Size: px
Start display at page:

Download ""

Transcription

1

2

3 i

4

5 i SI iii

6 ( ) iv

7 v

8 vi

9 vii

10 viii

11 1 [ ] 1

12

13

14 A = BC, (1.1) d F = DE, dt (1.2) A B C F D E MKS (SI) SI Kg 4

15 Kg Kg mm m s m s s m s 2 x = m

16 a b c = L a M b T c 1m 1m 2m m m m (1.3) 1m 1m 2 1m 1m 2 1m 2m 2 1m + 2m 2 (1.4) l 1 l 2 l 1 + l 2 (1.5) A + A 2 (1.6) exp A = (1 + A + A2 2! + A3 +...) : A (1.7) 3! A A [A] [A] = L a 1 M b 1 T c 1, [B] = L a 2 M b 2 T c 2 (1.8) [AB] = L a 1+a 2 M b 1+b 2 T c 1+c 2 (1.9) A B = La 1 a 2 M b 1 b 2 T c 1 c 2 (1.10) 6

17

18

19

20 0 1, 2, 3 x = x(t) (2.1) t t x(t) x(t) t x v = x t = x(t + t) x(t) t (2.2) t t 1 x(t) t 2 v t t + t t x(t) t x(t + t) x(t) v = lim t 0 t = dx dt t x(t) t (2.3) v(t + t) v(t) a = lim t 0 t = dv dt (2.4) 10

21 t t a = (2.5) dv dt = a = v = at + v 0 (2.6) (2.7) dx dt = v(t) = v = at + v 0 x = 1 2 at2 + v 0 t + x 0 (2.8) t n d dt t = 1 (2.9) d dt t2 = 2t, d dt t3 = 3t 2 (2.10) d dt tn = nt n 1 (2.11) x (x + h) n = x n + nx n 1 h + n(n 1) x n 2 h 2 + (2.12) 2 d dt t = lim (t + t) (t) = 1 t 0 t (2.13) d (t + t) 2 (t) 2 dt t2 = lim = 2t t 0 t (2.14) d (t + t) 3 (t) 3 dt t3 = lim = 3t 2 t 0 t (2.15) d dt tn = nt n 1 (2.16) 11

22 n z d dt tz = zt z 1 (2.17) sin(α + β) = sin(α) cos(β) + cos(α) sin(β) (2.18) cos(α + β) = cos(α) cos(β) sin(α) sin(β) (2.19) sin( θ) = θ + O(( θ) 2 ) (2.20) cos( θ) = 1 + O(( θ) 2 ) (2.21) O(( θ) 2 ) θ d dt d cos at = lim dt t 0 sin a(t + t) sin a(t) sin at = lim t 0 t cos a(t + t) cos a(t) t = a cos at (2.22) = a sin at (2.23) (2.21)

23 1 2 x(t) = a 2 t2 + bt + c (2.24) v(t) = d x(t) = at + b (2.25) dt a(t) = d v(t) = a (2.26) dt 2 R ω t x(t) = R cos ωt (2.27) v(t) = d x(t) = Rω sin ωt (2.28) dt a(t) = d dt v(t) = Rω2 cos ωt (2.29) T = 2π ω T 13

24 3 x(t) = e at (2.30) v(t) = d dt x(t) = aeat = ax(t) (2.31) a(t) = d dt v(t) = a2 e at = a 2 x(t) (2.32) x(t) = v 0 (t 1 a e at ) (2.33) v(t) = d dt x(t) = v 0(1 e at ) (2.34) z(t) = d dt v(t) = v 0ae at (2.35) t 14

25 t x(t) = x 0 log(t) (2.36) t = e x(t) x 0 (2.37) 1 = e x(t) x 0 d x(t) (2.38) dt x 0 d dt x(t) = x 0e x(t) x 0 = x 0 t (2.39) (x, y, z) (x i ; i = 1, 3) x(t) = (x(t), y(t), z(t))(= (x 1 (t), x 2 (t), x 3 (t))) (2.40) v(t) = d dt x(t) = ( d dt x(t), d dt y(t), d dt z(t)) = ( d dt x 1(t), d dt x 2(t), d dt x 3(t)) (2.41) 15

26 x i (t), v i (t), a i (t), i = 1, 3 (2.42) d dt x i(t) = v i (t), (2.43) d dt v i(t) = a i (t) (2.44) a(t) = d dt d2 d2 d2 d2 v(t) = ( x(t), y(t), z(t))(= ( dt2 dt2 dt2 dt x 1(t), d2 2 dt x 2(t), d2 2 dt x 3(t))) (2.45) t x 1 (t) = (2t, 3, 4.9t 2 ), x 2 (t) = (0, 3t, 4.9t 2 + 5t) (2.46) v 1 (t) = (2, 0, 9.8t), v 2 (t) = (0, 3, 9.8t + 5) (2.47) a 1 (t) = (0, 0, 9.8), a 2 (t) = (0, 0, 9.8) (2.48) 2.3 R m 16

27 θ t θ = ωt (2.49) ω δt x(t + δt) x(t) (2.50) δt δt vδt = Rωδt (2.51) v = Rω (2.52) Rω θ t θ = ωt (2.53) π 2 17

28 2.3.2 t a = Rω 2 (2.54) θ = ωt (2.55) R ω 18

29 x(t) g x 0 v 0 x(t) = 1 2 gt2 + v 0 t + x 0 (2.56) d dt x(t) = gt + v 0 (2.57) x 0 = v 0 = 0 (2.58) g = 9.8 m 2 /sec t = 1sec, v = 9.8m/sec, x = 4.9m (2.59) t = 10sec, v = 98m/sec, x = 490m (2.60) t = 100sec, v = 980m/sec, x = 49000m (2.61) (60 60) 3600 v = 9.8m/sec = m/ = 36Km/ (2.62) v = 98m/sec = 360Km/ (2.63) v = 980m/sec = 3600Km/ (2.64) 340m/sec 490m 360Km/ 100Km/ 19

30 2.4.2 F = b v (2.65) a = g b m v (2.66) v = mg b (2.67) 20

31 a, b, c, d n sin ax, cos bx, exp(cx + d), log x, x n x 1 (t) = (1, 2t + 3t 2, 4t), x 2 (t) = (5 sin 2t, 5 cos 2t, 0), x 3 (t) = (6 sin 2t, 6 cos 2t, 4t) ω z(t) = (2.68) 21

32 d sin ax = a cos ax, dx d cos bx = b sin bx, dx d exp(cx + d) = c exp(cx + d), dx d dx log x = 1 x, d dx xn = nx n 1 2 x 1 (t) = (1, 2t + 3t 2, 4t), (2.69) d dt x1 (t) = (0, 2 + 6t, 4), d2 dt 2 x1 (t) = (0, 6, 0) (2.70) x 2 (t) = (5 sin 2t, 5 cos 2t, 0), (2.71) d dt x2 (t) = (10 cos 2t, 10 sin 2t, 0), d2 dt 2 x2 (t) = ( 20 sin 2t, 20 cos 2t, 0) (2.72) x 3 (t) = (6 sin 2t, 6 cos 2t, 4t) (2.73) d dt x3 (t) = (12 cos 2t, 12 sin 2t, 4) (2.74) d 2 dt 2 x3 (t) = ( 24 sin 2t, 24 cos 2t, 0) (2.75) 22

33 3 3.1 a m F F a m a = F m (3.1) (3.2)

34 9.8m/s 2 1/

35 F = kx, (3.3) F : k : x : (3.4) F = kx (3.5) F = mg (3.6) F = ma (3.7) 25

36 3.3 26

37 A = A 1, A 2, A 3 (3.8) a + b = c (3.9) 27

38 a λ λ a = c (3.10) c λ a λ a a a = b + c (3.11) a + b = c (3.12) e 1 x x e 1 = x (3.13) 28

39 e 2 y y e 2 = y (3.14) r = x + y, (3.15) x = x e 1, y = y e 2 (3.16) e 1 e 2 e 1 e 2 29

40 3.4.4 θ ( a, b) = ab cos θ (3.17) a : a, b : b θ (3.18) a cos θ a b ( a + b, c) = ( a, c) + ( b, c) (3.19) ( a, b + c) = ( a, b) + ( a, c) (3.20) ( a, b) = ab cos θ = 0 (3.21) 30

41 e 1 = (1, 0, 0), e 2 = (0, 1, 0), e 3 = (0, 0, 1) (3.22) ( e 1, e 1 ) = 1, ( e 1, e 2 ) = 0, ( e 1, e 3 ) = 0 (3.23) ( e 2, e 1 ) = 0, ( e 2, e 2 ) = 1, ( e 2, e 3 ) = 0 ( e 3, e 1 ) = 0, ( e 3, e 2 ) = 0, ( e 3, e 3 ) = 1 a = a 1 e 1 + a 2 e 2 + a 3 e 3 (3.24) b = b1 e 1 + b 2 e 2 + b 3 e 3 (3.25) ( a, b) (3.26) = (a 1 e 1 + a 2 e 2 + a 3 e 3, b 1 e 1 + b 2 e 2 + b 3 e 3 ) = a 1 b 1 ( e 1, e 1 ) + a 1 b 2 ( e 1, e 2 ) + a 1 b 3 ( e 1, e 3 ) +a 2 b 1 ( e 2, e 1 ) + a 2 b 2 ( e 2, e 2 ) + a 2 b 3 ( e 2, e 3 ) +a 3 b 1 ( e 3, e 1 ) + a 3 b 2 ( e 3, e 2 ) + a 3 b 3 ( e 3, e 3 ) = a 1 b 1 + a 2 b 2 + a 3 b 3 ( a, b) = ab cos θ = a 1 b 1 + a 2 b 2 + a 3 b 3 (3.27) cos θ = ( a b) a b (3.28) x(t) ( e i e j ) = δ ij (3.29) 31

42 d x(t + h) x(t) x(t) = lim dt h 0 h (3.30) x(t) v(t) a(t) d x(t) = v(t) dt (3.31) d v(t) = a(t) dt (3.32) ( a(t), b(t)) (3.33) d dt ( a(t), b(t)) = ( d dt a(t), b(t)) + ( a(t), d dt b(t)) (3.34) ( ) a b (a 2 b 3 a 3 b 2, a 3 b 1 a 1 b 3, a 1 b 2 a 2 b 1 ) (3.35) a b (3.36) θ a b = a b sin θ, (3.37) a b a b 32

43 a a = (a 2 a 3 a 3 a 2, a 3 a 1 a 1 a 3, a 1 a 2 a 2 a 1 ) = (0, 0, 0) (3.38) a 0 = 0 (3.39) a = b (3.40) a c = b c (3.41) c (λ a + µ b) = λ c a + µ c b (3.42) e 1 e 1 = 0, e 1 e 2 = e 3, e 1 e 3 = e 2, (3.43) e 2 e 1 = e 3, e 2 e 2 = 0, e 2 e 3 = e 1, e 3 e 1 = e 2, e 3 e 2 = e 1, e 3 e 3 = 0 e i e j = ϵ ijk e k (3.44) ϵ ijk ϵ ijk ijk ϵ ijk = 0, i = j, i = k, j = k (3.45) ϵ 123 = ϵ 231 = ϵ 312 = 1, ϵ 123 = ϵ 123 = ϵ 123 = 1, 33 (3.46)

44 ϵ ijk = ϵ jik = ϵ ikj (3.47) (a 1 e 1 + a 2 e 2 + a 3 e 3 ) (b 1 e 1 + b 2 e 2 + b 3 e 3 ) = a i b j e i e j (3.48) = ϵ kij e k a i b j i ( a b) i = ϵ ijk a j b k (3.49) (3.23) (3.44)

45 F a m m a = F (3.50) a = d2 x(t) (3.51) dt2 35

46 3.5.1 m mg mg = g m m R ω R ω 2 F F = mrω 2 (3.52) Rω 36

47 x 0 x F = k(x x 0 ) (3.53) x = x 0 x(t) = x 0 (3.54) x(t) = x 0 (3.55) t = A B A B F B B A F A F B = F A (3.56) 37

48 3.6.1 A B A F a A f B B f A M a a = F f (3.57) M b a = f (3.58) (M a + M b )a = F (3.59) M a + M b 38

49 3.7 ( a, b) a b ( a, b) 2 + ( a b) 2 = a 2 b 2 (3.60) F a 39

50 A, B a 1 5 a, b c a = b (3.61) a c = b c (3.62) a c = b c c a c = b c (3.63) a = b (3.64) a c = b c (3.65) ( a, b) 2 = (a 1 b 1 + a 2 b 2 + a 3 b 3 ) 2 (3.66) ( a b) 2 = (a 2 b 3 a 3 b 2 ) 2 + (a 3 b 1 a 1 b 3 ) 2 + (a 1 b 2 a 2 b 1 ) 2 (3.67) ( a, b) 2 + ( a b) 2 (3.68) = (a 1 b 1 + a 2 b 2 + a 3 b 3 ) 2 + (a 2 b 3 a 3 b 2 ) 2 + (a 3 b 1 a 1 b 3 ) 2 + (a 1 b 2 a 2 b 1 ) 2 40

51 a 1 a 2 1 b b b 2 2 (3.69) a 1 2b 1 (a 2 b 2 + a 3 b 3 ) 2b 3 a 3 b 1 2b 2 a 2 b 1 = 2b 1 (a 2 b 2 + a 3 b 3 a 2 b 2 a 3 b 3 ) = 0 (3.70) a 2 a 3 a 2 2(b b b 2 2) (3.71) a 2 3(b b b 2 2) (3.72) (a a a 2 3)(b b b 2 2) = a 2 b 2 (3.73) a b = a b cos θ (3.74) a b = a b sin θ (3.75) 41

52

53 4 4.1 f (x) y = f(x) y = f(x) x S(x) S (x) = lim h 0 S(x + h) S(x) h (4.1) S(x + h) = S(x) + hf(x) + O(h 2 ) (4.2) 43

54 S S(x + h) S(x) (x) = lim h 0 h = f(x). (4.3) f(x) S(x) S(x) f(x) S(x) = x x 0 dxf(x) (4.4) x 0 x x 0 x F d 2 dt 2 x(t) = F (4.5) t 1 t 0 t1 t 0 dt d2 dt 2 x(t) = t1 t 0 dt F (4.6) d dt x(t) t 1 t0 = F t t 1 t0 (4.7) d dt x(t) t=t 1 d dt x(t) t=t 0 = F (t 1 t 0 ) (4.8) 44

55 t 1 t t 0 v 0 d dt x(t) = v 0 + F (t t 0 ) (4.9) v 0 = d dt x(t) t=t 0 (4.10) t 0 x 0 x(t) = v 0 (t t 0 ) + F 1 2 (t t 0) 2 + x 0 (4.11) x 0 = x t=t0 (4.12) F v 0 x 0 t = t m m d2 x(t) = kx(t) (4.13) dt2 x, y F x = kr cos θ = kx (4.14) F y = kr sin θ = ky (4.15) 45

56 a d dt cos ωt = ω sin ωt, d sin ωt = ω cos ωt (4.16) dt d 2 dt cos ωt = 2 ω2 cos ωt, d2 dt sin ωt = 2 ω2 sin ωt (4.17) d 2 dt 2 eat = a 2 e at (4.18) e iat = A(t) + ib(t) (4.19) iae iat = A (t) + ib (t) (4.20) ia(a(t) + ib(t)) = ab(t) + iaa(t) (4.21) A (t) = ab(t), B (t) = aa(t) (4.22) t f(t) t = 0 f(t) = f(0) + f (0)t + 1 2! f (2) (0)t ! f (3) (0)t ! f (4) (0)t n! f (n) (0)t n + (4.23) t = 0 f(0), f (0), f (2) (0), f (3) (0), f (4) (0), f (n) (0) (4.24) t = 0 t t = 0 t t 46

57 n n t f(t) ϵ f(t) f(0) = tf (ϵt), ϵ 1 (4.25) t 0 ϵt f(t) f(0) t = f (ϵt), ϵ 1 (4.26) f(t) t = 0 t = t t = ϵt f(t) (f(0) + tf (0) + + tn 1 (n 1)! f (n 1) (0)) = ϵt n f (n) (ϵt), ϵ 1 (4.27) 47

58 f(t) = e iat f (n) (t) = (ia) n e iat f (n) (0) = (ia) n f(t) = 1 + iat + 1 2! (iat) ! (iat) ! (iat)4 + 1 n! (iat)n + (4.28) = (1 1 2! (at) ! (at)4 + 1 (2n)! ( 1)n (at) 2n + ) +i(at 1 3! (at)3 + g(t) = cos at 1 (2n + 1)! ( 1)n (at) 2n+1 + ) (4.29) g(t) = 1 1 2! (at) ! (at)4 + 1 (2n)! ( 1)n (at) 2n + (4.30) h(t) = sin at h(t) = at 1 3! (at)3 + f(t), g(t), h(t) 1 (2n + 1)! ( 1)n (at) 2n+1 + (4.31) e iat = cos at + i sin at (4.32) e iat = cos at i sin at (4.33) 48

59 (4.13) cos at = 1 2 (eiat + e iat ) (4.34) sin at = 1 2i (eiat e iat ) (4.35) d 2 k dt x(t) = 2 ω2 x(t), ω = m (4.36) cos ωt, sin ωt (4.37) x(t) = A cos ωt + B sin ωt (4.38) A, B t A, B C, α x(t) = C cos(ωt + α) (4.39) A = C sin α, B = C cos α (4.40) t = 0 x(0), ẋ(0) A, B ẋ(t) = Aω sin ωt + Bω cos ωt (4.41) x(0) = A, ẋ(0) = B (4.42) 49

60 (4.13) x(t) = l a l t l (4.43) a l d dt x(t) = l a l lt (l 1) (4.44) ( d dt )2 x(t) = l a l l(l 1)t (l 2) (4.45) a l l(l 1)t (l 2) + ω 2 l l t a l+2 (l + 2)(l + 1)t l + ω 2 l l a l t l = 0 (4.46) a l t l = 0 (4.47) (a l+2 (l + 2)(l + 1) + ω 2 a l )t l = 0 (4.48) l t (a l+2 (l + 2)(l + 1) + ω 2 a l ) = 0 (4.49) ω 2 a l+2 = (l + 2)(l + 1) a l (4.50) l cos ωt sin ωt z x d 2 x(t) = 0, dt2 (4.51) d 2 z(t) = g dt2 (4.52) 50

61 x(t) = x 0 + v x (0)t, (4.53) z(t) = g 2 t2 + v z (0)t + z(0) (4.54) ẋ(t) = v x (0), (4.55) ż(t) = gt + v z (0) (4.56) t = 0 x(0) = x 0, (4.57) z(0) = z(0) (4.58) ẋ(0) = v x (0), (4.59) ż(t) = v z (0) (4.60) d 2 dt z(t) = g b d z(t) (4.61) 2 dt d v(t) = g bv(t) (4.62) dt d = bṽ(t) (4.63) dtṽ(t) ṽ(t) = v(t) g b (4.64) ṽ(t) = e bt ṽ(0) (4.65) 51

62 4.2 x y(x) y (x) x,y(x) y F (x, y, y ) = 0 (4.66) y = f(x, y) (4.67) x y = sin x (4.68) y = y dx (4.69) = dx sin x = cos x + c c x y 1 = cos x 1 + c (4.70) c = y 1 + cos x

63 y = exp ax (4.71) y = y dx (4.72) = dx exp ax = 1 exp ax + c a 3 y = X(x)Y (y) (4.73) dy Y (y) = X(x)dx (4.74) dy Y (y) = X(x)dx y = ay (4.75) dy = adx (4.76) y dy = adx y log y = ax + c (4.77) y = y 0 e ax, y 0 = e c (4.78)

64 y (x) y(x) x a y y = ay (4.79) y y = a log(y) = ax + C y = C exp( ax) y x y dx dy = 1 1 a y (4.80) y x = 1 a log y + C (4.81) y y(x) a a y + (a + b)y + aby = 0 (4.82) 54

65 y + (a + b)y + aby (4.83) = ( d dx + a)( d dx + b)y = 0 D = d dx D D D m D m = D m+n (4.84) Da = ad a b (D + a)(d + b) = D 2 + (a + b)d + ab (4.85) ( d d + a)y = 0, ( + b)y = 0 (4.86) dx dx y = C exp( ax) + C exp( bx) (4.87) x y y 1 = C exp( ax 1 ) + C exp( bx 1 ) y 2 = C exp( ax 2 ) + C exp( bx 2 ) (4.88) x y y y 1 = C exp( ax 1 ) + C exp( bx 1 ) d 1 = ac exp( ax 2 ) bc exp( bx 2 ) (4.89) a b ( d dx + a)2 y = 0 (4.90) 55

66 ( d + a)y = 0, (4.91) dx y = C 1 exp( ax) ( d dx + a)y = C 1e ax (4.92) (4.92) y = g(x)e ax (4.93) g(x) y (4.92) y = g e ax age ax (4.94) g e ax age ax + age ax = C 1 e ax (4.95) g = C 1 g = C 1 x + C 2 y = (C 1 x + C 2 )e ax (4.96) y + (a + b)y + aby = c (4.97) c = 0 y = c ab (4.98) y = C exp( ax) + C exp( bx) (4.99) 56

67 C, C y = c ab + C exp( ax) + C exp( bx) (4.100) y + ω 2 y = 0 (4.101) ( d dx + iω)( d iω)y = 0 (4.102) dx y = C exp(iωx) + C exp( iωx) (4.103) y = A cos(ωx) + B sin(ωx) (4.104) A = C + C, B = ic ic (4.105) e iωx = cos ωx + i sin ωx (4.106) L T M 2. ( x x 57

68 (1 + x) n, log(1 + x), e ax, cos ωx, sin ωx log(1 + x) (4-1) M F x(t) (4-2) (4-1) (4-3) t = 0 x(0) ẋ(0) 5. ( -1) M F x(t) ( -2) ( -1) ( -3) t = 0 x(0) ẋ(0). (6-1) M F = kx x(t) (6-2) (6-1) (6-3) t = 0 x(0) = A ẋ(0) = 58

69 1. L T M = LT 1 (4.107) = LT 2 (4.108) = MLT 2 (4.109) = (4.110) = T 1 (4.111) 2. ( x x f(x) d dx (1 + x)n = n(1 + x) n 1 (4.112) d log(1 + x) = x (4.113) dx d dx eax = ae ax (4.114) d cos ωx = ω sin ωx dx (4.115) d sin ωx = ω cos ωx dx (4.116) f(x) = f(0) + f (0)x + f 2 (0) x f n (0) xn n! + (4.117) f(x) = log(1 + x) n f (1) (x) = x 59 (4.118)

70 f (2) 1 (x) = (1 + x) 2 (4.119) f (n) (x) = ( ) n 1 1 (n 1)! (1 + x) n (4.120) n f (1) (0) = 1 (4.121) f (2) (x) = (4.122) f (n) (x) = ( 1) n 1 (n 1)! (4.123) log(1 + x) = x x ( )n 1 xn n + (4.124) 3. 1 a = 1 M F (4.125) A B B A 4. (4-1) M F x(t) (4-2) M d2 x(t) = F (4.126) dt2 60

71 (4-1) F M d 2 dt x(t) = F 2 M (4.127) d dt x(t) = F M t + C (4.128) x(t) = F t 2 + Ct + D M 2 (4.129) C, D (4-3) t = 0 x(0) ẋ(0) C, D t = 0 d dt x(t) = F M t + C (4.130) x(t) = F t 2 + Ct + D M 2 (4.131) d x(0) = C = ẋ(0) dt (4.132) x(0) = D = x(0) (4.133) x(t) = F t 2 M 2 + ẋ(0)t + x(0) (4.134) 61

72 6 (6-1) M F = kx x(t) (6-2) M M d2 x(t) = kx(t) (4.135) dt2 d 2 k dt x(t) = 2 ω2 x(t), ω = M (4.136) ( d dt + iω)( d iω)x(t) = 0 (4.137) dt ( d iω)x(t) = 0 (4.138) dt ( d dt + iω)x(t) = 0 ( d dt iω)x(t) = 0 x(t) = eiωt (4.139) ( d + iω)x(t) = 0 x(t) = e iωt dt C D x(t) = Ce iωt + De icω = C(cos ωt + i sin ωt) + D(cos ωt i sin ωt) (4.140) = (C + D) cos ωt + i(c D) sin ωt (6-3) t = 0, x(0) = (C + D), ẋ(0) = ωi(c D) (4.141) x(0) = A ẋ(0) = 0 C = D, 2C = A (4.142) x(t) = A cos ωt. (4.143) 62

73 :30-12:00 1. L T M 2. ( x (1 + x) n, log(1 + x), e ax, cos ωx, sin ωx, cos 1 x n a, ω t x(t) = A cos ωt M d2 x(t) = kx(t) (4.144) dt2 A ω M k (4-1) M F x(t) (4-2) (4-1) (4-3) t = 0 x(0) ẋ(0) 1. L T M LT 1 LT 2 MLT 2 M 0 L 0 T 0 T 1 L 2 L 3 63

74 2. ( x d dx (1 + x)n = n(1 + x) n 1 (4.145) d log(1 + x) = x (4.146) dx d dx eax = ae ax (4.147) d cos ωx = ω sin ωx dx (4.148) d sin ωx = ω cos ωx dx (4.149) d 1 dx cos 1 x = 1 x 2 (4.150) y = cos 1 x (4.151) cos y = x (4.152) d y( 1) sin y = 1 (4.153) dx d dx y = ± 1 1 x 2 t x(t) = A cos ωt (4.154) M d2 x(t) = kx(t) (4.155) dt2 M d2 dt 2 x(t) = Mω2 A cos ωt (4.156) 64

75 ω ω = k M (4.157) A (4-1) M F x(t) (4-2) (4-1) d 2 x(t) = F (4.158) dt2 d dt x(t) = F t + v 0 (4.159) x(t) = 1 2 F t2 + v 0 t + x 0 (4.160) v 0, x 0 (4-3) t = 0 x(0) ẋ(0) x(t) = 1 2 F t2 + ẋ(0)t + x(0). (4.161) 65

76 y =X(x)Y(y) dy dx = X(x)Y (y) dy Y (y) = dxx(x) (4.162) dy dx = ay dy dx = axy dy dx = axy2 y -ay=f(x) dy y = dy y = dy y = 2 dxa log y = ax + c y = e c e ax = Ce ax (4.163) dxax log y = a/2x 2 + c y = e c e a/2x2 = Ce a/2x2 (4.164) dxax 1/y = a/2x 2 + c y = 1 ax 2 /2 + c (4.165) ( d dx a)y = ebx (4.166) e ax y = e ax u(x) y = (e ax ) u(x) + e ax u = ae ax u(x) + e ax u (4.167) (au(x) + u au(x))e ax = e bx (4.168) u = e (b a)x 1 u = (b a) e(b a)x b a = 0 y = 1 (b a) ebx (4.169) (au(x) + u au(x))e ax = e ax (4.170) u = 1 u = x y = xe ax (4.171) 66

77 () (1-1) M F = kx x(t) x(t) d x(t) dt (1-2) (1-1) (1-3) t = 0 x(0) = 0 ẋ(0) = B 2. v(t) ( d + c)v(t) = g, c > 0 dt 3. dx(t) dt = ax(t)t, a > 0 X(t) dx(t) dt M d2 x(t) = F = kx(t) (4.172) dt2 M d2 x(t) dt 2 dx(t) dt = kx(t) dx(t) dt (4.173) d dt [M 2 (dx(t) ) 2 ] = d dt dt [ k 2 (x(t))2 ] (4.174) 67

78 d dt [M 2 (dx(t) ) 2 + k dt 2 (x(t))2 ] = 0 (4.175) [ M 2 (dx(t) ) 2 + k dt 2 (x(t))2 ] = E (4.176) (1-2) x(t) = C cos ωt + D sin ωt, ω = k M C, D x(0) = C (4.177) ẋ(0) = Dω x(0) = C = 0 (4.178) ẋ(0) = Dω = B C = 0 (4.179) D = B ω x(t) = B ω sin ωt (4.180) 2. ( d + c)v(t) = g, c > 0 dt v(t) g = 0 e ct v(t) v(t) = e ct u(t) (4.181) u(t) d dt v(t) = d dt e ct u(t) = ce ct u(t) + e ct d u(t) (4.182) dt 68

79 u(t) v(t) ( d dt + c)v(t) = d e ct u(t) = g (4.183) dt d dt u(t) = gect (4.184) u(t) = g c ect + u 0 (4.185) v(t) = e ct u(t) = e ct ( g c ect + u 0 ) = g c + u 0e ct (4.186) lim t v(t) = g c (4.187) 3. dx(t) dt = ax(t)t, a > 0 X(t) X(t) t dx(t) X(t) = atdt (4.188) log X(t) = at2 2 + C 0 (4.189) X(t) = exp at2 2 X 0 = e C 0 + C 0 = X 0 exp at2 2 (4.190) 69

80 d dx 70

81 5 5.1 p p = m v (5.1) d dt p = F (5.2) t2 t 1 dt d dt p = t2 p(t 1 ) p(t 2 ) = t 1 dt F (5.3) t2 t 1 dt F (5.4)

82 F x W = F x (5.5) m v F m d dt v = F (5.6) v = F m t + v 0 (5.7) x = F 2m t2 + v 0 t + x 0 (5.8) v 0, x 0 t 1 t 2 v(t 2 ) v(t 1 ) = F m (t 2 t 1 ) (5.9) x2 W = F dx = x 1 F dx dt dt = F (x 2 x 1 ) (5.10) 72

83 t x2 W = F dx = F vdt (5.11) x 1 = dt(mv d v) (5.12) dt = dt 1 2 m d dt v2 (5.13) = 1 2 m(v2 2 v 2 1) (5.14) 1 2 mv2 2 = 1 2 mv2 1 + W (5.15) v 1 = mv2 2 = W (5.16) 5.3 W = dr F (5.17) W = dr F (5.18) = dr d m dt v 73

84 = = dt d dt r m d dt v dt 1 2 m d ( v v) dt = 1 2 m( v v) t 2 t1 = 1 2 m( v 2) m( v 1) 2 dr dr = dt = vdt dt (5.19) d dt r m d d v = v dt dt v = d v v dt (5.20) (5.17) (5.17) F = m n z g = mg(0, 0, 1) (5.21) 1 x h y h, z h 2 (1,1,1) h 74

85 5.3.1 f(x) x = x F (x) = x a dx f(x ) (5.22) f(x) = d F (x) (5.23) dx x, y f(x, y) x f(x + h, y) f(x, y) f(x, y) = lim = f x (x, y) (5.24) x h 0 h y x y f(x, y + h) f(x, y) f(x, y) = lim y h 0 h = f y (x, y) (5.25) x y f(x, y) f x (x, y), f y (x, y) f xx (x, y) = x f x(x, y) (5.26) f yx (x, y) = y f x(x, y) (5.27) f xy (x, y) = x f y(x, y) (5.28) f yy (x, y) = y f y(x, y) (5.29) 75

86 f(x+h 2,y+h 1 ) f(x+h 2,y) f xy (x, y) = lim lim h 1 f(x,y+h 1) f(x,y) h 1 h1 0 h 2 0 = lim h1 0 lim h 2 0 f yx (x, y) = lim h2 0 lim h 1 0 = lim h2 0 lim h 1 0 h 2 f(x + h 2, y + h 1 ) f(x + h 2, y) f(x, y + h 1 ) + f(x, y) h 1 h 2 (5.30) f(x+h 2,y+h 1 ) f(x,y+h 1 ) h 2 h 1 f(x+h 2,y) f(x,y) h 2 f(x + h 2, y + h 1 ) f(x + h 2, y) f(x, y + h 1 ) + f(x, y) h 1 h 2 (5.31) f xy (x, y) = f yx (x, y) (5.32) x y b dx f(x, y) = f(b, y) f(a, y) (5.33) a x d c dx f(x, y) = f(x, d) f(x, c) (5.34) y b dxdy a x f(x, y) = d dydx y f(x, y) = c dy(f(b, y) f(a, y)) (5.35) dx(f(x, d) f(x, c)) (5.36) x2 y2 I 1 = dx dy( x 1 y 1 x f(x, y)) (5.37) y I 2 = x2 x 1 y2 dx dy( y 1 x V y(x, y) y V x(x, y)) (5.38) I 1 I 1 = f(x 2, y 2 ) f(x 2, y 1 ) f(x 1, y 2 ) + f(x 1, y 1 ) (5.39) 76

87 I 2 I 2 = y2 y 1 dy(v y (x 2, y) V y (x 1, y)) I 2 = = x2 x2 x 1 dxv x (x, y 1 ) + x 1 dxv x (x, y 1 ) + y2 y 1 y2 x2 dyv y (x 2, y) x 1 dx(v x (x, y 2 ) V x (x, y 1 )) (5.40) x2 x 1 x1 dxv x (x, y 2 ) y1 y2 y 1 dyv y (x 1, y) (5.41) dyv y (x 2, y) + dxv x (x, y 2 ) + dyv y (x 1, y) y 1 x 2 y 2 d l V (5.42) I 2 (5.42) V (x, y) ( x V y(x, y) y V x(x, y)) = 0 (5.43) d l V = 0 (5.44) C 1, C 2 77

88 d l V = C 1 d l V C 2 (5.45) V F C i (5.43) U(x, y) F = ( U(x, y), x U(x, y) ) (5.46) y 5.4 U(x, y, z) F = ( x U(x, y, z), y U(x, y, z)), U(x, y, z)) (5.47) z C W = P2 P 1 d l F = = (U(P 1 ) U(P 2 )) P2 P 1 (dx x U(x, y, z) + dy y U(x, y, z) + dz U(x, y, z))(5.48) z U(x, y, z) U(x, y, z) x(t) P2 W = = P 1 dt( dx dt x U(x, y, z) + dy dt dz U(x, y, z) + y dt U(x, y, z)) z dt d dt U(x(t), y(t), z(t)) = (U(P 1) U(P 2 )) (5.49) U m d2 dt 2 x(t) = F (5.50) m d2 dt x(t) d 2 dt x(t) = F d x(t) (5.51) dt 78

89 U( x) t2 t 1 dtm d2 dt x(t) d 2 dt x(t) = t2 dt( ) d U( x(t)) (5.52) t 1 dt t2 t 1 dt d dt (m 2 ( d dt x(t))2 + U( x(t))) = 0 (5.53) m 2 ( d dt x(t))2 + U( x(t)) t=t1 m 2 ( d dt x(t))2 + U( x(t)) t=t2 = 0 (5.54) E E = m 2 ( d dt x(t))2 + U( x(t)) (5.55) () z z U = mgz (5.56) F = (0, 0, mg) (5.57) 79

90 U = k 2 (x2 + y 2 + z 2 ) = k 2 r2 (5.58) F = k(x, y, z) (5.59) U = 1 r (5.60) F = 1 (x, y, z) (5.61) r m d2 d kx 2 x(t) = kx(t) = dt2 dx 2 (5.62) d x(t) dt m d d2 x(t) dt dt x(t) = d 2 dt x(t) d kx 2 dx 2 (5.63) 80

91 d m dt 2 ( d dt x(t))2 = d dt (k 2 x2 ) (5.64) E E = m 2 ( dx(t) dt ) 2 + k 2 (x(t))2 (5.65) (5.65) dx dt = ±( 2 m )1/2 (E k 2 x2 ) 1/2 (5.66) ( ) 2 dx(t) 0 (5.67) E k 2 (x(t))2 = m 2 dt x E k 2 x2 = 0 (5.68) x (0) ± = ±x 0 (5.69) x 0 = ( 2E k )1/2 (5.70) x 0 x x 0 + (5.71) dt dx = (m 1 k )1/2 ( 2E (5.72) k x2 ) 1/2 x t t t 0 = ( m k )1/2 sin 1 ( x x 0 ) (5.73) 81

92 t 0 x 0 x = x 0 sin (ω(t t 0 )) (5.74) ω = ( k m )1/2 (5.75) ω T = 2π ω f = ω 2π x E = m/2(ṙ 2 + r 2 ϕ2 ) + U(r) (5.76) M z = mr 2 ϕ (5.77) E M z ϕ r r ṙ dr dt E = m/2(ṙ 2 + r 2 M 2 z ) + U(r) (5.78) mr 2 dr dt = 2 m (E U(r)) M 2 z m 2 r 2 (5.79) 82

93 t r t r dt dr = 1 (5.80) 2 (E U(r)) M z 2 m m 2 r 2 1 t = dr (5.81) 2 (E U(r)) M z 2 m m 2 r 2 dr dt dϕ dt d dr ϕ = M z 1 r 2 (5.82) 2 (E U(r)) M z 2 m m 2 r 2 ϕ = dr M z 1 r 2 (5.83) 2 (E U(r)) M z 2 m m 2 r 2 U(r) = α r (5.84) ρ = 1 r M mα M ϕ = cos 1 r 2mE + m 2 α 2 (5.85) M 2 z 5.6 dx log x = x log x x (5.86) 83

94 2 x ξ 1 dx a2 x = 2 sin 1 ( x a ) (5.87) x = a cos ξ (5.88) dx = a sin ξdξ a2 x 2 = a sin ξ (5.89) 1 dx a2 x = 2 dξ = ξ = cos 1 ( x a ) (5.90) 3 1 I F = dx ax2 + bx + c = 1 log 2ax + b + 2 a(ax 2 + bx + x), a > 0 a = 1 log 2ax + b 2 a(ax 2 + bx + x), a > 0 a (5.91) = 1 sin 1 2ax + b a b2 4ac, a < 0 dx ax 2 + bx + c = 2ax + b 4a ax2 + bx + c b2 4ac I F (5.92) 8a

95 F = µn (5.93) µ (5.94) F = µ N (5.95) µ (5.96) 85

96 z M m d2 z(t) = mg (5.97) dt2 d dt z(t) = gt + v 0 (5.98) 86

97 z 1 z 2 W = z(t) = g 2 t2 + v 0 t + z 0 (5.99) z2 z 1 F dz = mg(z 2 z 1 ) (5.100) z 1 z 2 t 1 t 2 W = mg(z 2 z 1 ) m 2 g2 (t 2 2 t 2 1) mgv 0 (t 2 t 1 ) (5.101) T = m 2 (( gt 2 v 0 ) 2 ( gt 1 + v 0 ) 2 ) (5.102) = m 2 g2 (t 2 2 t 2 1) mgv 0 (t 2 t 1 ) (5.103) (5.101) (5.103) d 2 dt z(t) = g c d z(t) (5.104) 2 dt d dtṽ = cṽ, ṽ = v + g c (5.105) v(t) = v 0 + ˆv 0 e ct, v 0 = g c (5.106) 87

98 z = g c t ṽ0 c e ct + z 0 (5.107) ṽ 0 (5.104) d z(t) dt d d2 z(t) dt dt z(t) + g d 2 dt z(t) = c( d dt z(t))2 (5.108) d dt (1 2 ( d dt z(t))2 + gz(t)) = c( d dt z(t))2 (5.109) c c = 0 c > 0 c 1 2 v2 + gz = g2 2c 2 + g(z 0 g c t) 2g c ṽ0e ct + 1 2ṽ2 0e 2ct (5.110) cv 2 = ( g2 c 2ˆv 0ge ct + cˆv 2 0e 2ct ) (5.111) d dt (1 2 ( d dt z(t))2 + gz(t)) = g2 c + 2gṽ 0e ct cṽ 2 0e 2ct (5.112) c( d dt z(t))2 = g2 c + 2gṽ 0e ct cṽ 2 0e 2ct (5.113) (5.109) t d dt E = g2 c (5.114) 88

99 (5.109) t2 t 1 d dt E t2 = dtcv(t) 2 (5.115) t 1 E (t 2 ) E (t 1 ) = t2 t 1 dtcv(t) 2 (5.116) E (t 1 ) E (t 2 ) = t2 v(t) t2 t 1 t 1 dtcv(t) 2 (5.117) dtcv(t) 2 = g2 c (t 2 t 1 ) + 2v 0g c (e ct 2 e ct 1 ) v2 0 2 (e 2ct 2 e 2ct 1 ) (5.118) z(t 1 ) z(t 2 ) V (x) M E x(t) V (x) = 1 2 kx2 + cx M z 89

100 5.8.5 M C i O(0, 0, 0) P (10, 10, 10) C 1 :OP C 2 (0, 0, 0) (10, 0, 0) (10, 10, 0) (10, 10, 10) C 3 (0, 0, 0) (20, 0, 0) (20, 10, 0) (20, 10, 10) (10, 10, 10) C 4 (0, 0, 0) (0, 10, 0) (10, 10, 0) (10, 10, 10) F F = (0, 0, mg) 2. F = 1 1 4πϵ 0 r r 3 3. F = k x F = U (5.119) F = U( r) (5.120) F ( ) 2 U( r) (5.121) F ( ) 2 U( r) (5.122) 90

101 5.8.8 F = kv (5.123) F = U (5.124) 91

102

103 6 6.1 F m d2 dt 2 x(t) = F (6.1) r r F = rf(r), r = x 2 + y 2 (6.2) L = r p (6.3) 93

104 d L dt = d r p (6.4) dt = d dt r p + r d p (6.5) dt d dt r = 1 m p, d dt p = F (6.6) F = f r (6.7) d L dt = 1 p p + f r r = 0 (6.8) m L = x p (6.9) L x = yp z zp y, L y = zp x xp z, Lz = xp y yp x (6.10) d dt L = 0 (6.11) z xy xy θ L = m r v = mrv sin θ (6.12) 94

105 L r = 0, L p = 0 (6.13) 6.2 r θ x(t) = r(t) cos θ(t), y(t) = r(t) sin θ(t) (6.14) d dt x(t) = ṙ(t) cos θ(t) r(t) sin θ(t) θ(t) (6.15) d dt y(t) = ṙ(t) sin θ(t) + r(t) cos θ(t) θ(t) (6.16) 95

106 f(t) f(t) = d f(t) (6.17) dt L = m(y d dt x x d dt y) = mr2 θ (6.18) E = m 2 v2 (6.19) = m 2 ((ṙ(t) cos θ(t) r(t) sin θ(t) θ(t)) 2 + (ṙ(t) sin θ(t) + r(t) cos θ(t) θ(t)) 2 ) = m 2 ((ṙ(t))2 + r 2 θ2 ) 1 U(r) F E E = E + U(r) (6.20) = m 2 (ṙ2 + r 2 θ2 ) + U(r) r(t) ṙ(t) θ(t) (6.8) (6.18) θ(t) d dt θ = L mr 2 (6.21) E = E + U(r) (6.22) = m 2 (ṙ(t)2 + L2 m 2 r 2 ) + U(r) = m 2 ṙ(t)2 + L2 2mr 2 + U(r) r(t) 96

107 F = k r (6.23) M (r, θ) E M z r(t) r = (A, 0), v = (0, 0) (6.24) r = (0, 0), v = (B, 0) (6.25) A B r = r 1, v = v 1 (6.26) U = c 1 r (6.27) 97

108 x(t) y(t) m d2 x(t) = kx(t) (6.28) dt2 m d2 y(t) = ky(t) (6.29) dt2 x = x 0 cos(ωt + α) (6.30) y = y 0 cos(ωt + β) (6.31) x 0, y 0, α, β ẋ = ωx 0 sin(ωt + α) (6.32) ẏ = ωy 0 sin(ωt + β) (6.33) m(xẏ yẋ) = mωx 0 y 0 sin(β α) (6.34) m 2 v2 + k 2 x2 = k 2 (x2 0 + y 2 0) (6.35) E L z E = m 2 v2 + k 2 x2 = m 2 (ṙ2 + r 2 θ2 ) + k 2 r2 (6.36) L z = mr 2 θ (r(t), θ(t)) v = d (r(t) cos θ(t), r(t) sin θ(t)) (6.37) dt = (ṙ(t) cos θ(t) + r(t) θ(t)( ) sin θ(t), ṙ(t) sin θ(t) + r(t) θ(t) cos θ(t)) 98

109 θ(t) L z r E = m 2 (ṙ2 + dt dr v 2 = (ṙ(t)) 2 + r 2 ( θ) 2 (6.38) θ = L z mr 2 (6.39) L2 z m 2 r 2 ) + k 2 r2 (6.40) dt dr = 1 (6.41) 2E/m L 2 z/m 2 r 2 km r2 1 t + t 0 = dr (6.42) 2E/m L 2 z/m 2 r 2 km r2 s r 2 = s, 2rdr = ds (6.43) ds s 2E/m L 2 z/m 2 s km s (6.44) = ds Es/m L 2 z/m 2 k m s2 ds 1 1 E2, A = 2 A k (s E/k)2 mk L2 z (6.45) m 2 m ds A k (s = 1 m k m E/k)2 2 k sin 1 ( ma (s E )) (6.46) k 99

110 s = r 2 t + t 0 = 1 m k 2 k sin 1 ( ma (r2 E )) (6.47) k k sin 2ω(t + t 0 ) = ( ma (r2 E )) (6.48) k, r(t) 2 E k = ma k sin 2ω(t + t 0) (6.49) x(0) = x 0 cos α, ẋ(0) = ωx 0 sin α (6.50) y(0) = y 0 cos β, ẏ(0) = ωy 0 sin β (6.51) r = (A, 0), v = (0, 0) (6.52) A = x 0 cos α, 0 = ωx 0 sin α (6.53) 0 = y 0 cos β, 0 = ωy 0 sin β (6.54) α = 0, x 0 = A (6.55) β = 0, y 0 = 0 (6.56) x(t) = A cos ωt, (6.57) y(t) = o 100

111 r = (0, 0), v = (B, 0) (6.58) 0 = x 0 cos α, B = ωx 0 sin α (6.59) 0 = y 0 cos β, 0 = ωy 0 sin β (6.60) α = π 2, x 0 = B ω (6.61) β = 0, y 0 = 0 (6.62) x(t) = B ω cos(ωt + π 2 ) = B ω y(t) = o sin(ωt), (6.63) (6.57) (6.63) A = B ω (6.64) (6.20)(6.22) U(r) = c 1 r 101

112

113 n F = C 1 r n (7.1) m R ω F = mrω 2 (7.2) T ω T = 2π ω (7.3) 103

114 C 1 R n = mr(2π T )2 (7.4) T 2 = m(2π)2 C Rn+1 (7.5) n + 1 n C G F = C 1 r 2 (7.6) C = GMm (7.7) 7.3 F = C 1 r2 n (7.8) n = r r (7.9) U(r) = C 1 r (7.10) (5.85) cos ϕ = M z r mc M z 2mE + m 2 C 2 M 2 z (7.11) 104

115 E M z (7.11) r = l 1 + e cos θ (7.12) e l e = l = M 2 z mc 1 + 2EM 2 z mc 2 (7.13) (7.14) e < 1, ; E < 0 (7.15) e = 1, ; E = 0 (7.16) e > 1, ; E > 0 (7.17) E M z x(0) v(0) xy z E = v(0)2 2m C x(0) (7.18) Mz = m x(0) v(0) (7.19) e < 1 E < 0 θ r θ = π θ = 0 r = l 1 e, θ = π (7.20) r = e, θ = 0 (7.21) 105

116 r (7.13) r = l (7.22) 1 + 2EM 2 z mc 2 = 0 (7.23) E = mc2 2M 2 z (7.24) e = 1 E = 0 θ = 0 r r 106

117 7.3.3 e > 1 E > 0 θ r > 0 cos θ > 1 e (7.25) θ θ c, θ c = cos 1 ( 1 e ) (7.26) Km Km , , , , , ,

118 , , , Km θ θ l i, i = r i, i = θ = R l (7.27) θ = R l (7.28) θ = (7.29) θ = (7.30) θ = (7.31) θ = (7.32) 6 108

119 7.5 m d2 dt 2 x(t) = F (7.33) x 0 (t) (7.34) x 0 (t) x x(t) = x(t) x 0 (t) (7.35) m d2 dt 2 ( x(t) x 0(t)) = F m d2 dt 2 x 0(t) (7.36) m d2 dt 2 x(t) = F (7.37) F = F m d2 dt x 0(t) 2 (7.38) F m d2 dt 2 x 0 (t) F = 0 (7.39) 109

120 7.5.2 (x, y, z = z) (x, y, z) θ x = x cos θ + y sin θ (7.40) y = x sin θ + y cos θ (7.41) θ = ωt (7.42) v x, v y d dt x = d dt x cos θ x ω sin θ + d dt y sin θ + y ω cos θ (7.43) v x = ṽ x cos θ + ṽ y sin θ (7.44) ṽ x = (v x + y ω), ṽ y = (v y x ω) (7.45) d dt y = d dt x sin θ x ω cos θ + d dt y cos θ y ω sin θ (7.46) v y = ṽ x sin θ + ṽ y cos θ (7.47) d dt θ = ω (7.48) v x, v y v x = d dt x (7.49) v y = d dt y (7.50) d dt v x = dtṽ d x cos θ ṽ xω sin θ + dtṽ d y sin θ + ṽ yω cos θ (7.51) a x = ã x cos θ + ã y sin θ (7.52) ã x = ( d dtṽ x + ṽ yω), ã y = ( d dtṽ y ṽ xω) (7.53) d dt v y = dtṽ d x sin θ ṽ xω cos θ + dtṽ d y cos θ ṽ yω sin θ (7.54) a y = ã x sin θ + ã y cos θ (7.55) ma x = F x (7.56) ma y = F y (7.57) 110

121 a a m(ã x cos θ + ã y sin θ) = F x (7.58) m(ã y cos θ ã x sin θ) = F y (7.59) ã i(i = x, y) ṽ i, (i = x, y) (7.53) mã x = F x cos θ F y sin θ (7.60) mã y = F y sin θ + F y cos θ (7.61) m( d dtṽ x + ( d dt y x ω) = F x cos θ F y sin θ (7.62) m( d dtṽ y ṽ xω) = F y sin θ + F y cos θ (7.63) m( d dt ( d dt x + y ω) + ( d dt y x ω)ω) = F x cos θ F y sin θ (7.64) m( d dt ( d dt y x ω) ( d dt x + y ω)ω) = F y sin θ + F y cos θ (7.65) m d dt v x = 2mv yω + mx ω 2 + F x cos θ F y sin θ (7.66) m d dt v y = +2mv xω + my ω 2 + F y sin θ + F y cos θ (7.67) 1 2 f 111

122 t = 0 112

123 F = k r (7.68) r 3 M E M z r(t) E M z

124

125 8 N N x 1, x 2, x N F i (i = 1, N) j F i = F (0) i + j F (i,j) (8.1) F (i,j) = F (j,i) (8.2) 115

126 8.1 m 1 x 1 (t) m 2 x 2 (t) m 1 d 2 dt 2 x 1(t) = F (0) 1 + F (1,2) (8.3) m 2 d 2 dt 2 x 2(t) = F (0) 2 + F (2,1) (8.4) F (1,2) = F (2,1) = F ( x 1 x 2 ) (8.5) d 2 m 1 dt x 1(t) = F ( x 2 1 x 2 ) (8.6) d 2 m 2 dt x 2(t) = F ( x 2 1 x 2 ) (8.7) d 2 dt 2 (m 1 x 1 (t) + m 2 x 2 (t)) = 0 (8.8) p 1 = m 1 x1, p 2 = m 2 x2 d dt ( p 1 + p 2 ) = 0 (8.9) X G = m 1 x 1 + m 2 x 2 m 1 + m 2 (8.10) 116

127 d 2 dt 2 X G = 0 (8.11) r x 1 = X G + m 2 m 1 + m 2 r (8.12) x 2 = X G m 1 m 1 + m 2 r (8.13) r = x 1 x 2 (8.14) µ d2 dt 2 r(t) = F ( r) (8.15) µ = m 1m 2 m 1 + m 2 (8.16) µ m 1 m i d 2 m i dt x i(t) = F (0) 2 i + j F (i,j) (8.17) 117

128 i i j F (0) i = F (0) i ( x i ) (8.18) F (i,j) = F (0) i ( x i x j ) (8.19) N X G = 1 N (m i x i ) M total i=1 (8.20) N M total = m i (8.21) i=1 F (ij) = F (ji) d 2 dt 2 X G (t) = 0 (8.22) M total P total = M total d dt X G (t) (8.23) P total =, d dt P total = 0 (8.24) U (0) ( x) F (0) i = U (0) ( x) x= xi (8.25) 118

129 U int ( x) F i,j = U int ( x) x= xi x j (8.26) E = m i 2 v2 + i U (0) ( x i ) + i j U int ( x i x j ) (8.27) d dt E = m i v d dt v + v ( i U (0) ( x i ) + i j U int ( x i x j )) = 0 (8.28) m i F i d dt p i = F i (8.29) z x y 119

130 z d dt pz i = F z i (8.30) δt δp z δp z i = F z i δt (8.31) δp z = 2p z (8.32) n F z n z 2l z 2np z i = F z (8.33) n = v z 2l z, v z = pz m (8.34) F z = pz v z l z = pz2 ml z (8.35) S P P = F z S = pz2 = pz2 (8.36) msl z mv V = l z S (8.37)

131 i x i m i j F (0) i F (i,j) m i d 2 dt 2 x i = F (0) i + F (i,j) (8.38) M total X G X G = 1 x l, M total = M total i l M total d 2 dt 2 X G = l m l (8.39) F (0) l (8.40) L = l m l x l x l (8.41) d dt L = N, N = i x i F (0) i (8.42) F (i,j) = 0 (8.43) (i,j) ( x i x j ) F (i,j) = 0, F (i,j) = ( x i x j )F (i,j) (8.44) (i,j) 121

132 N x i = Ω x i, v i = ϵ ijk Ω j x k (8.45) E = 1 l 2 m l v l 2 (8.46) = 1 l 2 I ijω i Ω j (8.47) (8.48) Ω i I ij I ij = l ( x 2 l δ ij x i lx j l ) (8.49)

133

134 M x(t) M d2 dt 2 x(t) = F + F (8.50) x b x i, i = 1, 8 x = 1 8 M (m b x b + m i x i ), M = m b + i=1 i m i (8.51) r i r i = x i x b (8.52) v c 1, c 2, c 3, 124

135 n F = (c 1 v + c 2 v 2 + c 3 v 3 + ) n v (8.53) F i F f i O mega f i L L l n LF i (L l) f i = L d Ω n (8.54) dt M L F 1, F 2 125

136 F 1 + F 2 Mg = 0 (8.55) x 1 F 1 Mg L 2 + x 2F 2 = 0 F 1 = (8.56) F 2 = B 126

137 8.5.4 V M ρ 1 ρ

138

139 9 9.1 R ω 2π ω t x(t) = R cos ωt (9.1) y(t) = R sin ωt v x (t) = Rω sin ωt (9.2) v y (t) = Rω cos ωt a x (t) = Rω 2 cos ωt (9.3) a y (t) = Rω 2 sin ωt F x (t) = mrω 2 cos ωt (9.4) F y (t) = mrω 2 sin ωt 129

140 (9.2) m d2 dt 2 x(t) = mω2 x(t) (9.5) m d2 dt 2 y(t) = mω2 y(t) (9.6) 9.2 x(t) m m d2 x(t) = kx(t) (9.7) dt2 x(t) = A cos(ωt + α), ω = k m (9.8) k A α t = 0 T x(t + T ) = x(t) (9.9) T = 2π ω (9.10) E = m 2 v(t)2 + k 2 x(t)2 (9.11) 130

141 = k 2 A2 (sin 2 (ωt + α) + cos 2 (ωt + α)) = k 2 A2 (9.12) γ γ γ ± x(t) = Ae γt (9.13) (mγ 2 + k)ae γt = 0 (9.14) γ = ±iω (9.15) e iωt, e iωt (9.16) (9.8) A + e iωt + A e iωt (9.17) A + = A e iα, A = A e iα (9.18)

142 c m d2 dt x(t) = kx(t) c d x(t) (9.19) 2 dt (9.19) γ x(t) = Ae γt (9.20) (9.19) γ γ mγ 2 + k + cγ = 0 (9.21) γ = c ± c 2 4mk 2m c c (9.22) γ = c 2m ± iω, ω = c2 4mk 2m (9.23) x(t) = Ae c 2m t e ±iωt (9.24) 2m c c c γ = c ± c 2 4mk 2m = c 1 ± 1 4mk c 2 2m (9.25) γ 1 = c m, γ 2 = k m (9.26) 132

143 9.4 m d2 x(t) + kx(t) = f cos γt (9.27) dt2 γ f γ 0 = k m x(t) = A cos γt (9.28) ( mγ 2 + k)a cos γt = f cos γt (9.29) A A = f mγ 2 + k (9.30) x(t) = f cos γt = f/m mγ 2 + k cos γt (9.31) γ0 2 γ2 γ γ γ 0 1/0 133

144 γ γ 0 f x(t) = lim γ γ0 cos γt (9.32) mγ 2 + k f = lim γ γ0 cos γt γ ( mγ2 + k) γ = f t sin γt 2mγ 0 t sin γt t t 9.5 x i (t) m d2 dt 2 x i(t) = k i x i (t), i = 1, N (9.33) A i, α i x i (t) = A i cos(ω i t + α i ) (9.34) x i (t) i i m d2 dt 2 x i(t) = k(x i (t) x i 1 (t)) k(x i (t) x i+1 (t)), i = 1, N (9.35) ω x i (t) = A i cos(ωt), i = 1, N (9.36) 134

145 N ma i ω 2 cos(ωt) = k(a i cos(ωt) A i 1 cos(ωt)) (9.37) k(a i cos(ωt) A i+1 cos(ωt)), i = 1, N ma i ω 2 = k(a i A i 1 ) k(a i A i+1 ), i = 1, N A i ω

146

147 x t x h(x, t) = A cos(ωt kx) (10.1) 2 t h(x, t) = 2 ω2 A cos(ωt kx) (10.2) = ω 2 h(x, t) (10.3) 2 x h(x, t) = 2 k2 A cos(ωt kx) (10.4) = k 2 h(x, t) (10.5) ωt kx = α (10.6) x = ω k t + α v = ω k v 137

148 [ 2 x 2 1 v 2 2 t 2 ]h(x, t) = k2 (1 ( ω vk )2 )h(x, t) = 0 (10.7) 10.2 h(x, t) = A cos(ωt kx) (10.8) A ω 2π 2π v = ω ω k λ = 2π T λ k h(x + λ, t) = h(x, t) = h(x, t + T ) (10.9) 10.3 h 1 (x, t) h 2 (x, t) h(x, t) = h 1 (x, t) + h 2 (x, t) (10.10) h 1 = A 1 cos(ω 1 t k 1 x), h 2 = A 2 cos(ω 2 t k 2 x) 138

149 θ h 1 (t, x) = A cos(ωt 1 k 1 x) (10.11) h 2 (t, x) = A cos(ω 1 t k 1 x + θ) (10.12) h(t, x) = h 1 (t, x) + h 2 (t, x) (10.13) θ = 0; h(t, x) = 2h 1 (t, x) (10.14) θ = π; h(t, x) = 0 θ = 2π; h(t, x) = 2h 1 (t, x) θ v s λ = (c v s)t f s t = (c v s) f s (10.15) λ = c = v s = f s = 139

150 f l = (c + v L) λ = (c + v L) c v s f s (10.16) c = v L = f s = c n 140

151 δω x(t) = A cos(ωt) + A cos((ω + δω)t) (10.17) = A(cos(ωt) + cos(ωt) cos(δωt) sin(ωt) sin(δωt)) = A(1 + cos(δωt)) cos(ωt) A sin(δωt) sin(ωt) = B(t) cos(ωt + α(t)) B(t) α(t) B(t) = A (1 + cos δωt) 2 + sin(δωt) 2 (10.18) sin δωt tan α(t) = 1 + cos δωt B(t) = A 4 cos δωt 2 tan α(t) = tan δωt 2 2 = 2A cos δωt 2 ω/2 (10.19)

152 n c n 142

153

154

155 1. L T M :[= d2 x(t) ] = LT 2 dt 2 := m d2 x[= LT 2 M] dt 2 : = d l F [L 2 T 2 M] : L 2 T 2 M : LT 1 M : [F/x = T 2 M] : T : T 1 :,L : LT 2 : [F ]L 2 M 2 = L 3 T 2 M 1 2. M 1 M 2 M 1 + M 2 M 1, M 2 F f d 2 M 1 dt x(t) = F f 2 (10.20) d 2 M 2 dt x(t) = + f 2 (10.21) (M 1 + M 2 ) d2 dt 2 x(t) = F (10.22) 145

156 (3) 3. v 0 M v 1 4. ( ) M x(t) ( ) ( ). M v v. ( ) M k ( ) ( ) t = 0 x(0) = A, ẋ(0) = 0. v 0 M v

157 M F v v. ( ) M k ( ) ( ) t = 0 x(0) = A, ẋ(0) = 0 M 2 v2 k 2 x2. 2M F v v i ii iii 3 147

158 r, θ xy- E = m 2 (ṙ2 + r 2 θ2 ) M z = mr 2 θ ṙ = d dt r(t), θ = d dt θ(t) 148

159 1. L T M 2. M 1 M 2 M 1 + M

160 1. M 1 M 2 M 1 + M 2 x(0) = x 0 v(0) = v 0 t x(t) x 0, v 0.. i ii iii 3 r, θ xy- E = m 2 (ṙ2 + r 2 θ2 ) M z = mr 2 θ ṙ = d dt r(t), θ = d dt θ(t) 150

161 1. M 1 a 1 M 2 a 2. F U(x, y, z) F = ( x U(x, y, z), y U(x, y, z) U(x, y, z)) (10.23) z. i ii iii 3 r, θ xy- E = m 2 (ṙ2 + r 2 θ2 ) M z = mr 2 θ ṙ = d dt r(t), θ = d dt θ(t) 151

162

163 f(x) a < b x = a x = b x = c f(a) = f(b) = 0 (11.1) f (c) = 0, a < c < b (11.2) ( ) x = c f f(c + h) f(c) (c) = lim h +0 h f (c) = lim h 0 f(c + h) f(c) h 0, (11.3) 0 (11.4) f (c) = 0 (11.5) 153

164 f(x) g(x) g(x) = f(x) f(a) k(x a), k = f(b) f(a) b a (11.6) g(a) = 0, g(b) = 0 (11.7) g (c) = 0, a < c < b (11.8) c a b g (c) = f (c) k = 0 (11.9) c f (c) = k = f(b) f(a) b a (11.10) n! x a f (n+1) (t)(x t) n dt (11.11) = 1 n! f (n) (t)(x t) n x 1 a + (n 1)! = 1 n! f (n) (a)(x a) n 1 + (n 1)! x a x a f n (t)(x t) n 1 dt f n (t)(x t) n 1 dt = = 1 n! f (n) (a)(x a) n 1 (n 1)! f (n 1) (a)(x a) n 1 1 (n 2)! f (n 2) (a)(x a) (n 2) + +f(x) f(a) (11.12) f(x) f(x) = f(a) + (x a)f (a) n! f n (a)(x a) n + 1 n! 154 x a f (n+1) (t)(x t) n dt (11.13)

165 11.2 f(x) y = f(x) (11.14) x y f x y y x x = f 1 (y) (11.15) x y y = f 1 (x) (11.16) x = f(y) (11.17) x = f 1 (f(x)) (11.18) x = f(f 1 (x)) (11.19) x y = x 2 (11.20) x = ± y (11.21) x 1/2 (± x) 2 = x (11.22) (x 2 ) = x (11.23) 155

166 2 y = e x (11.24) 3 x = log y (11.25) e logx = log e x = x (11.26) y = sin x (11.27) x = sin 1 y (11.28) sin(sin 1 (x)) = x (11.29) sin 1 (sin(x)) = x (11.30) y = f 1 (x) (11.31) x = f(y) (11.32) 1 = d dx x = d dx f(y) = f (y) dy dx (11.33) 156

167 y dy dx = 1 f (y) y=f 1 (x) (11.34) y = log x (11.35) x = e y (11.36) 1 = e y dy dx (11.37) dy dx = 1 e = 1 y x (11.38) y = sin 1 x (11.39) x = sin y (11.40) 1 = cos y dy dx (11.41) dy dx = 1 cosy = 1 (1 x 2 ) 1/2 (11.42) 157

168 1 L T M 2 3 x 1 (t) = (1, t + 3t 2, 4t), x 2 (t) = (5 sin 2t, 5 cos 2t, 0), 4 m g cv c > 0 5 m (r, θ) (r,θ) r(t) d r(t) dt 158

169 1 L T M 2 3 t x 1 (t) = (t, t, 4t + 4.9t 2 ), x 2 (t) = (5 sin t, 5 cos t, 0), 4 m g cv c > 0 (1) 5 m (r, θ) (r,θ) r(t) d r(t) r(t) dt 159

170 1 L T 2 a, b, c, d n sin ax, cos bx, exp(cx + d), log x, x n, sin 1 x sin x 3 x 1 (t) = (1, t + 3t 2, 4t), x 2 (t) = (5 sin 2t, 5 cos 2t, 0), 4 f p+1 (x) f p (x) 1 x n! a f (n+1) (t)(x t) n dt (11.43) = 1 n! f (n) (t)(x t) n x a + 1 (n 1)! x a f n (t)(x t) n 1 dt = 1 n! f (n) (a)(x a) n 1 (n 1)! f (n 1) (a)(x a) n 1 1 (n 2)! f (n 2) (a)(x a) (n 2) + + f(x) f(a) (11.44) n! = n (n 1) (n 2) (n 3) (n 4) (11.45) 5 [A change in motion is proportional to the motive force impressed and takes place along the straight line that force is impressed.] 160

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1.

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1. 1.1 1. 1.3.1..3.4 3.1 3. 3.3 4.1 4. 4.3 5.1 5. 5.3 6.1 6. 6.3 7.1 7. 7.3 1 1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

I 1

I 1 I 1 1 1.1 1. 3 m = 3 1 7 µm. cm = 1 4 km 3. 1 m = 1 1 5 cm 4. 5 cm 3 = 5 1 15 km 3 5. 1 = 36 6. 1 = 8.64 1 4 7. 1 = 3.15 1 7 1 =3 1 7 1 3 π 1. 1. 1 m + 1 cm = 1.1 m. 1 hr + 64 sec = 1 4 sec 3. 3. 1 5 kg

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

(u(x)v(x)) = u (x)v(x) + u(x)v (x) ( ) u(x) = u (x)v(x) u(x)v (x) v(x) v(x) 2 y = g(t), t = f(x) y = g(f(x)) dy dx dy dx = dy dt dt dx., y, f, g y = f (g(x))g (x). ( (f(g(x)). ). [ ] y = e ax+b (a, b )

More information

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d m v = mg + kv m v = mg k v v m v = mg + kv α = mg k v = α e rt + e rt m v = mg + kv v mg + kv = m v α + v = k m v (v α (v + α = k m ˆ ( v α ˆ αk v = m v + α ln v α v + α = αk m t + C v α v + α = e αk m

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

DVIOUT

DVIOUT A. A. A-- [ ] f(x) x = f 00 (x) f 0 () =0 f 00 () > 0= f(x) x = f 00 () < 0= f(x) x = A--2 [ ] f(x) D f 00 (x) > 0= y = f(x) f 00 (x) < 0= y = f(x) P (, f()) f 00 () =0 A--3 [ ] y = f(x) [, b] x = f (y)

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) 2017 12 9 4 1 30 4 10 3 1 30 3 30 2 1 30 2 50 1 1 30 2 10 (1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) (1) i 23 c 23 0 1 2 3 4 5 6 7 8 9 a b d e f g h i (2) 23 23 (3) 23 ( 23 ) 23 x 1 x 2 23 x

More information

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g( 06 5.. ( y = x x y 5 y 5 = (x y = x + ( y = x + y = x y.. ( Y = C + I = 50 + 0.5Y + 50 r r = 00 0.5Y ( L = M Y r = 00 r = 0.5Y 50 (3 00 0.5Y = 0.5Y 50 Y = 50, r = 5 .3. (x, x = (, u = = 4 (, x x = 4 x,

More information

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d A 2. x F (t) =f sin ωt x(0) = ẋ(0) = 0 ω θ sin θ θ 3! θ3 v = f mω cos ωt x = f mω (t sin ωt) ω t 0 = f ( cos ωt) mω x ma2-2 t ω x f (t mω ω (ωt ) 6 (ωt)3 = f 6m ωt3 2.2 u ( v w) = v ( w u) = w ( u v) ma22-9

More information

2 Chapter 4 (f4a). 2. (f4cone) ( θ) () g M. 2. (f4b) T M L P a θ (f4eki) ρ H A a g. v ( ) 2. H(t) ( )

2 Chapter 4 (f4a). 2. (f4cone) ( θ) () g M. 2. (f4b) T M L P a θ (f4eki) ρ H A a g. v ( ) 2. H(t) ( ) http://astr-www.kj.yamagata-u.ac.jp/~shibata f4a f4b 2 f4cone f4eki f4end 4 f5meanfp f6coin () f6a f7a f7b f7d f8a f8b f9a f9b f9c f9kep f0a f0bt version feqmo fvec4 fvec fvec6 fvec2 fvec3 f3a (-D) f3b

More information

() (, y) E(, y) () E(, y) (3) q ( ) () E(, y) = k q q (, y) () E(, y) = k r r (3).3 [.7 ] f y = f y () f(, y) = y () f(, y) = tan y y ( ) () f y = f y

() (, y) E(, y) () E(, y) (3) q ( ) () E(, y) = k q q (, y) () E(, y) = k r r (3).3 [.7 ] f y = f y () f(, y) = y () f(, y) = tan y y ( ) () f y = f y 5. [. ] z = f(, y) () z = 3 4 y + y + 3y () z = y (3) z = sin( y) (4) z = cos y (5) z = 4y (6) z = tan y (7) z = log( + y ) (8) z = tan y + + y ( ) () z = 3 8y + y z y = 4 + + 6y () z = y z y = (3) z =

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) 4 4 ) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) a b a b = 6i j 4 b c b c 9) a b = 4 a b) c = 7

More information

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 -

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 - M3............................................................................................ 3.3................................................... 3 6........................................... 6..........................................

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

08-Note2-web

08-Note2-web r(t) t r(t) O v(t) = dr(t) dt a(t) = dv(t) dt = d2 r(t) dt 2 r(t), v(t), a(t) t dr(t) dt r(t) =(x(t),y(t),z(t)) = d 2 r(t) dt 2 = ( dx(t) dt ( d 2 x(t) dt 2, dy(t), dz(t) dt dt ), d2 y(t) dt 2, d2 z(t)

More information

DE-resume

DE-resume - 2011, http://c-faculty.chuo-u.ac.jp/ nishioka/ 2 11 21131 : 4 1 x y(x, y (x,y (x,,y (n, (1.1 F (x, y, y,y,,y (n =0. (1.1 n. (1.1 y(x. y(x (1.1. 1 1 1 1.1... 2 1.2... 9 1.3 1... 26 2 2 34 2.1,... 35 2.2

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

i

i i 3 4 4 7 5 6 3 ( ).. () 3 () (3) (4) /. 3. 4/3 7. /e 8. a > a, a = /, > a >. () a >, a =, > a > () a > b, a = b, a < b. c c n a n + b n + c n 3c n..... () /3 () + (3) / (4) /4 (5) m > n, a b >, m > n,

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

4................................. 4................................. 4 6................................. 6................................. 9.................................................... 3..3..........................

More information

振動と波動

振動と波動 Report JS0.5 J Simplicity February 4, 2012 1 J Simplicity HOME http://www.jsimplicity.com/ Preface 2 Report 2 Contents I 5 1 6 1.1..................................... 6 1.2 1 1:................ 7 1.3

More information

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ = 1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A

More information

A

A A 2563 15 4 21 1 3 1.1................................................ 3 1.2............................................. 3 2 3 2.1......................................... 3 2.2............................................

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { ( 5 5.1 [ ] ) d f(t) + a d f(t) + bf(t) : f(t) 1 dt dt ) u(x, t) c u(x, t) : u(x, t) t x : ( ) ) 1 : y + ay, : y + ay + by : ( ) 1 ) : y + ay, : yy + ay 3 ( ): ( ) ) : y + ay, : y + ay b [],,, [ ] au xx

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

chap1.dvi

chap1.dvi 1 1 007 1 e iθ = cos θ + isin θ 1) θ = π e iπ + 1 = 0 1 ) 3 11 f 0 r 1 1 ) k f k = 1 + r) k f 0 f k k = 01) f k+1 = 1 + r)f k ) f k+1 f k = rf k 3) 1 ) ) ) 1+r/)f 0 1 1 + r/) f 0 = 1 + r + r /4)f 0 1 f

More information

dynamics-solution2.dvi

dynamics-solution2.dvi 1 1. (1) a + b = i +3i + k () a b =5i 5j +3k (3) a b =1 (4) a b = 7i j +1k. a = 14 l =/ 14, m=1/ 14, n=3/ 14 3. 4. 5. df (t) d [a(t)e(t)] =ti +9t j +4k, = d a(t) d[a(t)e(t)] e(t)+ da(t) d f (t) =i +18tj

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y No1 1 (1) 2 f(x) =1+x + x 2 + + x n, g(x) = 1 (n +1)xn + nx n+1 (1 x) 2 x 6= 1 f 0 (x) =g(x) y = f(x)g(x) y 0 = f 0 (x)g(x)+f(x)g 0 (x) 3 (1) y = x2 x +1 x (2) y = 1 g(x) y0 = g0 (x) {g(x)} 2 (2) y = µ

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

( 12 ( ( ( ( Levi-Civita grad div rot ( ( = 4 : 6 3 1 1.1 f(x n f (n (x, d n f(x (1.1 dxn f (2 (x f (x 1.1 f(x = e x f (n (x = e x d dx (fg = f g + fg (1.2 d dx d 2 dx (fg = f g + 2f g + fg 2... d n n

More information

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1)

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1) D d dx 1 1.1 n d n y a 0 dx n + a d n 1 y 1 dx n 1 +... + a dy n 1 dx + a ny = f(x)...(1) dk y dx k = y (k) a 0 y (n) + a 1 y (n 1) +... + a n 1 y + a n y = f(x)...(2) (2) (2) f(x) 0 a 0 y (n) + a 1 y

More information

I ( ) 2019

I ( ) 2019 I ( ) 2019 i 1 I,, III,, 1,,,, III,,,, (1 ) (,,, ), :...,, : NHK... NHK, (YouTube ),!!, manaba http://pen.envr.tsukuba.ac.jp/lec/physics/,, Richard Feynman Lectures on Physics Addison-Wesley,,,, x χ,

More information

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b) 2011 I 2 II III 17, 18, 19 7 7 1 2 2 2 1 2 1 1 1.1.............................. 2 1.2 : 1.................... 4 1.2.1 2............................... 5 1.3 : 2.................... 5 1.3.1 2.....................................

More information

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C 8 ( ) 8 5 4 I II III A B C( ),,, 5 I II A B ( ),, I II A B (8 ) 6 8 I II III A B C(8 ) n ( + x) n () n C + n C + + n C n = 7 n () 7 9 C : y = x x A(, 6) () A C () C P AP Q () () () 4 A(,, ) B(,, ) C(,,

More information

sec13.dvi

sec13.dvi 13 13.1 O r F R = m d 2 r dt 2 m r m = F = m r M M d2 R dt 2 = m d 2 r dt 2 = F = F (13.1) F O L = r p = m r ṙ dl dt = m ṙ ṙ + m r r = r (m r ) = r F N. (13.2) N N = R F 13.2 O ˆn ω L O r u u = ω r 1 1:

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

B ver B

B ver B B ver. 2017.02.24 B Contents 1 11 1.1....................... 11 1.1.1............. 11 1.1.2.......................... 12 1.2............................. 14 1.2.1................ 14 1.2.2.......................

More information

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin 2 2.1 F (t) 2.1.1 mẍ + kx = F (t). m ẍ + ω 2 x = F (t)/m ω = k/m. 1 : (ẋ, x) x = A sin ωt, ẋ = Aω cos ωt 1 2-1 x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ

More information

2.2 ( y = y(x ( (x 0, y 0 y (x 0 (y 0 = y(x 0 y = y(x ( y (x 0 = F (x 0, y(x 0 = F (x 0, y 0 (x 0, y 0 ( (x 0, y 0 F (x 0, y 0 xy (x, y (, F (x, y ( (

2.2 ( y = y(x ( (x 0, y 0 y (x 0 (y 0 = y(x 0 y = y(x ( y (x 0 = F (x 0, y(x 0 = F (x 0, y 0 (x 0, y 0 ( (x 0, y 0 F (x 0, y 0 xy (x, y (, F (x, y ( ( (. x y y x f y = f(x y x y = y(x y x y dx = d dx y(x = y (x = f (x y = y(x x ( (differential equation ( + y 2 dx + xy = 0 dx = xy + y 2 2 2 x y 2 F (x, y = xy + y 2 y = y(x x x xy(x = F (x, y(x + y(x 2

More information

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1 1/5 ( ) Taylor ( 7.1) (x, y) f(x, y) f(x, y) x + y, xy, e x y,... 1 R {(x, y) x, y R} f(x, y) x y,xy e y log x,... R {(x, y, z) (x, y),z f(x, y)} R 3 z 1 (x + y ) z ax + by + c x 1 z ax + by + c y x +

More information

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0,

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0, .1.1 Y K L Y = K 1 3 L 3 L K K (K + ) 1 1 3 L 3 K 3 L 3 K 0 (K + K) 1 3 L 3 K 1 3 L 3 lim K 0 K = L (K + K) 1 3 K 1 3 3 lim K 0 K = 1 3 K 3 L 3 z = f(x, y) x y z x-y-z.1 z = e x +xy y 3 x-y ( ) z 0 f(x,

More information

K E N Z OU

K E N Z OU K E N Z OU 11 1 1 1.1..................................... 1.1.1............................ 1.1..................................................................................... 4 1.........................................

More information

2 1 x 1.1: v mg x (t) = v(t) mv (t) = mg 0 x(0) = x 0 v(0) = v 0 x(t) = x 0 + v 0 t 1 2 gt2 v(t) = v 0 gt t x = x 0 + v2 0 2g v2 2g 1.1 (x, v) θ

2 1 x 1.1: v mg x (t) = v(t) mv (t) = mg 0 x(0) = x 0 v(0) = v 0 x(t) = x 0 + v 0 t 1 2 gt2 v(t) = v 0 gt t x = x 0 + v2 0 2g v2 2g 1.1 (x, v) θ 1 1 1.1 (Isaac Newton, 1642 1727) 1. : 2. ( ) F = ma 3. ; F a 2 t x(t) v(t) = x (t) v (t) = x (t) F 3 3 3 3 3 3 6 1 2 6 12 1 3 1 2 m 2 1 x 1.1: v mg x (t) = v(t) mv (t) = mg 0 x(0) = x 0 v(0) = v 0 x(t)

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

Gmech08.dvi

Gmech08.dvi 145 13 13.1 13.1.1 0 m mg S 13.1 F 13.1 F /m S F F 13.1 F mg S F F mg 13.1: m d2 r 2 = F + F = 0 (13.1) 146 13 F = F (13.2) S S S S S P r S P r r = r 0 + r (13.3) r 0 S S m d2 r 2 = F (13.4) (13.3) d 2

More information

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f 22 A 3,4 No.3 () (2) (3) (4), (5) (6) (7) (8) () n x = (x,, x n ), = (,, n ), x = ( (x i i ) 2 ) /2 f(x) R n f(x) = f() + i α i (x ) i + o( x ) α,, α n g(x) = o( x )) lim x g(x) x = y = f() + i α i(x )

More information

1.1 ft t 2 ft = t 2 ft+ t = t+ t 2 1.1 d t 2 t + t 2 t 2 = lim t 0 t = lim t 0 = lim t 0 t 2 + 2t t + t 2 t 2 t + t 2 t 2t t + t 2 t 2t + t = lim t 0

1.1 ft t 2 ft = t 2 ft+ t = t+ t 2 1.1 d t 2 t + t 2 t 2 = lim t 0 t = lim t 0 = lim t 0 t 2 + 2t t + t 2 t 2 t + t 2 t 2t t + t 2 t 2t + t = lim t 0 A c 2008 by Kuniaki Nakamitsu 1 1.1 t 2 sin t, cos t t ft t t vt t xt t + t xt + t xt + t xt t vt = xt + t xt t t t vt xt + t xt vt = lim t 0 t lim t 0 t 0 vt = dxt ft dft dft ft + t ft = lim t 0 t 1.1

More information

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω ω α 3 3 2 2V 3 33+.6T m T 5 34m Hz. 34 3.4m 2 36km 5Hz. 36km m 34 m 5 34 + m 5 33 5 =.66m 34m 34 x =.66 55Hz, 35 5 =.7 485.7Hz 2 V 5Hz.5V.5V V

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq 49 2 I II 2.1 3 e e = 1.602 10 19 A s (2.1 50 2 I SI MKSA 2.1.1 r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = 3 10 8 m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq F = k r

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

v er.1/ c /(21)

v er.1/ c /(21) 12 -- 1 1 2009 1 17 1-1 1-2 1-3 1-4 2 2 2 1-5 1 1-6 1 1-7 1-1 1-2 1-3 1-4 1-5 1-6 1-7 c 2011 1/(21) 12 -- 1 -- 1 1--1 1--1--1 1 2009 1 n n α { n } α α { n } lim n = α, n α n n ε n > N n α < ε N {1, 1,

More information

II K116 : January 14, ,. A = (a ij ) ij m n. ( ). B m n, C n l. A = max{ a ij }. ij A + B A + B, AC n A C (1) 1. m n (A k ) k=1,... m n A, A k k

II K116 : January 14, ,. A = (a ij ) ij m n. ( ). B m n, C n l. A = max{ a ij }. ij A + B A + B, AC n A C (1) 1. m n (A k ) k=1,... m n A, A k k : January 14, 28..,. A = (a ij ) ij m n. ( ). B m n, C n l. A = max{ a ij }. ij A + B A + B, AC n A C (1) 1. m n (A k ) k=1,... m n A, A k k, A. lim k A k = A. A k = (a (k) ij ) ij, A k = (a ij ) ij, i,

More information

1

1 1 1 7 1.1.................................. 11 2 13 2.1............................ 13 2.2............................ 17 2.3.................................. 19 3 21 3.1.............................

More information

( : December 27, 2015) CONTENTS I. 1 II. 2 III. 2 IV. 3 V. 5 VI. 6 VII. 7 VIII. 9 I. 1 f(x) f (x) y = f(x) x ϕ(r) (gradient) ϕ(r) (gradϕ(r) ) ( ) ϕ(r)

( : December 27, 2015) CONTENTS I. 1 II. 2 III. 2 IV. 3 V. 5 VI. 6 VII. 7 VIII. 9 I. 1 f(x) f (x) y = f(x) x ϕ(r) (gradient) ϕ(r) (gradϕ(r) ) ( ) ϕ(r) ( : December 27, 215 CONTENTS I. 1 II. 2 III. 2 IV. 3 V. 5 VI. 6 VII. 7 VIII. 9 I. 1 f(x f (x y f(x x ϕ(r (gradient ϕ(r (gradϕ(r ( ϕ(r r ϕ r xi + yj + zk ϕ(r ϕ(r x i + ϕ(r y j + ϕ(r z k (1.1 ϕ(r ϕ(r i

More information

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b) 5 partial differentiation (total) differentiation 5. z = f(x, y) (a, b) A = lim h 0 f(a + h, b) f(a, b) h............................................................... ( ) f(x, y) (a, b) x A (a, b) x

More information

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+ R 3 R n C n V??,?? k, l K x, y, z K n, i x + y + z x + y + z iv x V, x + x o x V v kx + y kx + ky vi k + lx kx + lx vii klx klx viii x x ii x + y y + x, V iii o K n, x K n, x + o x iv x K n, x + x o x

More information

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a = II 6 ishimori@phys.titech.ac.jp 6.. 5.4.. f Rx = f Lx = fx fx + lim = lim x x + x x f c = f x + x < c < x x x + lim x x fx fx x x = lim x x f c = f x x < c < x cosmx cosxdx = {cosm x + cosm + x} dx = [

More information

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 ( 1 1.1 (1) (1 + x) + (1 + y) = 0 () x + y = 0 (3) xy = x (4) x(y + 3) + y(y + 3) = 0 (5) (a + y ) = x ax a (6) x y 1 + y x 1 = 0 (7) cos x + sin x cos y = 0 (8) = tan y tan x (9) = (y 1) tan x (10) (1 +

More information

Gmech08.dvi

Gmech08.dvi 51 5 5.1 5.1.1 P r P z θ P P P z e r e, z ) r, θ, ) 5.1 z r e θ,, z r, θ, = r sin θ cos = r sin θ sin 5.1) e θ e z = r cos θ r, θ, 5.1: 0 r

More information

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f ,,,,.,,,. R f : R R R a R, f(a + ) f(a) lim 0 (), df dx (a) f (a), f(x) x a, f (a), f(x) x a ( ). y f(a + ) y f(x) f(a+) f(a) f(a + ) f(a) f(a) x a 0 a a + x 0 a a + x y y f(x) 0 : 0, f(a+) f(a)., f(x)

More information

D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y

D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y 5 5. 2 D xy D (x, y z = f(x, y f D (2 (x, y, z f R 2 5.. z = x 2 y 2 {(x, y; x 2 +y 2 } x 2 +y 2 +z 2 = z 5.2. (x, y R 2 z = x 2 y + 3 (2,,, (, 3,, 3 (,, 5.3 (. (3 ( (a, b, c A : (x, y, z P : (x, y, x

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

δ ij δ ij ˆx ˆx ŷ ŷ ẑ ẑ 0, ˆx ŷ ŷ ˆx ẑ, ŷ ẑ ẑ ŷ ẑ, ẑ ˆx ˆx ẑ ŷ, a b a x ˆx + a y ŷ + a z ẑ b x ˆx + b

δ ij δ ij ˆx ˆx ŷ ŷ ẑ ẑ 0, ˆx ŷ ŷ ˆx ẑ, ŷ ẑ ẑ ŷ ẑ, ẑ ˆx ˆx ẑ ŷ, a b a x ˆx + a y ŷ + a z ẑ b x ˆx + b 23 2 2.1 n n r x, y, z ˆx ŷ ẑ 1 a a x ˆx + a y ŷ + a z ẑ 2.1.1 3 a iˆx i. 2.1.2 i1 i j k e x e y e z 3 a b a i b i i 1, 2, 3 x y z ˆx i ˆx j δ ij, 2.1.3 n a b a i b i a i b i a x b x + a y b y + a z b

More information

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s [ ]. lim e 3 IC ) s49). y = e + ) ) y = / + ).3 d 4 ) e sin d 3) sin d ) s49) s493).4 z = y z z y s494).5 + y = 4 =.6 s495) dy = 3e ) d dy d = y s496).7 lim ) lim e s49).8 y = e sin ) y = sin e 3) y =

More information

入試の軌跡

入試の軌跡 4 y O x 4 Typed by L A TEX ε ) ) ) 6 4 ) 4 75 ) http://kumamoto.s.xrea.com/plan/.. PDF) Ctrl +L) Ctrl +) Ctrl + Ctrl + ) ) Alt + ) Alt + ) ESC. http://kumamoto.s.xrea.com/nyusi/kumadai kiseki ri i.pdf

More information

Gmech08.dvi

Gmech08.dvi 63 6 6.1 6.1.1 v = v 0 =v 0x,v 0y, 0) t =0 x 0,y 0, 0) t x x 0 + v 0x t v x v 0x = y = y 0 + v 0y t, v = v y = v 0y 6.1) z 0 0 v z yv z zv y zv x xv z xv y yv x = 0 0 x 0 v 0y y 0 v 0x 6.) 6.) 6.1) 6.)

More information

d (K + U) = v [ma F(r)] = (2.4.4) t = t r(t ) = r t 1 r(t 1 ) = r 1 U(r 1 ) U(r ) = t1 t du t1 = t F(r(t)) dr(t) r1 = F dr (2.4.5) r F 2 F ( F) r A r

d (K + U) = v [ma F(r)] = (2.4.4) t = t r(t ) = r t 1 r(t 1 ) = r 1 U(r 1 ) U(r ) = t1 t du t1 = t F(r(t)) dr(t) r1 = F dr (2.4.5) r F 2 F ( F) r A r 2.4 ( ) U(r) ( ) ( ) U F(r) = x, U y, U = U(r) (2.4.1) z 2 1 K = mv 2 /2 dk = d ( ) 1 2 mv2 = mv dv = v (ma) (2.4.2) ( ) U(r(t)) r(t) r(t) + dr(t) du du = U(r(t) + dr(t)) U(r(t)) = U x = U(r(t)) dr(t)

More information

keisoku01.dvi

keisoku01.dvi 2.,, Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 4 Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 5 Mon, 2006, 401, SAGA, JAPAN Dept.

More information

phs.dvi

phs.dvi 483F 3 6.........3... 6.4... 7 7.... 7.... 9.5 N (... 3.6 N (... 5.7... 5 3 6 3.... 6 3.... 7 3.3... 9 3.4... 3 4 7 4.... 7 4.... 9 4.3... 3 4.4... 34 4.4.... 34 4.4.... 35 4.5... 38 4.6... 39 5 4 5....

More information

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx 4 4 5 4 I II III A B C, 5 7 I II A B,, 8, 9 I II A B O A,, Bb, b, Cc, c, c b c b b c c c OA BC P BC OP BC P AP BC n f n x xn e x! e n! n f n x f n x f n x f k x k 4 e > f n x dx k k! fx sin x cos x tan

More information

( ) 2.1. C. (1) x 4 dx = 1 5 x5 + C 1 (2) x dx = x 2 dx = x 1 + C = 1 2 x + C xdx (3) = x dx = 3 x C (4) (x + 1) 3 dx = (x 3 + 3x 2 + 3x +

( ) 2.1. C. (1) x 4 dx = 1 5 x5 + C 1 (2) x dx = x 2 dx = x 1 + C = 1 2 x + C xdx (3) = x dx = 3 x C (4) (x + 1) 3 dx = (x 3 + 3x 2 + 3x + (.. C. ( d 5 5 + C ( d d + C + C d ( d + C ( ( + d ( + + + d + + + + C (5 9 + d + d tan + C cos (sin (6 sin d d log sin + C sin + (7 + + d ( + + + + d log( + + + C ( (8 d 7 6 d + 6 + C ( (9 ( d 6 + 8 d

More information

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n ( 3 n nc k+ k + 3 () n C r n C n r nc r C r + C r ( r n ) () n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (4) n C n n C + n C + n C + + n C n (5) k k n C k n C k (6) n C + nc

More information

( )

( ) 18 10 01 ( ) 1 2018 4 1.1 2018............................... 4 1.2 2018......................... 5 2 2017 7 2.1 2017............................... 7 2.2 2017......................... 8 3 2016 9 3.1 2016...............................

More information

/Volumes/NO NAME/gakujututosho/chap1.tex i

/Volumes/NO NAME/gakujututosho/chap1.tex i 2012 4 10 /Volumes/NO NAME/gakujututosho/chap1.tex i iii 1 7 1.1............................... 7 2 11 2.1........................................... 11 2.2................................... 18 2.3...................................

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =, [ ] IC. r, θ r, θ π, y y = 3 3 = r cos θ r sin θ D D = {, y ; y }, y D r, θ ep y yddy D D 9 s96. d y dt + 3dy + y = cos t dt t = y = e π + e π +. t = π y =.9 s6.3 d y d + dy d + y = y =, dy d = 3 a, b

More information

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x ( II (1 4 ) 1. p.13 1 (x, y) (a, b) ε(x, y; a, b) f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a x a A = f x (a, b) y x 3 3y 3 (x, y) (, ) f (x, y) = x + y (x, y) = (, )

More information