.06.04 2018.06.04 1 / 62 2018.06.04 2 / 62 Windows, Mac Unix 0444-J 2018.06.04 3 / 62 Part I Unix GUI CUI: Unix, Windows, Mac OS Part II 2018.06.04 4 / 62 0444-J ( : ) 6 4 ( ) 6 5 * 6 19 SX-ACE * 6

More information

07-二村幸孝・出口大輔.indd

07-二村幸孝・出口大輔.indd GPU Graphics Processing Units HPC High Performance Computing GPU GPGPU General-Purpose computation on GPU CPU GPU GPU *1 Intel Quad-Core Xeon E5472 3.0 GHz 2 6 MB L2 cache 1600 MHz FSB 80 GFlops 1 nvidia

More information

MATLAB® における並列・分散コンピューティング ~ Parallel Computing Toolbox™ & MATLAB Distributed Computing Server™ ~

MATLAB® における並列・分散コンピューティング ~ Parallel Computing Toolbox™ & MATLAB Distributed Computing Server™ ~ MATLAB における並列 分散コンピューティング ~ Parallel Computing Toolbox & MATLAB Distributed Computing Server ~ MathWorks Japan Application Engineering Group Takashi Yoshida 2016 The MathWorks, Inc. 1 System Configuration

More information

CUDA を用いた画像処理 画像処理を CUDA で並列化 基本的な並列化の考え方 目標 : 妥当な Naïve コードが書ける 最適化の初歩がわかる ブロックサイズ メモリアクセスパターン

CUDA を用いた画像処理 画像処理を CUDA で並列化 基本的な並列化の考え方 目標 : 妥当な Naïve コードが書ける 最適化の初歩がわかる ブロックサイズ メモリアクセスパターン CUDA 画像処理入門 エヌビディアジャパン CUDA エンジニア森野慎也 GTC Japan 2014 CUDA を用いた画像処理 画像処理を CUDA で並列化 基本的な並列化の考え方 目標 : 妥当な Naïve コードが書ける 最適化の初歩がわかる ブロックサイズ メモリアクセスパターン RGB Y( 輝度 ) 変換 カラー画像から グレイスケールへの変換 Y = 0.299 R + 0.587

More information

( CUDA CUDA CUDA CUDA ( NVIDIA CUDA I

(    CUDA CUDA CUDA CUDA (  NVIDIA CUDA I GPGPU (II) GPGPU CUDA 1 GPGPU CUDA(CUDA Unified Device Architecture) CUDA NVIDIA GPU *1 C/C++ (nvcc) CUDA NVIDIA GPU GPU CUDA CUDA 1 CUDA CUDA 2 CUDA NVIDIA GPU PC Windows Linux MaxOSX CUDA GPU CUDA NVIDIA

More information

Microsoft PowerPoint - GPU_computing_2013_01.pptx

Microsoft PowerPoint - GPU_computing_2013_01.pptx GPU コンピューティン No.1 導入 東京工業大学 学術国際情報センター 青木尊之 1 GPU とは 2 GPGPU (General-purpose computing on graphics processing units) GPU を画像処理以外の一般的計算に使う GPU の魅力 高性能 : ハイエンド GPU はピーク 4 TFLOPS 超 手軽さ : 普通の PC にも装着できる 低価格

More information

Microsoft PowerPoint - suda.pptx

Microsoft PowerPoint - suda.pptx GPU の HWアーキテクチャと高性能化手法 須田礼仁 ( 東京大学 ) 2011/03/22 GPU 高性能プログラミング GPU のハードウェアを理解する CUDA のソフトウェアを理解する CUDA でプログラムを書くのは難しくないが, CUDA で高速なプログラムを書くのは難しい どうすれば遅くなるかを理解する! 効果が大きいものから順に説明します 1 高性能プログラミングの手順 1. 現在のコードの,

More information

本文ALL.indd

本文ALL.indd Intel Xeon プロセッサにおける Cache Coherency 時間の性能測定方法河辺峻田口成美古谷英祐 Intel Xeon プロセッサにおける Cache Coherency 時間の性能測定方法 Performance Measurement Method of Cache Coherency Effects on an Intel Xeon Processor System 河辺峻田口成美古谷英祐

More information

HPC143

HPC143 研究背景 GPUクラスタ 高性能 高いエネルギー効率 低価格 様々なHPCアプリケーションで用いられている TCA (Tightly Coupled Accelerators) 密結合並列演算加速機構 筑波大学HA-PACSクラスタ アクセラレータ GPU 間の直接通信 低レイテンシ 今後のHPCアプリは強スケーリングも重要 TCAとアクセラレータを搭載したシステムに おけるプログラミングモデル 例

More information

GPU のアーキテクチャとプログラム構造 長岡技術科学大学電気電子情報工学専攻出川智啓

GPU のアーキテクチャとプログラム構造 長岡技術科学大学電気電子情報工学専攻出川智啓 GPU のアーキテクチャとプログラム構造 長岡技術科学大学電気電子情報工学専攻出川智啓 今回の内容 GPU のアーキテクチャ CUDA CUDA によるプログラミング 58 GPU(Graphics Processing Unit) とは 画像処理専用のハードウェア 具体的には画像処理用のチップ チップ単体では販売されていない PCI Ex カードで販売 ( チップ単体と区別せずに GPU と呼ぶことも多い

More information

Microsoft PowerPoint - GPGPU実践基礎工学(web).pptx

Microsoft PowerPoint - GPGPU実践基礎工学(web).pptx GPU のメモリ階層 長岡技術科学大学電気電子情報工学専攻出川智啓 今回の内容 GPU のメモリ階層 グローバルメモリ 共有メモリ モザイク処理への適用 コンスタントメモリ 空間フィルタへの適用 577 GPU の主要部品 基盤 GPU( チップ )+ 冷却部品 画面出力端子 電源入力端子 メモリ 特性の把握が重要 電源入力端子 画面出力端子 メモリ チップ PCI Ex 端子 http://www.geforce.com/whats

More information

スライド 1

スライド 1 知能制御システム学 画像処理の高速化 OpenCV による基礎的な例 東北大学大学院情報科学研究科鏡慎吾 swk(at)ic.is.tohoku.ac.jp 2007.07.03 リアルタイム処理と高速化 リアルタイム = 高速 ではない 目標となる時間制約が定められているのがリアルタイム処理である.34 ms かかった処理が 33 ms に縮んだだけでも, それによって与えられた時間制約が満たされるのであれば,

More information

GPUコンピューティング講習会パート1

GPUコンピューティング講習会パート1 GPU コンピューティング (CUDA) 講習会 GPU と GPU を用いた計算の概要 丸山直也 スケジュール 13:20-13:50 GPU を用いた計算の概要 担当丸山 13:50-14:30 GPU コンピューティングによる HPC アプリケーションの高速化の事例紹介 担当青木 14:30-14:40 休憩 14:40-17:00 CUDA プログラミングの基礎 担当丸山 TSUBAME の

More information

Images per Second Images per Second VOLTA: ディープラーニングにおける大きな飛躍 ResNet-50 トレーニング 2.4x faster ResNet-50 推論 TensorRT - 7ms レイテンシ 3.7x faster P100 V100 P10

Images per Second Images per Second VOLTA: ディープラーニングにおける大きな飛躍 ResNet-50 トレーニング 2.4x faster ResNet-50 推論 TensorRT - 7ms レイテンシ 3.7x faster P100 V100 P10 NVIDIA TESLA V100 CUDA 9 のご紹介 森野慎也, シニアソリューションアーキテクト (GPU-Computing) NVIDIA Images per Second Images per Second VOLTA: ディープラーニングにおける大きな飛躍 ResNet-50 トレーニング 2.4x faster ResNet-50 推論 TensorRT - 7ms レイテンシ

More information

製品開発の現場では 各種のセンサーや測定環境を利用したデータ解析が行われ シミュレーションや動作検証等に役立てられています しかし 日々収集されるデータ量は増加し 解析も複雑化しており データ解析の負荷は徐々に重くなっています 例えば自動車の車両計測データを解析する場合 取得したデータをそのまま解析

製品開発の現場では 各種のセンサーや測定環境を利用したデータ解析が行われ シミュレーションや動作検証等に役立てられています しかし 日々収集されるデータ量は増加し 解析も複雑化しており データ解析の負荷は徐々に重くなっています 例えば自動車の車両計測データを解析する場合 取得したデータをそのまま解析 ホワイトペーパー Excel と MATLAB の連携がデータ解析の課題を解決 製品開発の現場では 各種のセンサーや測定環境を利用したデータ解析が行われ シミュレーションや動作検証等に役立てられています しかし 日々収集されるデータ量は増加し 解析も複雑化しており データ解析の負荷は徐々に重くなっています 例えば自動車の車両計測データを解析する場合 取得したデータをそのまま解析に使用することはできず

More information

VXPRO R1400® ご提案資料

VXPRO R1400® ご提案資料 Intel Core i7 プロセッサ 920 Preliminary Performance Report ノード性能評価 ノード性能の評価 NAS Parallel Benchmark Class B OpenMP 版での性能評価 実行スレッド数を 4 で固定 ( デュアルソケットでは各プロセッサに 2 スレッド ) 全て 2.66GHz のコアとなるため コアあたりのピーク性能は同じ 評価システム

More information

1 OpenCL OpenCL 1 OpenCL GPU ( ) 1 OpenCL Compute Units Elements OpenCL OpenCL SPMD (Single-Program, Multiple-Data) SPMD OpenCL work-item work-group N

1 OpenCL OpenCL 1 OpenCL GPU ( ) 1 OpenCL Compute Units Elements OpenCL OpenCL SPMD (Single-Program, Multiple-Data) SPMD OpenCL work-item work-group N GPU 1 1 2 1, 3 2, 3 (Graphics Unit: GPU) GPU GPU GPU Evaluation of GPU Computing Based on An Automatic Program Generation Technology Makoto Sugawara, 1 Katsuto Sato, 1 Kazuhiko Komatsu, 2 Hiroyuki Takizawa

More information

Microsoft PowerPoint - ARCEMB08HayashiSlides.ppt [互換モード]

Microsoft PowerPoint - ARCEMB08HayashiSlides.ppt [互換モード] 演算 / メモリ性能バランスを考慮した CMP 向けオンチップ メモリ貸与法の提案 九州大学 林徹生今里賢一井上弘士村上和彰 1 発表手順 背景 目的 演算 / メモリ性能バランシング 概要 アクセスレイテンシの削減とオーバーヘッド 提案手法の実現方法 着目する命令 (Cell プロセッサへの ) 実装 性能評価 姫野ベンチマーク Susan@MiBench おわりに 2 チップマルチプロセッサ (CMP)

More information

hotspot の特定と最適化

hotspot の特定と最適化 1 1? 1 1 2 1. hotspot : hotspot hotspot Parallel Amplifier 1? 2. hotspot : (1 ) Parallel Composer 1 Microsoft* Ticker Tape Smoke 1.0 PiSolver 66 / 64 / 2.76 ** 84 / 27% ** 75 / 17% ** 1.46 89% Microsoft*

More information

Presentation title

Presentation title インテル Xeon Phi コプロセッサー搭載システムの紹介およびオフロード プログラミングとネイティブ実行の概要 インテル ソフトウェア開発製品の紹介 インテル ソフトウェア開発製品 Advanced Performance C++ および Fortran コンパイラーインテル MKL/ インテル IPP ライブラリーと解析ツール IA ベース マルチコア ノード上の Windows* および Linux*

More information

iphone GPGPU GPU OpenCL Mac OS X Snow LeopardOpenCL iphone OpenCL OpenCL NVIDIA GPU CUDA GPU GPU GPU 15 GPU GPU CPU GPU iii OpenMP MPI CPU OpenCL CUDA OpenCL CPU OpenCL GPU NVIDIA Fermi GPU Fermi GPU GPU

More information

スライド 1

スライド 1 GPU クラスタによる格子 QCD 計算 広大理尾崎裕介 石川健一 1.1 Introduction Graphic Processing Units 1 チップに数百個の演算器 多数の演算器による並列計算 ~TFLOPS ( 単精度 ) CPU 数十 GFLOPS バンド幅 ~100GB/s コストパフォーマンス ~$400 GPU の開発環境 NVIDIA CUDA http://www.nvidia.co.jp/object/cuda_home_new_jp.html

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション コンピュータアーキテクチャ 第 13 週 割込みアーキテクチャ 2013 年 12 月 18 日 金岡晃 授業計画 第 1 週 (9/25) 第 2 週 (10/2) 第 3 週 (10/9) 第 4 週 (10/16) 第 5 週 (10/23) 第 6 週 (10/30) 第 7 週 (11/6) 授業概要 2 進数表現 論理回路の復習 2 進演算 ( 数の表現 ) 演算アーキテクチャ ( 演算アルゴリズムと回路

More information

Total View Debugger 利用の手引 東京工業大学学術国際情報センター version 1.0

Total View Debugger 利用の手引 東京工業大学学術国際情報センター version 1.0 Total View Debugger 利用の手引 東京工業大学学術国際情報センター 2015.04 version 1.0 目次 Total View Debugger 利用の手引き 1 1. はじめに 1 1.1 利用できるバージョン 1 1.2 概要 1 1.3 マニュアル 1 2. TSUBAME での利用方法 2 2.1 Total View Debugger の起動 2 (1) TSUBAMEにログイン

More information

Microsoft PowerPoint - OS07.pptx

Microsoft PowerPoint - OS07.pptx この資料は 情報工学レクチャーシリーズ松尾啓志著 ( 森北出版株式会社 ) を用いて授業を行うために 名古屋工業大学松尾啓志 津邑公暁が作成しました 主記憶管理 主記憶管理基礎 パワーポイント 27 で最終版として保存しているため 変更はできませんが 授業でお使いなる場合は松尾 (matsuo@nitech.ac.jp) まで連絡いただければ 編集可能なバージョンをお渡しする事も可能です 復習 OS

More information

NVIDIA Tesla K20/K20X GPU アクセラレータ アプリケーション パフォーマンス テクニカル ブリーフ

NVIDIA Tesla K20/K20X GPU アクセラレータ アプリケーション パフォーマンス テクニカル ブリーフ NVIDIA Tesla K20/K20X GPU アクセラレータ アプリケーション パフォーマンス テクニカル ブリーフ K20 GPU2 個に対するスピードアップ NVIDIA は Fermi アーキテクチャ GPU の発表により パフォーマンス エネルギー効率の両面で飛躍的な性能向上を実現し ハイパフォーマンスコンピューティング (HPC) の世界に変革をもたらしました また 実際に GPU

More information

Microsoft PowerPoint - OpenMP入門.pptx

Microsoft PowerPoint - OpenMP入門.pptx OpenMP 入門 須田礼仁 2009/10/30 初版 OpenMP 共有メモリ並列処理の標準化 API http://openmp.org/ 最新版は 30 3.0 バージョンによる違いはあまり大きくない サポートしているバージョンはともかく csp で動きます gcc も対応しています やっぱり SPMD Single Program Multiple Data プログラム #pragma omp

More information

Microsoft Word - matlab-coder-code-generation-quick-start-guide-japanese-r2016a

Microsoft Word - matlab-coder-code-generation-quick-start-guide-japanese-r2016a MATLAB コードを使用した C コードの生成クイックスタートガイド (R2016a) 最初のスタンドアロン C コードの生成 スタンドアロン C コードを生成するには [ ビルド ] を [ ソースコード ] [ スタティックライブラリ ] [ ダイナミックライブラリ ] または [ 実行ファイル ] のいずれかに切り替えます MATLAB Coder を使用することで MATLAB コードから

More information

Microsoft Word - HOKUSAI_system_overview_ja.docx

Microsoft Word - HOKUSAI_system_overview_ja.docx HOKUSAI システムの概要 1.1 システム構成 HOKUSAI システムは 超並列演算システム (GWMPC BWMPC) アプリケーション演算サーバ群 ( 大容量メモリ演算サーバ GPU 演算サーバ ) と システムの利用入口となるフロントエンドサーバ 用途の異なる 2 つのストレージ ( オンライン ストレージ 階層型ストレージ ) から構成されるシステムです 図 0-1 システム構成図

More information

TopSE並行システム はじめに

TopSE並行システム はじめに はじめに 平成 23 年 9 月 1 日 トップエスイープロジェクト 磯部祥尚 ( 産業技術総合研究所 ) 2 本講座の背景と目標 背景 : マルチコア CPU やクラウドコンピューティング等 並列 / 分散処理環境が身近なものになっている 複数のプロセス ( プログラム ) を同時に実行可能 通信等により複数のプロセスが協調可能 並行システムの構築 並行システム 通信 Proc2 プロセス ( プログラム

More information

untitled

untitled A = QΛQ T A n n Λ Q A = XΛX 1 A n n Λ X GPGPU A 3 T Q T AQ = T (Q: ) T u i = λ i u i T {λ i } {u i } QR MR 3 v i = Q u i A {v i } A n = 9000 Quad Core Xeon 2 LAPACK (4/3) n 3 O(n 2 ) O(n 3 ) A {v i }

More information

CoIDE 用 F4D_VCP の説明 V /07/05 USB の VCP( 仮想 COM ポート ) による非同期シリアル通信を行うプログラムです Free の開発ツール CoIDE で作成した STM32F4 Discovery 用のプロジェクトです プログラムの開始番地は 0x

CoIDE 用 F4D_VCP の説明 V /07/05 USB の VCP( 仮想 COM ポート ) による非同期シリアル通信を行うプログラムです Free の開発ツール CoIDE で作成した STM32F4 Discovery 用のプロジェクトです プログラムの開始番地は 0x CoIDE 用 F4D_VCP の説明 V001 2014/07/05 USB の VCP( 仮想 COM ポート ) による非同期シリアル通信を行うプログラムです Free の開発ツール CoIDE で作成した STM32F4 Discovery 用のプロジェクトです プログラムの開始番地は 0x08000000 です デバッグが可能です 目次 1. USB の VCP( 仮想 COM ポート )

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション vsmp Foundation スケーラブル SMP システム スケーラブル SMP システム 製品コンセプト 2U サイズの 8 ソケット SMP サーバ コンパクトな筐体に多くのコアとメモリを実装し SMP システムとして利用可能 スイッチなし構成でのシステム構築によりラックスペースを無駄にしない構成 将来的な拡張性を保証 8 ソケット以上への拡張も可能 2 システム構成例 ベースシステム 2U

More information

工学院大学建築系学科近藤研究室2000年度卒業論文梗概

工学院大学建築系学科近藤研究室2000年度卒業論文梗概 耐災害性の高い通信システムにおけるサーバ計算機の性能と消費電力に関する考察 耐障害性, 消費電力, 低消費電力サーバ 山口実靖 *. はじめに 性能と表皮電力の関係について調査し, 考察を行う 災害においては, 減災活動が極めて重要である すなわち 災害が発生した後に適切に災害に対処することにより, その被害を大きく軽減できる. 適切な災害対策を行うには災害対策を行う拠点が正常に運営されていることが必要不可欠であり,

More information

GPGPU

GPGPU GPGPU 2013 1008 2015 1 23 Abstract In recent years, with the advance of microscope technology, the alive cells have been able to observe. On the other hand, from the standpoint of image processing, the

More information

最新の並列計算事情とCAE

最新の並列計算事情とCAE 1 大島聡史 ( 東京大学情報基盤センター助教 / 並列計算分科会主査 ) 最新の並列計算事情と CAE アウトライン 最新の並列計算機事情と CAE 世界一の性能を達成した 京 について マルチコア メニーコア GPU クラスタ 最新の並列計算事情と CAE MPI OpenMP CUDA OpenCL etc. 京 については 仕分けやら予算やら計画やらの面で問題視する意見もあるかと思いますが

More information

CCS HPCサマーセミナー 並列数値計算アルゴリズム

CCS HPCサマーセミナー 並列数値計算アルゴリズム 大規模系での高速フーリエ変換 2 高橋大介 daisuke@cs.tsukuba.ac.jp 筑波大学計算科学研究センター 2016/6/2 計算科学技術特論 B 1 講義内容 並列三次元 FFT における自動チューニング 二次元分割を用いた並列三次元 FFT アルゴリズム GPU クラスタにおける並列三次元 FFT 2016/6/2 計算科学技術特論 B 2 並列三次元 FFT における 自動チューニング

More information

EnSightのご紹介

EnSightのご紹介 オープン CAE シンポジウム 2014 汎用ポストプロセッサー EnSight の大規模データ対応 CEI ソフトウェア株式会社代表取締役吉川慈人 http://www.ceisoftware.co.jp/ 内容 大規模データで時間のかかる処理 クライアント サーバー機能 マルチスレッドによる並列処理 サーバーの分散処理 クライアントの分散処理 ( 分散レンダリング ) EnSightのOpenFOAMインターフェース

More information

IntelR Compilers Professional Editions

IntelR Compilers Professional Editions June 2007 インテル コンパイラー プロフェッショナル エディション Phil De La Zerda 公開が禁止された情報が含まれています 本資料に含まれるインテル コンパイラー 10.0 についての情報は 6 月 5 日まで公開が禁止されています グローバル ビジネス デベロップメント ディレクター Intel Corporation マルチコア プロセッサーがもたらす変革 これまでは

More information

tabaicho3mukunoki.pptx

tabaicho3mukunoki.pptx 1 2 はじめに n 目的 4倍精度演算より高速な3倍精度演算を実現する l 倍精度では足りないが4倍精度は必要ないケースに欲しい l 4倍精度に比べてデータサイズが小さい Ø 少なくともメモリ律速な計算では4倍精度よりデータ 転送時間を減らすことが可能 Ø PCIeやノード間通信がボトルネックとなりやすい GPUクラスタ環境に有効か n 研究概要 l DD型4倍精度演算 DD演算 に基づく3倍精度演算

More information

RICCについて

RICCについて RICC 1 RICC 2 RICC 3 RICC GPU 1039Nodes 8312core) 93.0GFLOPS, 12GB(mem), 500GB (hdd) DDR IB!1 PC100Nodes(800core) 9.3 GPGPU 93.3TFLOPS HPSS (4PB) (550TB) 0.24 512GB 1500GB MDGRAPE33TFLOPS MDGRAPE-3 64

More information

RL78開発環境移行ガイド R8C/M16C, H8S/H8SXからRL78への移行(統合開発環境編)(High-performance Embedded Workshop→CS+)

RL78開発環境移行ガイド R8C/M16C, H8S/H8SXからRL78への移行(統合開発環境編)(High-performance Embedded Workshop→CS+) RL78 開発環境移行ガイド R8C/M16C, H8S/H8SXからRL78への移行 ( 統合開発環境編 ) (High-performance Embedded Workshop CS+) 2017/4/7 R20UT2087JJ0103 ソフトウェア事業部ソフトウエア技術部ルネサスシステムデザイン株式会社 はじめに 本資料は 統合開発環境 High-performance Embedded Workshop

More information

GPU n Graphics Processing Unit CG CAD

GPU n Graphics Processing Unit CG CAD GPU 2016/06/27 第 20 回 GPU コンピューティング講習会 ( 東京工業大学 ) 1 GPU n Graphics Processing Unit CG CAD www.nvidia.co.jp www.autodesk.co.jp www.pixar.com GPU n GPU ü n NVIDIA CUDA ü NVIDIA GPU ü OS Linux, Windows, Mac

More information

main.dvi

main.dvi PC 1 1 [1][2] [3][4] ( ) GPU(Graphics Processing Unit) GPU PC GPU PC ( 2 GPU ) GPU Harris Corner Detector[5] CPU ( ) ( ) CPU GPU 2 3 GPU 4 5 6 7 1 toyohiro@isc.kyutech.ac.jp 45 2 ( ) CPU ( ) ( ) () 2.1

More information

openmp1_Yaguchi_version_170530

openmp1_Yaguchi_version_170530 並列計算とは /OpenMP の初歩 (1) 今 の内容 なぜ並列計算が必要か? スーパーコンピュータの性能動向 1ExaFLOPS 次世代スハ コン 京 1PFLOPS 性能 1TFLOPS 1GFLOPS スカラー機ベクトル機ベクトル並列機並列機 X-MP ncube2 CRAY-1 S-810 SR8000 VPP500 CM-5 ASCI-5 ASCI-4 S3800 T3E-900 SR2201

More information

Vol.214-HPC-145 No /7/3 C #pragma acc directive-name [clause [[,] clause] ] new-line structured block Fortran!$acc directive-name [clause [[,] c

Vol.214-HPC-145 No /7/3 C #pragma acc directive-name [clause [[,] clause] ] new-line structured block Fortran!$acc directive-name [clause [[,] c Vol.214-HPC-145 No.45 214/7/3 OpenACC 1 3,1,2 1,2 GPU CUDA OpenCL OpenACC OpenACC High-level OpenACC CPU Intex Xeon Phi K2X GPU Intel Xeon Phi 27% K2X GPU 24% 1. TSUBAME2.5 CPU GPU CUDA OpenCL CPU OpenMP

More information

PNopenseminar_2011_開発stack

PNopenseminar_2011_開発stack PROFINET Open Seminar 開発セミナー Software Stack FPGA IP core PROFINET 対応製品の開発 2 ユーザ要求要求は多種多様 複雑な規格の仕様を一から勉強するのはちょっと.. できるだけ短期間で 柔軟なスケジュールで進めたい既存のハードウェアを変更することなく PN を対応させたい将来的な仕様拡張に対してシームレスに統合したい同じハードウェアで複数の

More information

27_02.indd

27_02.indd GPGPU を用いたソフトウェア高速化手法 Technique to Speedup of the software by GPGPU 大田弘樹 馬場明子 下田雄一 安田隆洋 山本啓二 Hiroki Ota, Akiko Baba, Shimoda Yuichi, Takahiro Yasuta, Keiji Yamamoto PCやワークステーションにおいて画像処理に特化して使用されてきたGPUを

More information

hpc141_shirahata.pdf

hpc141_shirahata.pdf GPU アクセラレータと不揮発性メモリ を考慮した I/O 性能の予備評価 白幡晃一 1,2 佐藤仁 1,2 松岡聡 1 1: 東京工業大学 2: JST CREST 1 GPU と不揮発性メモリを用いた 大規模データ処理 大規模データ処理 センサーネットワーク 遺伝子情報 SNS など ペタ ヨッタバイト級 高速処理が必要 スーパーコンピュータ上での大規模データ処理 GPU 高性能 高バンド幅 例

More information

Microsoft PowerPoint - 03_What is OpenMP 4.0 other_Jan18

Microsoft PowerPoint - 03_What is OpenMP 4.0 other_Jan18 OpenMP* 4.x における拡張 OpenMP 4.0 と 4.5 の機能拡張 内容 OpenMP* 3.1 から 4.0 への拡張 OpenMP* 4.0 から 4.5 への拡張 2 追加された機能 (3.1 -> 4.0) C/C++ 配列シンタックスの拡張 SIMD と SIMD 対応関数 デバイスオフロード task 構 の依存性 taskgroup 構 cancel 句と cancellation

More information

TFTP serverの実装

TFTP serverの実装 TFTP サーバーの実装 デジタルビジョンソリューション 佐藤史明 1 1 プレゼンのテーマ組み込みソフトのファイル転送を容易に 2 3 4 5 基礎知識 TFTP とは 実践 1 実際に作ってみよう 実践 2 組み込みソフトでの実装案 最後におさらい 2 プレゼンのテーマ 組み込みソフトのファイル転送を容易に テーマ選択の理由 現在従事しているプロジェクトで お客様からファームウェアなどのファイル転送を独自方式からTFTPに変更したいと要望があった

More information

概要 目的 CUDA Fortran の利用に関する基本的なノウハウを提供する 本チュートリアル受講後は Web 上で公開されている資料等を参照しながら独力で CUDA Fortran が利用できることが目標 対象 CUDA Fortran の利用に興味を抱いている方 前提とする知識 Fortran

概要 目的 CUDA Fortran の利用に関する基本的なノウハウを提供する 本チュートリアル受講後は Web 上で公開されている資料等を参照しながら独力で CUDA Fortran が利用できることが目標 対象 CUDA Fortran の利用に興味を抱いている方 前提とする知識 Fortran CUDA Fortran チュートリアル 2010 年 9 月 29 日 NEC 概要 目的 CUDA Fortran の利用に関する基本的なノウハウを提供する 本チュートリアル受講後は Web 上で公開されている資料等を参照しながら独力で CUDA Fortran が利用できることが目標 対象 CUDA Fortran の利用に興味を抱いている方 前提とする知識 Fortran を用いた Linux

More information

Microsoft Word ●IntelクアッドコアCPUでのベンチマーク_吉岡_ _更新__ doc

Microsoft Word ●IntelクアッドコアCPUでのベンチマーク_吉岡_ _更新__ doc 2.3. アプリ性能 2.3.1. Intel クアッドコア CPU でのベンチマーク 東京海洋大学吉岡諭 1. はじめにこの数年でマルチコア CPU の普及が進んできた x86 系の CPU でも Intel と AD がデュアルコア クアッドコアの CPU を次々と市場に送り出していて それらが PC クラスタの CPU として採用され HPC に活用されている ここでは Intel クアッドコア

More information

修士論文

修士論文 AVX を用いた倍々精度疎行列ベクトル積の高速化 菱沼利彰 1 藤井昭宏 1 田中輝雄 1 長谷川秀彦 2 1 工学院大学 2 筑波大学 1 目次 1. 研究背景 目的 2. 実装, 実験環境 3. 実験 - 倍々精度ベクトル演算 - 4. 実験 - 倍々精度疎行列ベクトル積 - 5. まとめ 多倍長精度計算フォーラム 2 目次 1. 研究背景 目的 2. 実装, 実験環境 3. 実験 - 倍々精度ベクトル演算

More information

Microsoft Word - nvsi_050110jp_netvault_vtl_on_dothill_sannetII.doc

Microsoft Word - nvsi_050110jp_netvault_vtl_on_dothill_sannetII.doc Article ID: NVSI-050110JP Created: 2005/10/19 Revised: - NetVault 仮想テープ ライブラリのパフォーマンス検証 : dothill SANnetⅡSATA 編 1. 検証の目的 ドットヒルシステムズ株式会社の SANnetll SATA は 安価な SATA ドライブを使用した大容量ストレージで ディスクへのバックアップを行う際の対象デバイスとして最適と言えます

More information

Microsoft PowerPoint ppt

Microsoft PowerPoint ppt 仮想マシン () 仮想マシン 復習 仮想マシンの概要 hsm 仮想マシン プログラム言語の処理系 ( コンパイラ ) 原始プログラム (Source program) コンパイラ (Compiler) 目的プログラム (Object code) 原始言語 (Source language) 解析 合成 目的言語 (Object Language) コンパイルする / 翻訳する (to compile

More information

23 Fig. 2: hwmodulev2 3. Reconfigurable HPC 3.1 hw/sw hw/sw hw/sw FPGA PC FPGA PC FPGA HPC FPGA FPGA hw/sw hw/sw hw- Module FPGA hwmodule hw/sw FPGA h

23 Fig. 2: hwmodulev2 3. Reconfigurable HPC 3.1 hw/sw hw/sw hw/sw FPGA PC FPGA PC FPGA HPC FPGA FPGA hw/sw hw/sw hw- Module FPGA hwmodule hw/sw FPGA h 23 FPGA CUDA Performance Comparison of FPGA Array with CUDA on Poisson Equation (lijiang@sekine-lab.ei.tuat.ac.jp), (kazuki@sekine-lab.ei.tuat.ac.jp), (takahashi@sekine-lab.ei.tuat.ac.jp), (tamukoh@cc.tuat.ac.jp),

More information

Microsoft PowerPoint - C++_第1回.pptx

Microsoft PowerPoint - C++_第1回.pptx OpenFoam のための C/C++ 第 1 回メモリ管理 田中昭雄 1 目的 この勉強会の資料があれば OpenFoam カスタマイズ時に C/C++ で迷わない 2 予定 第 1 回メモリ管理 第 2 回 OpenFOAM で勉強するクラス 第 3 回 OpenFOAM で勉強するテンプレート 第 4 回 OpenFOAM カスタマイズ 第 5 回未定 第 6 回未定 3 今回のテーマ C++

More information

GPGPU によるアクセラレーション環境について

GPGPU によるアクセラレーション環境について GPGPU によるアクセラレーション環境について 長屋貴量 自然科学研究機構分子科学研究所技術課計算科学技術班 概要 GPGPU とは 単純で画一的なデータを一度に大量に処理することに特化したグラフィックカードの演算資源を 画像処理以外の汎用的な目的に応用する技術の一つである 近年 その演算能力は CPU で通常言われるムーアの法則に則った場合とは異なり 飛躍的に向上しており その演算性能に魅力を感じた各分野での応用が広がってきている

More information

CELSIUSカタログ(2012年7月版)

CELSIUSカタログ(2012年7月版) CELSIUS PC "MADE IN JAPAN" 2012.7 W520 ハイエンドの過酷な要求に応えるパワフルなデュアルと高信頼を搭載 RAID構成 選択可能 富士通がお勧めする Windows 7. ミニタワーエントリーモデル より速く より強力に 最新の技術をフル投入 スピードとパワー 安定性を提供 RAID構成 選択可能 Windows 7 Professional 32bit版 正規版

More information

Microsoft Word - openmp-txt.doc

Microsoft Word - openmp-txt.doc ( 付録 A) OpenMP チュートリアル OepnMP は 共有メモリマルチプロセッサ上のマルチスレッドプログラミングのための API です 本稿では OpenMP の簡単な解説とともにプログラム例をつかって説明します 詳しくは OpenMP の規約を決めている OpenMP ARB の http://www.openmp.org/ にある仕様書を参照してください 日本語訳は http://www.hpcc.jp/omni/spec.ja/

More information

Microsoft PowerPoint - 演習1:並列化と評価.pptx

Microsoft PowerPoint - 演習1:並列化と評価.pptx 講義 2& 演習 1 プログラム並列化と性能評価 神戸大学大学院システム情報学研究科横川三津夫 yokokawa@port.kobe-u.ac.jp 2014/3/5 RIKEN AICS HPC Spring School 2014: プログラム並列化と性能評価 1 2014/3/5 RIKEN AICS HPC Spring School 2014: プログラム並列化と性能評価 2 2 次元温度分布の計算

More information

2ndD3.eps

2ndD3.eps CUDA GPGPU 2012 UDX 12/5/24 p. 1 FDTD GPU FDTD GPU FDTD FDTD FDTD PGI Acceralator CUDA OpenMP Fermi GPU (Tesla C2075/C2070, GTX 580) GT200 GPU (Tesla C1060, GTX 285) PC GPGPU 2012 UDX 12/5/24 p. 2 FDTD

More information

いまからはじめる組み込みGPU実装

いまからはじめる組み込みGPU実装 いまからはじめる組み込み GPU 実装 ~ コンピュータービジョン ディープラーニング編 ~ MathWorks Japan アプリケーションエンジニアリング部シニアアプリケーションエンジニア大塚慶太郎 2017 The MathWorks, Inc. 1 コンピュータービジョン ディープラーニングによる 様々な可能性 自動運転 ロボティクス 予知保全 ( 製造設備 ) セキュリティ 2 転移学習を使った画像分類

More information

ストリームを用いたコンカレントカーネルプログラミングと最適化 エヌビディアジャパン CUDAエンジニア森野慎也 GTC Japan 2014

ストリームを用いたコンカレントカーネルプログラミングと最適化 エヌビディアジャパン CUDAエンジニア森野慎也 GTC Japan 2014 ストリームを用いたコンカレントカーネルプログラミングと最適化 エヌビディアジャパン CUDAエンジニア森野慎也 GTC Japan 2014 コンカレントな処理の実行 システム内部の複数の処理を 平行に実行する CPU GPU メモリ転送 カーネル実行 複数のカーネル間 ストリーム GPU 上の処理キュー カーネル実行 メモリ転送の並列性 実行順序 DEFAULT STREAM Stream : GPU

More information

内容 インテル Advisor ベクトル化アドバイザー入門ガイド Version インテル Advisor の利用 ワークフロー... 3 STEP1. 必要条件の設定... 4 STEP2. インテル Advisor の起動... 5 STEP3. プロジェクトの作成

内容 インテル Advisor ベクトル化アドバイザー入門ガイド Version インテル Advisor の利用 ワークフロー... 3 STEP1. 必要条件の設定... 4 STEP2. インテル Advisor の起動... 5 STEP3. プロジェクトの作成 内容 インテル Advisor ベクトル化アドバイザー入門ガイド Version 1.0 1. インテル Advisor の利用... 2 2. ワークフロー... 3 STEP1. 必要条件の設定... 4 STEP2. インテル Advisor の起動... 5 STEP3. プロジェクトの作成と設定... 7 STEP4. ベクトル化に関する情報を取得する... 9 STEP5. ループ処理の詳細を取得する...

More information

arduino プログラミング課題集 ( Ver /06/01 ) arduino と各種ボードを組み合わせ 制御するためのプログラミングを学 ぼう! 1 入出力ポートの設定と利用方法 (1) 制御( コントロール ) する とは 外部装置( ペリフェラル ) が必要とする信号をマイ

arduino プログラミング課題集 ( Ver /06/01 ) arduino と各種ボードを組み合わせ 制御するためのプログラミングを学 ぼう! 1 入出力ポートの設定と利用方法 (1) 制御( コントロール ) する とは 外部装置( ペリフェラル ) が必要とする信号をマイ arduino プログラミング課題集 ( Ver.5.0 2017/06/01 ) arduino と各種ボードを組み合わせ 制御するためのプログラミングを学 ぼう! 1 入出力ポートの設定と利用方法 (1) 制御( コントロール ) する とは 外部装置( ペリフェラル ) が必要とする信号をマイコンから伝える 外部装置の状態をマイコンで確認する 信号の授受は 入出力ポート 経由で行う (2) 入出力ポートとは?

More information

N08

N08 CPU のキモチ C.John 自己紹介 英語きらい 絵かけない 人の話を素直に信じない CPUにキモチなんてない お詫び 予告ではCとC# とありましたがやる気と時間の都合上 C++のみを対象とします 今日のネタ元 MSDN マガジン 2010 年 10 月号 http://msdn.microsoft.com/ja-jp/magazine/cc850829.aspx Windows と C++

More information

NUMAの構成

NUMAの構成 共有メモリを使ったデータ交換と同期 慶應義塾大学理工学部 天野英晴 hunga@am.ics.keio.ac.jp 同期の必要性 あるプロセッサが共有メモリに書いても 別のプロセッサにはそのことが分からない 同時に同じ共有変数に書き込みすると 結果がどうなるか分からない そもそも共有メモリって結構危険な代物 多くのプロセッサが並列に動くには何かの制御機構が要る 不可分命令 同期用メモリ バリア同期機構

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション Foundation アプライアンス スケーラブルシステムズ株式会社 サーバ クラスタの課題 複数のシステムを一つの だけで容易に管理することは出来ないだろうか? アプリケーションがより多くのメモリを必要とするのだけど ハードウエアの増設なしで対応出来ないだろうか? 現在の利用環境のまま 利用できるコア数やメモリサイズの増強を図ることは出来ないだろうか? 短時間で導入可能で また 必要に応じて 柔軟にシステム構成の変更が可能なソリューションは無いだろうか?...

More information

Product Brief 高速なコードを素早く開発 インテル Parallel Studio XE 2017 インテル ソフトウェア開発ツール 概要 高速なコード : 現在および次世代のプロセッサーでスケーリングする優れたアプリケーション パフォーマンスを実現します 迅速に開発 : 高速かつ安定し

Product Brief 高速なコードを素早く開発 インテル Parallel Studio XE 2017 インテル ソフトウェア開発ツール 概要 高速なコード : 現在および次世代のプロセッサーでスケーリングする優れたアプリケーション パフォーマンスを実現します 迅速に開発 : 高速かつ安定し Product Brief 高速なコードを素早く開発 インテル Parallel Studio XE 2017 インテル ソフトウェア開発ツール 概要 高速なコード : 現在および次世代のプロセッサーでスケーリングする優れたアプリケーション パフォーマンスを実現します 迅速に開発 : 高速かつ安定した並列コードの作成を簡略化するツールセットです : 最先端のコンパイラー ライブラリー 並列モデル インテル

More information

ユーザーズマニュアル 有線ネットワークシステム 発行日 2016 年 3 月 30 日

ユーザーズマニュアル 有線ネットワークシステム 発行日 2016 年 3 月 30 日 ユーザーズマニュアル 有線ネットワークシステム 発行日 2016 年 3 月 30 日 目次 1 2 3 はじめに...1 1.1 前提知識...1 1.2 システム概要...1 1.3 動作環境...4 1.3.1 IP 経路情報監視 RTC...4 1.3.2 IP 経路情報ビューア RTC...6 インストール...7 2.1 RTC の入手方法...7 2.2 IP 経路情報監視 RTC...7

More information

Microsoft PowerPoint - sales2.ppt

Microsoft PowerPoint - sales2.ppt 最適化とは何? CPU アーキテクチャに沿った形で最適な性能を抽出できるようにする技法 ( 性能向上技法 ) コンパイラによるプログラム最適化 コンパイラメーカの技量 経験量に依存 最適化ツールによるプログラム最適化 KAP (Kuck & Associates, Inc. ) 人によるプログラム最適化 アーキテクチャのボトルネックを知ること 3 使用コンパイラによる性能の違い MFLOPS 90

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 高性能計算基盤 第 7 回 CA1003: 主記憶共有型システム http://arch.naist.jp/htdocs-arch3/ppt/ca1003/ca1003j.pdf Copyright 2019 奈良先端大中島康彦 1 2 3 4 マルチスレッディングとマルチコア 5 6 7 主記憶空間の数が 複数 か 1 つ か 8 ただしプログラムは容易 9 1 つの主記憶空間を共有する場合 10

More information

Slide 1

Slide 1 OpenFoam のための C/C++ 第 3 回 OpenFoam で勉強るテンプレート 田中昭雄 1 目的 この勉強会の資料があれば OpenFoam カスタマイズ時に C/C++ で迷わない 2 予定 第 1 回メモリ管理 第 2 回 CFDの例で勉強するクラス 第 3 回 OpenFOAMで勉強するテンプレート 第 4 回 OpenFOAMカスタマイズ 第 5 回未定 第 6 回未定 3 今回のテーマ

More information

04-process_thread_2.ppt

04-process_thread_2.ppt オペレーティングシステム ~ 保護とシステムコール ~ 山田浩史 hiroshiy @ cc.tuat.ac.jp 2015/05/08 復習 : OS の目的 ( 今回の話題 ) 裸のコンピュータを抽象化 (abstraction) し より使いやすく安全なコンピュータとして見せること OS はハードウェアを制御し アプリケーションの効率的な動作や容易な開発を支援する OS がないと 1 つしかプログラムが動作しない

More information

GPUコンピューティング講習会パート1

GPUコンピューティング講習会パート1 GPU コンピューティング (CUDA) 講習会 GPU と GPU を用いた計算の概要 丸山直也 スケジュール 13:20-13:50 GPU を用いた計算の概要 担当丸山 13:50-14:30 GPU コンピューティングによる HPC アプリケーションの高速化の事例紹介 担当青木 14:30-14:40 休憩 14:40-17:00 CUDA プログラミングの基礎 担当丸山 TSUBAME の

More information

KSforWindowsServerのご紹介

KSforWindowsServerのご紹介 Kaspersky Security for Windows Server のご紹介 ランサムウェアに対抗する アンチクリプター を搭載 株式会社カスペルスキー 製品本部 目次 1. サーバーセキュリティがなぜ重要か? 2. Kaspesky Security for Windows Server の概要 Kaspersky Security for Windows Server の特長 導入の効果

More information

CELSIUSカタログ(2012年5月版)

CELSIUSカタログ(2012年5月版) CELSIUS PC "MADE IN JAPAN" 2012.5 New W520 ハイエンドの過酷な要求に応えるパワフルなデュアルと高信頼を搭載 トを搭載 RAID構成 選択可能 New グラフィックス/GPUカード 500GB 1TB 500GB 2 RAID1 Quadro 5000 Quadro 4000 Quadro 2000 Quadro 600 4 Quadro 4000 TeslaTM

More information