スライド 1
|
|
|
- ゆりか いさやま
- 7 years ago
- Views:
Transcription
1 GPU クラスタによる格子 QCD 計算 広大理尾崎裕介 石川健一
2 1.1 Introduction Graphic Processing Units 1 チップに数百個の演算器 多数の演算器による並列計算 ~TFLOPS ( 単精度 ) CPU 数十 GFLOPS バンド幅 ~100GB/s コストパフォーマンス ~$400 GPU の開発環境 NVIDIA CUDA AMD(ATI) Stream SDK OpenCL, etc. GeForce GTX /03/20 2
3 time[sec] Performance [GFLOPS] 1.2 GPU for Lattice QCD simulation Lattice QCDの計算時間がほとんど この計算を行う solver (mix precision Bi-CGStab) の単精度部分に GPU mix precision solver high precision solver の前処理として low precision solver を用いる手法 1 台の GPU で約 10 倍の加速効果 CPU : Core i7 2.67GHz coded by Fortran, use SSE, openmp GPU : Geforce GTX 285 coded by CUDA 2.3 Use clover fermion kappa=0.126, csw=1.0, accuracy=10-14 Bi-CGStab calc. Time & performance CPU vs GPU 2010/03/ ^4 Volume CPU(time) CPU(Performance) ^ GPU(time) GPU(Performance)
4 1.3 motivation of GPU cluster 格子 QCD の計算の見積もり Karl Jansen, arxiv: v2 メモリ Bi-CGStab solver for clover fermion with even/odd precondition quark field : 96 Byte/site gauge field : 288 Byte/site clover field : 336 Byte/site work vector : 7 96 Byte/site 並列計算の必要性 1TFLOPS の GPU で 60~500 年 1392Byte 格子サイズ (60^3 30) = 9GByte Geforce GTX 280: 1GByte Tesla C1060 : 4GByte 2010/03/20 4
5 1.4 用意した環境 GPU : Geforce GTX 285 2/CPU CPU : intel Core i メモリ : 6GByte 4 LAN Adapta : intel Gigabit ET Quad Port Server 2010/03/20 5
6 2.1 Communication GPUs GPU 間で直接データ交換する方法は現在ない CPUを経由する必要がある MPI Ethernet 0.125GB/s PCI-Express 2.0 x16 8GB/s Cuda API GPU 間の通信は CUDA + MPI で可能 2010/03/20 6
7 2.2 Open-MX Myrinet という高速通信で使われている Myrinet Express protocol を TCP/IP protocol の代わりに Ethernet 上で実装する software TCP/IP or Open-MX 2010/03/20 7
8 time [sec] Parallel Efficiency time [sec] Parallel Efficiency 2. 3 Calculation on GPU cluster kappa=0.126 csw=1.0 accuracy=10-14 Bi-CGStab solver 計算時間通信時間並列効率 2 0 1C1G 1C2G 2C4G 4C8G 計算時間通信時間並列効率 0 1C1G 1C2G 2C4G 4C8G /03/20 8
9 2.4 Detail of hopping part with message passing 通信が必要なのは hopping の計算部分 com1 com2 com1 がデータを持っていないので com2 からデータを受け取らなければならない 通信 の計算は com2 からデータが届くのを待っている間に計算できる com1 が行う計算に必要なデータ の計算時間 通信時間 効率的 GPU の計算でも計算と通信の同時実行可能 GPU+MPI でも OK 前頁の結果は計算と通信を同時実行していたのだが 2010/03/20 9
10 2. 5 Parallel execution comm. & calc. at hopping part 計算と通信を同時実行している様子 1CPU 2GPU 2CPU 4GPU copy calc [msec] copy calc 16 [msec] 体積 32 4, 1CPU, 2GPU では通信をうまく隠せた MPI 通信が必要な 2CPU, 4GPU では GPU がほとんど遊んでいる MPI 通信が遅いため 4 copy calc [msec] copy calc [msec] /03/20 10
11 3. 1 Domain-Decomposition Method block Jacobi method Lüscher : Comput.Phys.Commun., Vol.156, pp , 2004 通信が必要な原因は領域をまたがる link 左図 右図とおもうことができたなら 左の計算結果 右の計算結果 このまま解として選ぶことはできないが 通信なしで計算可能 前処理として利用することで反復回数を減らせる の領域を隣の領域と重ねることもできる (RAS) 2010/03/20 11
12 時間 [sec] 計算量 [GFLOP] 時間 [sec] 計算量 [GFLOP] 3. 2 Calculation on GPU cluster with DD-Method 4CPU 8GPU kappa = csw = 1.0 accuracy = out solver : Bi-CGStab in solver : richardson method, with iteration 5 RAS iteration : E E E E E E E E NDEPTH NDEPTH 0.00E+00 計算時間通信時間計算量 計算時間通信時間計算量 2010/03/20 12
13 4.1 Summury GPU は高速でリーズナブルな演算アクセラレータ ゲーム用のデバイス CUDA 等の開発環境を用いて科学技術計算 今回は GPU を複数台用いて latticeqcd の solver 計算を行った 直接 GPU 間の通信を行う方法は現在のところない GPU 間の通信は cuda(streamsdk,opencl)+mpi 通信 ( 特に Ethernet) が遅いため台数効果は得られなかった MPI を使った場合はむしろ遅くなる 通信を改善するため領域分割法を試した 2010/03/20 13
14 4.2 future Infiniband 等の高速通信ではどうか? チューニングの余地はないか? 通信コードは最適か? harf spin にして通信量を半分にしたらどうか? もっと通信量を減らせるアルゴリズムはないか? Multi-Grid? Fermi アーキテクチャではどうか? 次世代 GPU アーキテクチャ Fermi 倍精度演算の強化 ECCサポート L2キャッシュ等 G80/GT200 とはかなり異なるアーキテクチャ Fermiを採用したGeforce GTX 480が3/26( 北米 ) でリリース Fermiを採用したTeslaも第二四半期中にリリース 2010/03/20 14
15 BACKUP 2010/03/20 15
16 Overrap comm. & calc in CUDA+MPI G C in calc. C C C G out calc. thread_fork(); // for Multi-GPU on 1 node cudastream_t strm[2]; // 0:calc,1:copy for(i=0;i<2;i++) cudastreamcreate(&strm[i]); cudamemcpyasync(,devicetohost,strm[1]); run_in_kernel<<<bk,th,d_shared,strm[0]>>>( ); cudastreamsynchronize(stream[1]); thread_barrier(); if(hostthreadid==0) MPI_Sendrecv( ); thread_barrier(); cudamemcpyasync(,hosttodevice,strm[1]); cudathreadsynchronize(); run_out_kernel<<<bk,th,d_shared,strm[0]>>>( ); for(i=0;i<2;i++) cudastreamdestroy(strm[i]); cudamemcpyasync cudasream を作る copy と kernel の実行に stream を指定する barrier を忘れずに copy calc CPU, 4GPU hopping part use MPI commnication thread_join(); [msec] /03/20 16
17 没 2010/03/20 17
18 Detail of hopping part with message passing 通信が必要なのは hopping の計算部分 com1 の領域が担当する quark field com2 の領域が担当する quark field com1 が行う計算 com1 がデータを持っていないので com2 からデータを受け取らなければならない 通信 この計算は com2 からデータが届くのを待っている間に計算できる の計算時間 通信時間 効率的 GPU+MPI でも OK 2010/03/20 18
19 Cluster of GPU CPU ベースの構成で高性能な計算機 50GFLOPS 1 台 1TFLOPS 20 台 MPI 10TFLOPS 200 台 MPI GPU ベースでも同様に 1TFLOPS 1 台 GPU 間の通信が必要 10TFLOPS 10 台??? 2010/03/20 19
main.dvi
PC 1 1 [1][2] [3][4] ( ) GPU(Graphics Processing Unit) GPU PC GPU PC ( 2 GPU ) GPU Harris Corner Detector[5] CPU ( ) ( ) CPU GPU 2 3 GPU 4 5 6 7 1 [email protected] 45 2 ( ) CPU ( ) ( ) () 2.1
iphone GPGPU GPU OpenCL Mac OS X Snow LeopardOpenCL iphone OpenCL OpenCL NVIDIA GPU CUDA GPU GPU GPU 15 GPU GPU CPU GPU iii OpenMP MPI CPU OpenCL CUDA OpenCL CPU OpenCL GPU NVIDIA Fermi GPU Fermi GPU GPU
Slides: TimeGraph: GPU Scheduling for Real-Time Multi-Tasking Environments
計算機アーキテクチャ第 11 回 マルチプロセッサ 本資料は授業用です 無断で転載することを禁じます 名古屋大学 大学院情報科学研究科 准教授加藤真平 デスクトップ ジョブレベル並列性 スーパーコンピュータ 並列処理プログラム プログラムの並列化 for (i = 0; i < N; i++) { x[i] = a[i] + b[i]; } プログラムの並列化 x[0] = a[0] + b[0];
名称 : 日本 GPU コンピューティングパートナーシップ (G-DEP) 所在 : 東京都文京区本郷 7 丁目 3 番 1 号東京大学アントレプレナープラザ, 他工場 URL アライアンスパートナー コアテクノロジーパートナー NVIDIA JAPAN ソリュ
GPUDirect の現状整理 multi-gpu に取組むために G-DEP チーフエンジニア河井博紀 ([email protected]) 名称 : 日本 GPU コンピューティングパートナーシップ (G-DEP) 所在 : 東京都文京区本郷 7 丁目 3 番 1 号東京大学アントレプレナープラザ, 他工場 URL http://www.gdep.jp アライアンスパートナー コアテクノロジーパートナー
GPU GPU CPU CPU CPU GPU GPU N N CPU ( ) 1 GPU CPU GPU 2D 3D CPU GPU GPU GPGPU GPGPU 2 nvidia GPU CUDA 3 GPU 3.1 GPU Core 1
GPU 4 2010 8 28 1 GPU CPU CPU CPU GPU GPU N N CPU ( ) 1 GPU CPU GPU 2D 3D CPU GPU GPU GPGPU GPGPU 2 nvidia GPU CUDA 3 GPU 3.1 GPU Core 1 Register & Shared Memory ( ) CPU CPU(Intel Core i7 965) GPU(Tesla
GPUコンピューティング講習会パート1
GPU コンピューティング (CUDA) 講習会 GPU と GPU を用いた計算の概要 丸山直也 スケジュール 13:20-13:50 GPU を用いた計算の概要 担当丸山 13:50-14:30 GPU コンピューティングによる HPC アプリケーションの高速化の事例紹介 担当青木 14:30-14:40 休憩 14:40-17:00 CUDA プログラミングの基礎 担当丸山 TSUBAME の
1 GPU GPGPU GPU CPU 2 GPU 2007 NVIDIA GPGPU CUDA[3] GPGPU CUDA GPGPU CUDA GPGPU GPU GPU GPU Graphics Processing Unit LSI LSI CPU ( ) DRAM GPU LSI GPU
GPGPU (I) GPU GPGPU 1 GPU(Graphics Processing Unit) GPU GPGPU(General-Purpose computing on GPUs) GPU GPGPU GPU ( PC ) PC PC GPU PC PC GPU GPU 2008 TSUBAME NVIDIA GPU(Tesla S1070) TOP500 29 [1] 2009 AMD
TSUBAME2.0 における GPU の 活用方法 東京工業大学学術国際情報センター丸山直也第 10 回 GPU コンピューティング講習会 2011 年 9 月 28 日
TSUBAME2.0 における GPU の 活用方法 東京工業大学学術国際情報センター丸山直也第 10 回 GPU コンピューティング講習会 2011 年 9 月 28 日 目次 1. TSUBAMEのGPU 環境 2. プログラム作成 3. プログラム実行 4. 性能解析 デバッグ サンプルコードは /work0/gsic/seminars/gpu- 2011-09- 28 からコピー可能です 1.
07-二村幸孝・出口大輔.indd
GPU Graphics Processing Units HPC High Performance Computing GPU GPGPU General-Purpose computation on GPU CPU GPU GPU *1 Intel Quad-Core Xeon E5472 3.0 GHz 2 6 MB L2 cache 1600 MHz FSB 80 GFlops 1 nvidia
GPUを用いたN体計算
単精度 190Tflops GPU クラスタ ( 長崎大 ) の紹介 長崎大学工学部超高速メニーコアコンピューティングセンターテニュアトラック助教濱田剛 1 概要 GPU (Graphics Processing Unit) について簡単に説明します. GPU クラスタが得意とする応用問題を議論し 長崎大学での GPU クラスタによる 取組方針 N 体計算の高速化に関する研究内容 を紹介します. まとめ
2ndD3.eps
CUDA GPGPU 2012 UDX 12/5/24 p. 1 FDTD GPU FDTD GPU FDTD FDTD FDTD PGI Acceralator CUDA OpenMP Fermi GPU (Tesla C2075/C2070, GTX 580) GT200 GPU (Tesla C1060, GTX 285) PC GPGPU 2012 UDX 12/5/24 p. 2 FDTD
Microsoft PowerPoint - GPU_computing_2013_01.pptx
GPU コンピューティン No.1 導入 東京工業大学 学術国際情報センター 青木尊之 1 GPU とは 2 GPGPU (General-purpose computing on graphics processing units) GPU を画像処理以外の一般的計算に使う GPU の魅力 高性能 : ハイエンド GPU はピーク 4 TFLOPS 超 手軽さ : 普通の PC にも装着できる 低価格
AMD/ATI Radeon HD 5870 GPU DEGIMA LINPACK HD 5870 GPU DEGIMA LINPACK GFlops/Watt GFlops/Watt Abstract GPU Computing has lately attracted
DEGIMA LINPACK Energy Performance for LINPACK Benchmark on DEGIMA 1 AMD/ATI Radeon HD 5870 GPU DEGIMA LINPACK HD 5870 GPU DEGIMA LINPACK 1.4698 GFlops/Watt 1.9658 GFlops/Watt Abstract GPU Computing has
GPUコンピューティング講習会パート1
GPU コンピューティング (CUDA) 講習会 GPU と GPU を用いた計算の概要 丸山直也 スケジュール 13:20-13:50 GPU を用いた計算の概要 担当丸山 13:50-14:30 GPU コンピューティングによる HPC アプリケーションの高速化の事例紹介 担当青木 14:30-14:40 休憩 14:40-17:00 CUDA プログラミングの基礎 担当丸山 TSUBAME の
GPU n Graphics Processing Unit CG CAD
GPU 2016/06/27 第 20 回 GPU コンピューティング講習会 ( 東京工業大学 ) 1 GPU n Graphics Processing Unit CG CAD www.nvidia.co.jp www.autodesk.co.jp www.pixar.com GPU n GPU ü n NVIDIA CUDA ü NVIDIA GPU ü OS Linux, Windows, Mac
GPGPUクラスタの性能評価
2008 年度理研 HPC シンポジウム第 3 世代 PC クラスタ GPGPU クラスタの性能評価 2009 年 3 月 12 日 富士通研究所成瀬彰 発表の概要 背景 GPGPU による高速化 CUDA の概要 GPU のメモリアクセス特性調査 姫野 BMT の高速化 GPGPU クラスタによる高速化 GPU Host 間のデータ転送 GPU-to-GPU の通信性能 GPGPU クラスタ上での姫野
HPEハイパフォーマンスコンピューティング ソリューション
HPE HPC / AI Page 2 No.1 * 24.8% No.1 * HPE HPC / AI HPC AI SGIHPE HPC / AI GPU TOP500 50th edition Nov. 2017 HPE No.1 124 www.top500.org HPE HPC / AI TSUBAME 3.0 2017 7 AI TSUBAME 3.0 HPE SGI 8600 System
GPU チュートリアル :OpenACC 篇 Himeno benchmark を例題として 高エネルギー加速器研究機構 (KEK) 松古栄夫 (Hideo Matsufuru) 1 December 2018 HPC-Phys 理化学研究所 共通コードプロジェクト
GPU チュートリアル :OpenACC 篇 Himeno benchmark を例題として 高エネルギー加速器研究機構 (KEK) 松古栄夫 (Hideo Matsufuru) 1 December 2018 HPC-Phys 勉強会 @ 理化学研究所 共通コードプロジェクト Contents Hands On 環境について Introduction to GPU computing Introduction
untitled
A = QΛQ T A n n Λ Q A = XΛX 1 A n n Λ X GPGPU A 3 T Q T AQ = T (Q: ) T u i = λ i u i T {λ i } {u i } QR MR 3 v i = Q u i A {v i } A n = 9000 Quad Core Xeon 2 LAPACK (4/3) n 3 O(n 2 ) O(n 3 ) A {v i }
スパコンに通じる並列プログラミングの基礎
2016.06.06 2016.06.06 1 / 60 2016.06.06 2 / 60 Windows, Mac Unix 0444-J 2016.06.06 3 / 60 Part I Unix GUI CUI: Unix, Windows, Mac OS Part II 0444-J 2016.06.06 4 / 60 ( : ) 6 6 ( ) 6 10 6 16 SX-ACE 6 17
211 年ハイパフォーマンスコンピューティングと計算科学シンポジウム Computing Symposium 211 HPCS /1/18 a a 1 a 2 a 3 a a GPU Graphics Processing Unit GPU CPU GPU GPGPU G
211 年ハイパフォーマンスコンピューティングと計算科学シンポジウム Computing Symposium 211 HPCS211 211/1/18 GPU 4 8 BLAS 4 8 BLAS Basic Linear Algebra Subprograms GPU Graphics Processing Unit 4 8 double 2 4 double-double DD 4 4 8 quad-double
Microsoft PowerPoint - CCS学際共同boku-08b.ppt
マルチコア / マルチソケットノードに おけるメモリ性能のインパクト 研究代表者朴泰祐筑波大学システム情報工学研究科 [email protected] アウトライン 近年の高性能 PC クラスタの傾向と問題 multi-core/multi-socket ノードとメモリ性能 メモリバンド幅に着目した性能測定 multi-link network 性能評価 まとめ 近年の高性能 PC
システムソリューションのご紹介
HP 2 C 製品 :VXPRO/VXSMP サーバ 製品アップデート 製品アップデート VXPRO と VXSMP での製品オプションの追加 8 ポート InfiniBand スイッチ Netlist HyperCloud メモリ VXPRO R2284 GPU サーバ 製品アップデート 8 ポート InfiniBand スイッチ IS5022 8 ポート 40G InfiniBand スイッチ
スパコンに通じる並列プログラミングの基礎
2018.09.10 [email protected] ( ) 2018.09.10 1 / 59 [email protected] ( ) 2018.09.10 2 / 59 Windows, Mac Unix 0444-J [email protected] ( ) 2018.09.10 3 / 59 Part I Unix GUI CUI:
GPGPU
GPGPU 2013 1008 2015 1 23 Abstract In recent years, with the advance of microscope technology, the alive cells have been able to observe. On the other hand, from the standpoint of image processing, the
スパコンに通じる並列プログラミングの基礎
2018.06.04 2018.06.04 1 / 62 2018.06.04 2 / 62 Windows, Mac Unix 0444-J 2018.06.04 3 / 62 Part I Unix GUI CUI: Unix, Windows, Mac OS Part II 2018.06.04 4 / 62 0444-J ( : ) 6 4 ( ) 6 5 * 6 19 SX-ACE * 6
CCS HPCサマーセミナー 並列数値計算アルゴリズム
大規模系での高速フーリエ変換 2 高橋大介 [email protected] 筑波大学計算科学研究センター 2016/6/2 計算科学技術特論 B 1 講義内容 並列三次元 FFT における自動チューニング 二次元分割を用いた並列三次元 FFT アルゴリズム GPU クラスタにおける並列三次元 FFT 2016/6/2 計算科学技術特論 B 2 並列三次元 FFT における 自動チューニング
4 倍精度基本線形代数ルーチン群 QPBLAS の紹介 [index] 1. Introduction 2. Double-double algorithm 3. QPBLAS 4. QPBLAS-GPU 5. Summary 佐々成正 1, 山田進 1, 町田昌彦 1, 今村俊幸 2, 奥田洋司
4 倍精度基本線形代数ルーチン群 QPBLAS の紹介 [index] 1. Introduction 2. Double-double algorithm 3. QPBLAS 4. QPBLAS-GPU 5. Summary 佐々成正 1, 山田進 1, 町田昌彦 1, 今村俊幸 2, 奥田洋司 3 1 1 日本原子力研究開発機構システム計算科学センター 2 理科学研究所計算科学研究機構 3 東京大学新領域創成科学研究科
! 行行 CPUDSP PPESPECell/B.E. CPUGPU 行行 SIMD [SSE, AltiVec] 用 HPC CPUDSP PPESPE (Cell/B.E.) SPE CPUGPU GPU CPU DSP DSP PPE SPE SPE CPU DSP SPE 2
! OpenCL [Open Computing Language] 言 [OpenCL C 言 ] CPU, GPU, Cell/B.E.,DSP 言 行行 [OpenCL Runtime] OpenCL C 言 API Khronos OpenCL Working Group AMD Broadcom Blizzard Apple ARM Codeplay Electronic Arts Freescale
23 Fig. 2: hwmodulev2 3. Reconfigurable HPC 3.1 hw/sw hw/sw hw/sw FPGA PC FPGA PC FPGA HPC FPGA FPGA hw/sw hw/sw hw- Module FPGA hwmodule hw/sw FPGA h
23 FPGA CUDA Performance Comparison of FPGA Array with CUDA on Poisson Equation ([email protected]), ([email protected]), ([email protected]), ([email protected]),
NVIDIA Tesla K20/K20X GPU アクセラレータ アプリケーション パフォーマンス テクニカル ブリーフ
NVIDIA Tesla K20/K20X GPU アクセラレータ アプリケーション パフォーマンス テクニカル ブリーフ K20 GPU2 個に対するスピードアップ NVIDIA は Fermi アーキテクチャ GPU の発表により パフォーマンス エネルギー効率の両面で飛躍的な性能向上を実現し ハイパフォーマンスコンピューティング (HPC) の世界に変革をもたらしました また 実際に GPU
Microsoft Word ●IntelクアッドコアCPUでのベンチマーク_吉岡_ _更新__ doc
2.3. アプリ性能 2.3.1. Intel クアッドコア CPU でのベンチマーク 東京海洋大学吉岡諭 1. はじめにこの数年でマルチコア CPU の普及が進んできた x86 系の CPU でも Intel と AD がデュアルコア クアッドコアの CPU を次々と市場に送り出していて それらが PC クラスタの CPU として採用され HPC に活用されている ここでは Intel クアッドコア
GPU のアーキテクチャとプログラム構造 長岡技術科学大学電気電子情報工学専攻出川智啓
GPU のアーキテクチャとプログラム構造 長岡技術科学大学電気電子情報工学専攻出川智啓 今回の内容 GPU のアーキテクチャ CUDA CUDA によるプログラミング 58 GPU(Graphics Processing Unit) とは 画像処理専用のハードウェア 具体的には画像処理用のチップ チップ単体では販売されていない PCI Ex カードで販売 ( チップ単体と区別せずに GPU と呼ぶことも多い
チューニング講習会 初級編
GPU のしくみ RICC での使い方 およびベンチマーク 理化学研究所情報基盤センター 2013/6/27 17:00 17:30 中田真秀 RICC の GPU が高速に! ( 旧 C1060 比約 6.6 倍高速 ) RICCのGPUがC2075になりました! C1060 比 6.6 倍高速 倍精度 515GFlops UPCに100 枚導入 : 合計 51.5TFlops うまく行くと5 倍程度高速化
26102 (1/2) LSISoC: (1) (*) (*) GPU SIMD MIMD FPGA DES, AES (2/2) (2) FPGA(8bit) (ISS: Instruction Set Simulator) (3) (4) LSI ECU110100ECU1 ECU ECU ECU ECU FPGA ECU main() { int i, j, k for { } 1 GP-GPU
CAD ICT
CAD ICT 1973 FACOM230-25 24KB HP 1964 No.1 IBM360 FACOM230-5 1968 IBM 1970 1976 TK80 1980 PC-9801 10 1990 WS 2,30 ICT 10 60 J90 1990 J97 J07 J97 J07 CS -1- IS SE CE IT ICT 100-2- 17 9 1 Web Web Web SSLVPN
最新の並列計算事情とCAE
1 大島聡史 ( 東京大学情報基盤センター助教 / 並列計算分科会主査 ) 最新の並列計算事情と CAE アウトライン 最新の並列計算機事情と CAE 世界一の性能を達成した 京 について マルチコア メニーコア GPU クラスタ 最新の並列計算事情と CAE MPI OpenMP CUDA OpenCL etc. 京 については 仕分けやら予算やら計画やらの面で問題視する意見もあるかと思いますが
1. GPU コンピューティング GPU コンピューティング GPUによる 汎用コンピューティング GPU = Graphics Processing Unit CUDA Compute Unified Device Architecture NVIDIA の GPU コンピューティング環境 Lin
Windows で始める CUDA 入門 GTC 2013 チュートリアル エヌビディアジャパン CUDA エンジニア森野慎也 1. GPU コンピューティング GPU コンピューティング GPUによる 汎用コンピューティング GPU = Graphics Processing Unit CUDA Compute Unified Device Architecture NVIDIA の GPU コンピューティング環境
GPGPU によるアクセラレーション環境について
GPGPU によるアクセラレーション環境について 長屋貴量 自然科学研究機構分子科学研究所技術課計算科学技術班 概要 GPGPU とは 単純で画一的なデータを一度に大量に処理することに特化したグラフィックカードの演算資源を 画像処理以外の汎用的な目的に応用する技術の一つである 近年 その演算能力は CPU で通常言われるムーアの法則に則った場合とは異なり 飛躍的に向上しており その演算性能に魅力を感じた各分野での応用が広がってきている
ペタスケール計算環境に向けたFFTライブラリ
A01 高橋班 大規模並列環境における 数値計算アルゴリズム 研究代表者 : 高橋大介 筑波大学大学院システム情報工学研究科 研究組織 研究代表者 高橋大介 ( 筑波大学 ): 研究統括および高速アルゴリズム 研究分担者 今村俊幸 ( 電気通信大学 ): 性能チューニング 多田野寛人 ( 筑波大学 ): 大規模線形計算 連携研究者 佐藤三久 ( 筑波大学 ): 並列システムの性能評価 朴泰祐 ( 筑波大学
Second-semi.PDF
PC 2000 2 18 2 HPC Agenda PC Linux OS UNIX OS Linux Linux OS HPC 1 1CPU CPU Beowulf PC (PC) PC CPU(Pentium ) Beowulf: NASA Tomas Sterling Donald Becker 2 (PC ) Beowulf PC!! Linux Cluster (1) Level 1:
: 50 10 10 1. : : 3 : 4 : 2 2. : 1946 1975 1 : load: store: : : ( ) ( ) : 101 x 101 ------------- 101 101 ------------ 11001 2 ( ): 32 32 1 32 : 32 ( ) 32 ( ) : log 2 32 : : ( F) ( D) E W 1 4 : F D E
PowerPoint プレゼンテーション
vsmp Foundation スケーラブル SMP システム スケーラブル SMP システム 製品コンセプト 2U サイズの 8 ソケット SMP サーバ コンパクトな筐体に多くのコアとメモリを実装し SMP システムとして利用可能 スイッチなし構成でのシステム構築によりラックスペースを無駄にしない構成 将来的な拡張性を保証 8 ソケット以上への拡張も可能 2 システム構成例 ベースシステム 2U
概要 目的 CUDA Fortran の利用に関する基本的なノウハウを提供する 本チュートリアル受講後は Web 上で公開されている資料等を参照しながら独力で CUDA Fortran が利用できることが目標 対象 CUDA Fortran の利用に興味を抱いている方 前提とする知識 Fortran
CUDA Fortran チュートリアル 2010 年 9 月 29 日 NEC 概要 目的 CUDA Fortran の利用に関する基本的なノウハウを提供する 本チュートリアル受講後は Web 上で公開されている資料等を参照しながら独力で CUDA Fortran が利用できることが目標 対象 CUDA Fortran の利用に興味を抱いている方 前提とする知識 Fortran を用いた Linux
ストリームを用いたコンカレントカーネルプログラミングと最適化 エヌビディアジャパン CUDAエンジニア森野慎也 GTC Japan 2014
ストリームを用いたコンカレントカーネルプログラミングと最適化 エヌビディアジャパン CUDAエンジニア森野慎也 GTC Japan 2014 コンカレントな処理の実行 システム内部の複数の処理を 平行に実行する CPU GPU メモリ転送 カーネル実行 複数のカーネル間 ストリーム GPU 上の処理キュー カーネル実行 メモリ転送の並列性 実行順序 DEFAULT STREAM Stream : GPU
IPSJ SIG Technical Report Vol.2013-ARC-203 No /2/1 SMYLE OpenCL (NEDO) IT FPGA SMYLEref SMYLE OpenCL SMYLE OpenCL FPGA 1
SMYLE OpenCL 128 1 1 1 1 1 2 2 3 3 3 (NEDO) IT FPGA SMYLEref SMYLE OpenCL SMYLE OpenCL FPGA 128 SMYLEref SMYLE OpenCL SMYLE OpenCL Implementation and Evaluations on 128 Cores Takuji Hieda 1 Noriko Etani
高性能計算研究室の紹介 High Performance Computing Lab.
高性能計算研究室 (HPC Lab) の紹介 High Performance Computing Lab. 静岡理工科大学総合情報学部コンピュータシステム学科 ( 兼 Web デザイン特別プログラム ) 幸谷智紀 http://na-inet.jp/ 概要 1. 幸谷智紀 個人の研究テーマ 2. 3 年生ゼミ ( 情報セミナー II) 3. 卒研テーマ 4. Webデザイン特別プログラム 5. 今後について
Microsoft PowerPoint - suda.pptx
GPU の HWアーキテクチャと高性能化手法 須田礼仁 ( 東京大学 ) 2011/03/22 GPU 高性能プログラミング GPU のハードウェアを理解する CUDA のソフトウェアを理解する CUDA でプログラムを書くのは難しくないが, CUDA で高速なプログラムを書くのは難しい どうすれば遅くなるかを理解する! 効果が大きいものから順に説明します 1 高性能プログラミングの手順 1. 現在のコードの,
HP High Performance Computing(HPC)
ACCELERATE HP High Performance Computing HPC HPC HPC HPC HPC 1000 HPHPC HPC HP HPC HPC HPC HP HPCHP HP HPC 1 HPC HP 2 HPC HPC HP ITIDC HP HPC 1HPC HPC No.1 HPC TOP500 2010 11 HP 159 32% HP HPCHP 2010 Q1-Q4
Microsoft PowerPoint - ★13_日立_清水.ppt
PC クラスタワークショップ in 京都 日立テクニカルコンピューティングクラスタ 2008/7/25 清水正明 日立製作所中央研究所 1 目次 1 2 3 4 日立テクニカルサーバラインナップ SR16000 シリーズ HA8000-tc/RS425 日立自動並列化コンパイラ 2 1 1-1 日立テクニカルサーバの歴史 最大性能 100TF 10TF 30 年間で百万倍以上の向上 (5 年で 10
Agenda GRAPE-MPの紹介と性能評価 GRAPE-MPの概要 OpenCLによる四倍精度演算 (preliminary) 4倍精度演算用SIM 加速ボード 6 processor elem with 128 bit logic Peak: 1.2Gflops
Agenda GRAPE-MPの紹介と性能評価 GRAPE-MPの概要 OpenCLによる四倍精度演算 (preliminary) 4倍精度演算用SIM 加速ボード 6 processor elem with 128 bit logic Peak: 1.2Gflops ボードの概要 Control processor (FPGA by Altera) GRAPE-MP chip[nextreme
09中西
PC NEC Linux (1) (2) (1) (2) 1 Linux Linux 2002.11.22) LLNL Linux Intel Xeon 2300 ASCIWhite1/7 / HPC (IDC) 2002 800 2005 2004 HPC 80%Linux) Linux ASCI Purple (ASCI 100TFlops Blue Gene/L 1PFlops (2005)
[4] ACP (Advanced Communication Primitives) [1] ACP ACP [2] ACP Tofu UDP [3] HPC InfiniBand InfiniBand ACP 2 ACP, 3 InfiniBand ACP 4 5 ACP 2. ACP ACP
InfiniBand ACP 1,5,a) 1,5,b) 2,5 1,5 4,5 3,5 2,5 ACE (Advanced Communication for Exa) ACP (Advanced Communication Primitives) HPC InfiniBand ACP InfiniBand ACP ACP InfiniBand Open MPI 20% InfiniBand Implementation
DO 時間積分 START 反変速度の計算 contravariant_velocity 移流項の計算 advection_adams_bashforth_2nd DO implicit loop( 陰解法 ) 速度勾配, 温度勾配の計算 gradient_cell_center_surface 速
1 1, 2 1, 2 3 2, 3 4 GP LES ASUCA LES NVIDIA CUDA LES 1. Graphics Processing Unit GP General-Purpose SIMT Single Instruction Multiple Threads 1 2 3 4 1),2) LES Large Eddy Simulation 3) ASUCA 4) LES LES
高性能計算研究室の紹介 High Performance Computing Lab.
高性能計算研究室 (HPC Lab) の紹介 High Performance Computing Lab. 静岡理工科大学総合情報学部コンピュータシステム学科 ( 兼 Web デザイン特別プログラム ) 幸谷智紀 543 研究室 幸谷研究室 @ 静岡 検索 概要 1. 幸谷智紀 個人の研究テーマ 2. 3 年生ゼミ ( 情報セミナー II) 3. 卒研テーマ 4. 過去の卒研 5. 今後について
FINAL PROGRAM 22th Annual Workshop SWoPP / / 2009 Sendai Summer United Workshops on Parallel, Distributed, and Cooperative Processing
FINAL PROGRAM 22th Annual Workshop SWoPP 2009 2009 / / 2009 Sendai Summer United Workshops on Parallel, Distributed, and Cooperative Processing 2009 8 4 ( ) 8 6 ( ) 981-0933 1-2-45 http://www.forestsendai.jp
<4D F736F F F696E74202D2091E63489F15F436F6D C982E682E992B48D8291AC92B489B F090CD2888F38DFC E B8CDD8
Web キャンパス資料 超音波シミュレーションの基礎 ~ 第 4 回 ComWAVEによる超高速超音波解析 ~ 科学システム開発部 Copyright (c)2006 ITOCHU Techno-Solutions Corporation 本日の説明内容 ComWAVEの概要および特徴 GPGPUとは GPGPUによる解析事例 CAE POWER 超音波研究会開催 (10 月 3 日 ) のご紹介
修士論文
AVX を用いた倍々精度疎行列ベクトル積の高速化 菱沼利彰 1 藤井昭宏 1 田中輝雄 1 長谷川秀彦 2 1 工学院大学 2 筑波大学 1 目次 1. 研究背景 目的 2. 実装, 実験環境 3. 実験 - 倍々精度ベクトル演算 - 4. 実験 - 倍々精度疎行列ベクトル積 - 5. まとめ 多倍長精度計算フォーラム 2 目次 1. 研究背景 目的 2. 実装, 実験環境 3. 実験 - 倍々精度ベクトル演算
EGunGPU
Super Computing in Accelerator simulations - Electron Gun simulation using GPGPU - K. Ohmi, KEK-Accel Accelerator Physics seminar 2009.11.19 Super computers in KEK HITACHI SR11000 POWER5 16 24GB 16 134GFlops,
I I / 47
1 2013.07.18 1 I 2013 3 I 2013.07.18 1 / 47 A Flat MPI B 1 2 C: 2 I 2013.07.18 2 / 47 I 2013.07.18 3 / 47 #PJM -L "rscgrp=small" π-computer small: 12 large: 84 school: 24 84 16 = 1344 small school small
ÊÂÎó·×»»¤È¤Ï/OpenMP¤Î½éÊâ¡Ê£±¡Ë
2015 5 21 OpenMP Hello World Do (omp do) Fortran (omp workshare) CPU Richardson s Forecast Factory 64,000 L.F. Richardson, Weather Prediction by Numerical Process, Cambridge, University Press (1922) Drawing
熊本大学学術リポジトリ Kumamoto University Repositor Title GPGPU による高速演算について Author(s) 榎本, 昌一 Citation Issue date Type URL Presentation
熊本大学学術リポジトリ Kumamoto University Repositor Title GPGPU による高速演算について Author(s) 榎本, 昌一 Citation Issue date 2011-03-17 Type URL Presentation http://hdl.handle.net/2298/23539 Right GPGPU による高速演算について 榎本昌一 東京大学大学院工学系研究科システム創成学専攻
Images per Second Images per Second VOLTA: ディープラーニングにおける大きな飛躍 ResNet-50 トレーニング 2.4x faster ResNet-50 推論 TensorRT - 7ms レイテンシ 3.7x faster P100 V100 P10
NVIDIA TESLA V100 CUDA 9 のご紹介 森野慎也, シニアソリューションアーキテクト (GPU-Computing) NVIDIA Images per Second Images per Second VOLTA: ディープラーニングにおける大きな飛躍 ResNet-50 トレーニング 2.4x faster ResNet-50 推論 TensorRT - 7ms レイテンシ
Microsoft PowerPoint PCクラスタワークショップin京都.ppt
PC クラスタシステムへの富士通の取り組み 富士通株式会社株式会社富士通研究所久門耕一 29 年度に富士通が提供する ( した ) 大規模クラスタ 今年度はCPUとしてメモリバンド幅がNehalem, QDR- IB( 片方向 4GB/s) などPCクラスタにとって期待できる多くのコモディティコンポーネントが出現 これら魅力ある素材を使ったシステムとして 2つのシステムをご紹介 理化学研究所様 RICC(Riken
