1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1.

Size: px
Start display at page:

Download "1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1."

Transcription

1

2 1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1.

3 1.1 V 1 ev = J e = C 1.1 L M T Q 1. imensional analysis m k A T T = m α k β A γ F = kx [k] = MLT /L = M/T = T, = M α M T β L γ = M α+β T β L γ α + β = 0, β = 1, γ = 0 α = 1/, β = 1/, γ = 0 T = m k 1.3 T = π m/k A 1. g T l g m G = m 3 kg 1 s M = kg R = m M = kg R = m 3

4 1.3 rt = xt, yt, zt v a vt = rt, at = vt = rt 1.4 v = ṙ = ẋ, ẏ, ż ft + h ft ft = lim h 0 h 1.5 t n sin t f f + g = + g, f fg = g + f g cf = cf x fxt = x f 1 x = fx x y fy 1.9 y = f 1 x x = fy f = x f x, y x = 1 x y φ t φ = φt sin φ φ sin φ sin φ = φ = φ cos φ cos φ 4

5 1.3 1 ft f = f, n n ftgt = n r=0 gt ft = ġf g f f n f r tg n r t r f r t ft r n r n n! = r r!n r! e = e = lim n = n n n=0 1 n! 1.10 log t = t 1 u u log t = 1 t 1.11 logxy = log x + log y y = e x x = log y 1.1 e x+y = e x e y logxy = log X + log Y log1 + t = 1 + t, et = e t log1 + t = t t + t3 3 = 1 n 1 tn n n=1 e t = 1 + t + t! + t3 3! + = t n n! n=0 1 < t 1 sin t = cos t, cos t = sin t, tan t = sec t tan t sec t = 1/ cos t 5

6 e it = cos t + i sin t 1.13 i = 1 e ix+y = e ix e iy sin t = t t3 3! + t5 t, cos t = 1 5!! + t4 4! 1.14 e t = 1 + t + t! + t3 3! + e it = 1 + it + it! = cos t + i sin t + it3 3! + = 1 t! + t4 4! + i t t3 3! + t5 5! g m z = mg z = g 1.15 z0 = z 0, ż0 = v 0 zt = z 0 + v 0 t 1 gt m g µ v 0 t vt T L 1.6 m v m v = kv + mg v0 = v 0 lim t vt 6

7 1.7 T a T a 3 T a 10 8 km ε T a f = G Mm r M = m = a 7

8 8

9 .1 1. f = 0 a = 0. ma = f 3. f 1 = f 1 4. f = G m 1m r f a f 1 = f 1 = 0 k f = kx ω = k/m mẍ = kx ẍ = ω x.1 xt = A cosωt + B sinωt. x0 = x 0, ẋ0 = v 0 A = x 0, B = v 0 /ω..1 + iω iω xt = 0 + iω xt = 0, iω xt = 0 e at / = ae at e ±iωt sinωt cosωt..1 1 mẋ 1 kx = m ω x E = m ẋ + ω x E 9

10 V x E = m ẋ + V x ẋ mẋẍ = V xẋ mẍ = V x.3 1 mẋ + V x = 0 E = 1 mẋ + V x =.4.1 F mẍ = mω x + F x0 = 0, ẋ0 = 0 Et = m ẋ + ω x. = V x x ẋ Lx, ẋ Lagrangian Lx, ẋ = 1 mẋ V x.5.3 L L ẋ x = 0.6 mẋ V x = 0 mẍ + V x = 0 mẍ = V x.3 10

11 r = x 1, x, x 3 Lr, ṙ L L ṙ r = 0 L L = 0 j = 1,, 3.7 x j x j L = m ẋ + ẏ mω x + y L L ẋ x = 0 mẍ + mω x = 0 L ẏ L y = 0 mÿ + mω y = 0 x, y. l m θ L = m l θ mgl1 cos θ θ ml θ = mg sin θ.3 r = r f f = r V r = V rˆr ˆr = r r = r.8 L = r p, p = mv = mṙ.9 r p L x = yp z zp y, L y = zp x xp z, L z = xp y yp x.10 11

12 L = 0 L = ṙ p + r ṗ = 0.11 ṙ = p/m ṗ = f r 1 r ṙ L = r p.4 M, m G V r = GMm/r L = m ṙ + GMm r.1 xy x = r cos φ, y = r sin φ ẋ = ṙ cos φ r φ sin φ, ẏ = ṙ sin φ + r φ cos φ.13 ṙ = ẋ + ẏ = ṙ cos φ r φ sin φ + ṙ sin φ + r φ cos φ = ṙ + r φ.14 L = m ṙ + r φ + GMm r.15 L L ṙ r = 0, L φ L φ = L m r mr φ + GMm r = 0, r φ = = h mr φ = 0.17 r = h r 3 GM r.18 1

13 m r = rφ t φ = h r = h r φ.19 u = 1/r.18 GM u = u + φ h.0 φ t.1 ω = 1 u = GM l h h + A cos φ r =, l = 1 + ε cos φ GM, ε = Ah GM.1 l ε ε 0 ε < 1 ε = 1 ε > 1.3 E E = m ṙ + r φ GMm r.1 0 ε < 1 E.4 T E = GMm 1 ε l.18 ṙ t ṙ = C h r + GM r, C = = r min = r max r 1 = h 1 1 r min r r 1 r max r min = l/1 + ε, r max = l/1 ε T T = r max r min h rmax r min rr rmax rr r min r = r min cos θ + r max sin θ T = πl h1 ε 3/ = 4π a 3 a = r min + r max / = l/1 ε GM 1/ 13

14 3 3.1 Lx, ẋ I = t1 t 0 Lx, ẋ 3.1 xt, ẋt I functional xt ẋt xt xt + δxt, ẋt ẋt + δẋt I I I + δi δi δi = t1 t 0 Lx + δx, ẋ + δẋ Lx, ẋ = t1 t 0 L L δx + x ẋ δẋ 3. δẋ = δx δxt 0 = δxt 1 = 0 δi = t1 t 0 L x L δxt 3.3 ẋ = 0 I 3.3 δi δxt = L x L ẋ 3.4 fx f x = 0 I 3.4=0 principle of the least action 3.1 I = t1 t 0 m ẋ ω x xt 0 = x 0, xt 1 = x 1 I 14

15 3. m 1, m r 1, r V r 1 r L = 1 R r r 1, r m1 ṙ 1 + m ṙ V r1 r 3.5 R = m 1r 1 + m r m 1 + m, r = r 1 r 3.6 r 1 = R + m m 1 + m r, r = R m 1 m 1 + m r 3.7 R, r reuce mass L = m 1 + m Ṙ m 1 m + ṙ V r 3.8 m 1 + m µ = m 1m m 1 + m 1 µ = 1 m m L = L + L M, m µ = Mm/M + m V r = GMm/r L = µ ṙ + GMm r m µ m/m = µ = m µ = m/ m 1 + m R = 0, µ r = r V r 3.3. ω = g/l θ = ω sin θ

16 θ sin θ θ θ = ω θ 3.11 θ 1 θ ω cos θ = = ω cos θ θ 0 θ/ θ = ω cos θ cos θ 0 = 4ω sin θ 0 θ sin t = 0 θ0 = θ 0, θ0 = 0 0 < θ 0 < π θ θ 0 θ = ω sin θ0 sin θ t = ωt 3.14 T T 3.14 T = ω = 4 ω θ0 0 π 0 θ sin θ0 sin θ φ 1 k sin φ k = sin θ 0 sin φ = sinθ/ sinθ 0 / 4 Kk 3.15 ω Kk 0 k < 1 π φ Kk = 1 k sin φ = π k + k K0 = π/, lim k 1 Kk = T = π/ω = π l/g 60 θ 0 = π/3 k = sinπ/6 = 1/ =1/16 6 % x = x +, 1 xα = 1 αx + x < 1 16

17 4 4.1 canonical formalism x x, ẋ Lx, ẋ x x p Hx, p x, p canonical variables Lx, ẋ 1 Lx, ẋ p = L ẋ x p = mẋ L = m ẋ V x 4.1 L = m p = L = mẋ 4. ẋ ṙ + r φ V r p r = L ṙ = mṙ, p φ = L φ = mr φ 4.3 p φ Hx, p = ẋp Lx, ẋ 4.4 Hamiltonian ẋ p = L/ ẋ ẋ x, p 4. H = ẋp Lx, ẋ = p m 4.3 H = ṙp r + φp φ L = p r m + p φ mr m m pr m p V x = m p + V x 4.5 m + r p φ mr = 1 p r + p φ m r + V r

18 3 x, p ẋ = H p, ṗ = H x 4.7 ẋ ẋ = ẋx, p Hx, p = ẋx, pp Lx, ẋx, p H p H x = ẋ p p + ẋ L ẋ ẋ p = ẋ = ẋ L x p x + L ẋ ẋ x = ṗ = L x = L ẋ L/ ẋ = p x, p p/ x = H = p m + V x ẋ = H p = p m, ṗ = H x = V x H = 1 p r + p φ m r + V r ṙ = H = p r p r m, φ = H = p φ p φ mr, p r = H r = p φ mr 3 V r, 4.9 p φ = H φ = p r, p φ r, φ ṗ φ = 0 p φ = mr φ = 4. H = p m + mω x, ẋ = p m, ṗ = mω x

19 p ẍ = ω x ξ = p + imωx i = 1 ξ = ṗ + imωẋ = mω x + iωp = iω p + imωx = iωξ ξt = ξ0 e iωt 4.1 ξt = pt + imωxt, ξ0 = p0 + imωx0 e iωt = cosωt + i sinωt pt = p0 cosωt mωx0 sinωt, xt = x0 cosωt + p0 sinωt 4.13 mω x, p Hx 1, x, p 1, p = 1 p 1 + p + ω x 1 + x + γx 1 x 4.14 m = 1 ẋ 1 = H p 1 = p 1, ẋ = H p = p, ṗ 1 = H x 1 = ω x 1 γx, ṗ = H x = ω x γx 1 p 1, p ẍ 1 = ω x 1 γx, ẍ = ω x γx x = x 1 + x, y = x 1 x ẍ = ω + γx, ÿ = ω γy ω x = ω + γ, ω y = ω γ xt = x0 cosω x t + ẋ0 ω x sinω x t, yt = y0 cosω y t + ẏ0 ω y sinω y t, 4.16 x 1, x 4.3 m q E B m r = q E + ṙ B

20 4.1 E = E 0, 0, 0 B = 0, 0, B 0 m v = q E + v B v0 = φ A L = A ṙ mṙ + qa = m r + q t L r E = graφ A, B = rota 4.18 t Lr, ṙ = m ṙ + qṙ A qφ ṙ A, = q φ r + q φ ṙ A = q + q ṙ A + ṙ rota r r m r = q A t graφ + qṙ rota = q E + ṙ B A Ar, t = + ṙ A, graa b = a b + b a + a rotb + b rota 4.0 t 4. gauge transformation φ φ χ t, A A + graχ 4.18 E B p = L ṙ = mṙ + qa 4.1 0

21 p mṙ m Hr, p = ṙ p L = ṙ mṙ + qa ṙ + qṙ A qφ = m ṙ + qφ = 1 m p qa + qφ D t roth = j, ive = ρ, B + rote = 0, ivb = t j ρ D = ε 0 E, H = B/µ 0 ε 0 µ 0 c c = 1/ε 0 µ 0 E, B, φ, A L = 1 ε 0 E 1µ0 B ε 0 E φ + Ȧ 1 B rota ρφ + j A 4.4 µ 0 t1 I = mc 1 ẋ c 4.5 t 0 ẋ ṙ 1 ẋ /c 1 ẋ /c I = t1 t 0 m ẋ mc 4.5 mẋ = ẋ /c p = mẋ/ 1 ẋ /c ṗ = 0 1

22 5 5.1 L = ẋp H t1 t1 I = L = t 0 x x + δx, p p + δp t 0 ẋp Hx, p 5.1 δi = = = t1 t 0 t1 t 0 t1 t 0 ẋ + δẋp + δp Hx + δx, p + δp ẋp Hx, p δp ẋ H p p δp ṗ + H x δẋp + ẋδp H H δx x δx 5. δxt 0 = δxt 1 = 0 δi = 0 ẋ = H p, ṗ = H x x, p X, P Hx, p H X, P Ẋ = H P, P = H X canonical transformation generating function 5.4 L = ẋp Hx, p = ẊP H X, P + W 5.5 W W x, P, t 5.5 W = W t + W x ẋ + W P P ẋp H = ẊP H + W t + W x ẋ + W P P

23 ẊP = XP X P p = W x, X = W P, H = H + W t 5.6 XP x, y Ω X, Y x = X cosωt + Y sinωt, y = X sinωt + Y cosωt 5.7 W x, y, P X, P Y, t W = P X x cosωt y sinωt + P Y x sinωt + y cosωt X = W P X = x cosωt y sinωt, p x = W x = P X cosωt + P Y sinωt, 5.6 W/ t Y = W P Y = x sinωt + y cosωt, 5.9 p y = W y = P X sinωt + P Y cosωt 5.10 H = H + Ω XP Y Y P X 5.11 H Z L Z ΩL Z 5.1 Ω Hx, y, p x, p y = 1 p m x + p mω y + x + y X, Y 5.3 x, p X, P W x, P, t W = xp X = W P = x, W = xp ɛ p = W x = P 5.1 W = xp + ɛgx, P 5.13 G generator G ɛ Gx, p P 3

24 5.6 X = x + ɛ G P, G X = x + ɛ G p, p = P + ɛ G x P = p ɛ G x 5.14 G P p x X = x + ɛ W = xp + ɛp X = W P = x + ɛ, p = W x = P 5.15 Ω ɛ 5.9 x X = x ɛy, G = xp Y yp X W = xp X + yp Y + ɛxp Y yp X X = W P X = x ɛy, p x = W x = P X + ɛp Y, y Y = y + ɛx Y = W P Y = y + ɛx, 5.16 p y = W y = P Y ɛp X 5.17 ɛ G = xp y yp x = L z t T = t + ɛ xt + ɛ xt = ɛẋ = ɛ H p, pt + ɛ pt = ɛṗ = ɛ H x 5.18 G G

25 6 6.1 x, p x, p Ax, p, Bx, p {A, B} = A B x Poisson bracket p A p x 1, x,, x N, p 1, p,, p N {A, B} = N j=1 B x A B A B x j p j p j x j {x, x} = 0, {x, p} = 1, {p, x} = 1, {p, p} = {x j, x k } = 0, {x j, p k } = δ jk, {p j, x k } = δ jk, {p j, p k } = G 5.14 X = x + ɛ G p, P = p ɛ G x 6.5 x = X x p = X p X + P x X + P p P = 1 + ɛ G x p P = G ɛ p X + X G ɛ x P, 1 ɛ G x p P A B x p A p B x = 1 + ɛ G x p = A X ɛ G p A X + B P A P A X G A ɛ x P 1 ɛ G x p A P ɛ X + ɛ G B p 1 + ɛ G x p B P 1 ɛ G x p B X G B ɛ x P B X + Oɛ {A, B} = {B, A}. {AB, C} = {A, C}B + A{B, C} 5

26 3. {A, {B, C}} + {B, {C, A}} + {C, {A, B}} = 0 {A, B} = A B x p B A B x p = A x p A x B = {B, A} p {x, p} = {x, p}x + x{x, p} = x, {x n, p} = nx n 1 {x, p } = {x, p}p + p{x, p} = p, {x, p n } = np n n 6.1 {x, p } 6. x, p Ax, p, t A Ax, p, t = t + A x ẋ + A p ṗ = A t + A x H p A p H x = A + {A, H} 6.7 t A explicitly A/ t = 0 A = {A, H} x, p X, P G 6.5 X = x + ɛ G p, P = p ɛ G x F X, P = F x, p + ɛ{f, G} 6. F F = H 6.8 HX, P = Hx, p + ɛ{h, G} = Hx, p ɛ G G G 6

27 6.3 m = 1 H = 1 p + ω x 6.9 a = 1 ω ωx + ip, a = 1 ω ωx ip 6.10 {a, a } = 1 1 {ωx + ip, ωx ip} = ω ω iω{x, p} + iω{p, x} = i, {a, a} = 0, {a, a } = 0 H = ωa a 6.11 a, a a = {a, H} = ω{a, a a} = iωa, a = {a, H} = ω{a, a a} = iωa 6.1 at = a0e iωt, a t = a 0e iωt 6.13 L = L x, L y, L z L x = yp z zp y, L y = zp x xp z, L z = xp y yp x {L x, L y } = {yp z zp y, zp x xp z } = y{p z, z}p x + x{z, p z }p y = xp y yp x = L z, {L y, L z } = {zp x xp z, xp y yp x } = z{p x, x}p y + y{x, p x }p z = yp z zp y = L x, 6.15 {L z, L x } = {xp y yp x, yp z zp y } = x{p y, y}p z + z{y, p y }p x = zp x xp z = L y, 6.3 L ± = L x ± il y, L = L x + L y + L z {L ±, L z } = ±il ±, {L +, L } = il z, {L, L x } = {L, L y } = {L, L z } = 0 7

28 7 7.1 x 1, x,, x N p 1, p,, p N x 1,, x N, p 1,, p N N phase space N N H = p m + mω x 7.1 p m + mω x = E 7. x, p N N N 1 7. x, p x, p X, P XP = xp X, P x, p = G 6.5 X, P x, p X x = ɛ G p, = X x P x = 1 + ɛ P p = ɛ G x X p P = p G x p G p x 1 + ɛ G x p ɛ G x + Oɛ ɛ G p 1 ɛ G p x 7.4 = 1 + Oɛ 7.5 x, p G = H T xt + T pt + T = xtpt 7.6 [ ] 8

29 7.3 action variable J = px 7.7 = Hx, p = E 7.8 p p x E 7.7 p m + mω x = E J = π me E/mω = πe/ω J h +1/ E n = n + 1 hω, h h/π g m l A ω = g/l l l + δl ω A δe 0 δω/ω δa/a δe/e δl δe/ω = 0 E/ω aiabatic invariant J = πe/ω 9

30 1.1 1 T 1 Hz s 1 L 1 MT Pa Nm 3 L MT 1 Q Ω VA 1 4 L 3 M 1 T Q F/m / CV 1 m g = GM/R g = 9.8m/s T = l α g β m γ α = 1/, β = 1/, γ = 0 T = l/g 3.15 = 3 g = GM/R G g /g = M /M R /R = 0.17 T /T = g /g = gt = 1/ft ftgt = 1 fg + fġ = 0 g = f 1 f 1 / = f/f g/f = g f 1 n [ n ftgt = + n ftgt ] = t=t n r=0 t = t [ n r f n r ] g r r n r = t=t n r=0 n f r g n r r 1.4 u = 1 + t u log1 + t = u log u = 1 1 u = t u = e t t = log u /u = log u/u = 1/u u/ = u e t / = e t m v = µmg vt = v 0 µgt 3 T = v 0 /µg, L = v 0 T/ = v 0/µg v = k m v mg k v mg k = k m v mg k vt mg/k = v 0 mg/ke kt/m v = mg/k x F mω = ω x F mω xt = F 1 cosωt/mω E/ = mẍ + ω xẋ = F ẋ Et = F xt 30

31 . v = l θ K = ml θ / V = mgl1 cos θ L = K V L θ L θ = 0 ml θ = mg sin θ.3 φ = 0 r min = l/1 + ε ṙ = 0, φ = h/r min E = m h 1 + ε l h = GMl GMm 1 + ε l = GMm 1 ε l ṙ ṙ r = h r 3 ṙ GM r ṙ ṙ = ṙ r, 1 r = ṙ r 3, 1 r = ṙ r r min, r max ṙ = 0 r = r min cos θ + r max sin θ r = r max r min sin θ cos θθ, r r min = r max r min sin θ, r max r = r max r min cos θ T = 4 r max r min h π/ = πr max + r min r max r min h 0 rmin cos θ + r max sin θ θ = πl h1 ε 3/ a 3.1 ẍ = ω x xt 0 = x 0, xt 1 = x 1 xt = A sinωt t 0 +B sinωt 1 t A = x 1 / sinωt, B = x 0 / sinωt T t 1 t 0 I = = t1 mω x sin 0 cosωt 1 t + x 1 cosωt t 0 x 0 x 1 cosωt 1 + t 0 t ωt t 0 mω x sinωt 0 + x 1 cosωt x 0 x 1 31

32 L L Ṙ R = 0 m 1 + m R = 0 L L = 0 µ r = ṙ r r V r 3.3 1/ 1 x = 1 + x/ + π/ Kk = φ k sin φ + = π 1 + π/ 0 φ sin φ = π/4 0 1 k m v x = qe 0 + v y B 0, m v y = qv x B 0, m v z = 0 v0 = 0 ω = qb 0 /m v x t = E 0 B 0 sinωt, v y t = E 0 B 0 1 cosωt, v z t = 0 4. E = graφ χ t A A + graχ = graφ t t = E, B = rota + graχ = rota = B rotgraχ a b = a x b x + a y b y + a z b z a = a x x + a y y + a z z 4.4 ṙ = H p = 1 p qa, m ṗ = H r = q graφ + 1m p qa A + p qa rota 4.0 p = mṙ + qa m r = q graφ A t ṙ rota = qe + ṙ B H = 1 P m X + PY mω + X + Y + ΩXP Y Y P X 3

33 Ẋ = P X m ΩY, P X, P Y P X = mω X ΩP Y, Ẏ = P Y m + ΩX, P Y = mω Y + ΩP X Ẍ = ω Ω X ΩẎ, Ÿ = ω Ω Y + ΩẊ ξt = Xt + iy t ξ = ω Ω ξ + iωξ ξt = ξ0e iωt cosωt Xt, Y t ω Ω 6.1 {AB, C} = AB x C p AB C p x = = {A, C}B + A{B, C} A C A C x B + A B x p p B + A B p x {x, p } = {x, p }x + x{x, p } = p x + x p = 4xp 6. X = x + ɛ G/ p, Y = y ɛ G/ x F X, Y = F x + ɛ G p, p ɛ G = F x, y + ɛ x F G x p F p G = F x, p + ɛ{f, G} x ɛ 6.3 {L +, L z } = {L x + il y, L z } = L y + il x = il x + il y = il +, {L, L z } = {L x il y, L z } = L y il x = il x il y = il, {L +, L } = {L x + il y, L x il y } = il z, {L, L x } = {L x + L y + L z, L x } = L y {L y, L x } + L z {L z, L x } = L y L z + L z L y = ml θ = mg sin θ mgθ 33

34 θt = A sinωt ω = g/l E = 1 mgla l l + δl δe δe = W + W δl < 0 W = mgδl W = = ml θ +mg cos θ T = π/ω W = 1 T T 0 ml θ + mg 1 θ = mg mga cos θ 1 θ / θt = A cosωt δe = mg mga δl + mgδl = 1 4 mga δl E = 1 mgla δe E = 1 δl l, δω ω = 1 δl l ω = g/l δ E ωδe Eδω = ω ω = E 1 δl ω l + 1 δa E = 1 mgla δl = 0 l δe E = δl l + δa A δa A = 3 δl 4 l 34

35 [ ] mω x mγẋ mẍ + γmẋ + mω x = 0 i 0 < γ < ω ii ω < γ x0 = x 0, ẋ0 = 0 xt [ ] Ω mẍ + mω x = F cosωt = Re F e iωt Re xt = ReAe iωt A = 0 mẍ + mγẋ + mω x = F cosωt = Re F e iωt A A = A e iδ A δ Ω [ ] V x m 1 E = m ẋ + V x T T = x x 1 m E V x x x 1 < x V x = E a V x = K x b V x = V 0 1 e ax [ ] L = r p ṗ = α r 3 r A = ṙ L α r r A/ = 0 A 35

36 [ ] NMR M = M x, M y, M z M x M y M z = γm B x M x T = γm B y M y T = γm B z M z M eq T 1 γ T 1, T M eq M z M eq = M z M B B = 0, 0, B 0 M z t M z 0 Mt = M x t + im y t Mt Mt M0 = M x 0 + im y 0 M x t, M y t [ ] 4.1 vt rt r0 = 0 E B y E B [ ] m = 1 H = 1 p α x x 0 α > 0, x 0 > 0 xt = = x 0, xt = + = +x 0 E = 0 [ ] r, p Hr, p rp ρr, p, t ρ = {H, ρ} t ρ 0 = Cexp H/k B T C ρ 0 rp = 1 ρ 0 0 Ar, p < A >= Ar, pρ 0 r, prp H = p /m C < H > 36

37 [ ] m mg kv m v = mg kv v0 = 0 [ ] m Ze µ z x = r cos φ, y = r sin φ cgs-gauss L = m ṙ + r φ + Zeµ φ c r r, φ p r, p φ p φ φ/ p φ H = p r ṙ + p φ φ L H = 1 p r + 1r p φ Zeµ m cr m r + 1 mr p φ Zeµ = E cr r/ p φ = 0 t r φ = ± c Zeµ r3 m E Zeµ mc r 4 φ < 0 φ > 0 + r φ = ±Ar r 4 r0 4 A, r 0 φ = 0 r = r 0 r 0/r = u r = r 0 φ x 0 u 1 u = sin 1 x 37

38 [ ] x = e αt α + γα + ω = 0 i 0 < γ < ω α = γ ± γ ω xt = e γt A cos ω γ t + B sin ω γ t ii ω < γ xt = e γt Ae γ ω t + Be γ ω t x0 = x 0, ẋ0 = 0 i 0 < γ < ω A = x 0, B = γ ω γ x 0 ii ω < γ A = x γ, B = x 0 γ 1 γ ω γ ω [ ] xt = ReAe iωt Re m Ω + ω Ae iωt = Re F e iωt A = F mω Ω A xt = a cosωt + b sinωt + F mω Ω cosωt xt = ReAe iωt Re m Ω + iγω + ω Ae iωt = Re F e iωt A = A A A δ F A = m γω, tan δ = ω Ω + 4γ Ω Ω ω Ω ω ω Ω + 4γ Ω 4ω Ω ω + γ A F 1 mω Ω ω + γ F mω Ω + iγω 38

39 Ω Lorentzian [ ] m T x + V x = E x = ± E V x m x T = x 1 x = m E V x x x 1 < x E = V x x 1 m x E V x x 1 x a V x = K x x 0 = E/K x0 m m T = x x 0 E K x = K m = K x 0 = 4 me K b V x = V 0 1 e ax y T = x x 1 x0 m x E V 0 1 e ax y = e ax y = ayx y1 y m T = ay E V 0 1 y = 1 m a x 1 < x y < y 1 V 0 y1 y 0 x x0 x y y y y y 1 y y 1 = 1 + E V 0, y = 1 E V 0 y = y cos θ + y 1 sin θ y1 y y π/ y y y y 1 y = 0 θ y cos θ + y 1 sin θ = π y1 y T T = π m a V 0 E 39

40 [ ] A = ṙ L α r r t Ȧ = r L + ṙ L α r ṙ + α r ṙr L = 0 r = α mr 3 r L = r p = mr ṙ Ȧ = α r 3 r r ṙ α r ṙ + α r ṙr r r ṙ = r ṙr r rṙ, r r = r, r ṙ = 1 r r = 1 r = rṙ r r [ ] B = 0, 0, B 0 M z M x, M y M B x = M y B z M z B y = B 0 M y, M B y = M z B x M x B z = B 0 M x, M B z = M x B y M y B x = 0, M z = M z M eq T 1 M z t M eq = M z 0 M eq e t/t1 M x = γb 0 M y M x T, M y = γb 0 M x M y T M = M x + im y M = M iγb 0 + 1T M Mt = M0exp iγb t T M x t = ReMt = e t/t M x 0 cosω 0 t + M y 0 sinω 0 t M y t = ImMt = e t/t M x 0 sinω 0 t + M y 0 cosω 0 t ω 0 = γb 0 [ ] - ẋ v x = E 0 B 0 sinωt, ẏ v y = E 0 B 0 1 cosωt t x0 = y0 = 0 xt = E 0 ωb 0 1 cosωt, yt = E 0 ωb 0 ωt sinωt 40

41 [ ] 1 + x α x x 0 = 0 x = ± αx 0 x x 0 x x 0 x = α 1 x 0 x 0 t 0 xt = x 0 tanh αx 0 t 1 x 0 x + 1 = 1 x0 + x log x 0 + x x 0 x 0 x xt t t t 0 xt = x 0 tanh αx 0 t [ ] 0 = ρ = ρ t + ρ r ṙ + ρ pṗ ρ t = H ρ r p ρ r H p = {H, ρ} ρ 0 = C exp H/k B T H r, p H {H, ρ 0 } = 0 ρ 0 t = 0 H = p /m ρ 0 rp = 1 C r e p /mk B T p = CV πmk B T 3/ = 1 C = 1 V πmk B T 3/ C p H = Hρ 0 rp = C p r m e p /mk B T p = 1 m mk BT 3 = 3 k BT [ ] v = g k m v = k v m v mg, v k 41

42 v v v v = k m [ ] 1 v + v log = k v v v m t vt = v kv t tanh = m 0 t 0 mg kg k tanh m t [ ] p r = L ṙ = mṙ, p φ = L φ = Zeµ mr φ + cr L ṙ L φ L r = 0 p r L φ = 0 p φ = 0 mr φ Zeµ φ cr = 0 r = r φ Zeµ φ mcr, p φ = m H = p r ṙ + p φ φ L = ṙ + r φ 1 = p r + 1r p φ Zeµ m cr φ = 1 mr p φ Zeµ cr m r + 1 mr p φ Zeµ = E cr r = E 1 m mr p φ Zeµ cr p φ = 0 r = ± E Zeµ m mc r 4 p φ = 0 φ = Zeµ mcr 3 4

43 t r φ = r/ φ/ = ± cr3 Zeµ m E Zeµ mc r 4 ±Ar r 4 r 4 0 r r 0 r 4 0 = Zeµ mc E r ± c me Zeµ r3 = ±Ar 3 A = c me Zeµ = 1 r0 + φ = 0 r r 0 r r r 4 r 4 0 = A φ 0 φ Aφ u = r0/r u = ur/r = 1 u u r0 = u r0 sin 1 u π u = r 0 π r = sin r 0Aφ = cosφ r = r 0 cosφ A = 1/r0 φ = π/4 φ = 0 r = r 0 φ = π/4 φ = π/ 43

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e 7 -a 7 -a February 4, 2007 1. 2. 3. 4. 1. 2. 3. 1 Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e z

More information

2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a

More information

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1)

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1) D d dx 1 1.1 n d n y a 0 dx n + a d n 1 y 1 dx n 1 +... + a dy n 1 dx + a ny = f(x)...(1) dk y dx k = y (k) a 0 y (n) + a 1 y (n 1) +... + a n 1 y + a n y = f(x)...(2) (2) (2) f(x) 0 a 0 y (n) + a 1 y

More information

1.1 ft t 2 ft = t 2 ft+ t = t+ t 2 1.1 d t 2 t + t 2 t 2 = lim t 0 t = lim t 0 = lim t 0 t 2 + 2t t + t 2 t 2 t + t 2 t 2t t + t 2 t 2t + t = lim t 0

1.1 ft t 2 ft = t 2 ft+ t = t+ t 2 1.1 d t 2 t + t 2 t 2 = lim t 0 t = lim t 0 = lim t 0 t 2 + 2t t + t 2 t 2 t + t 2 t 2t t + t 2 t 2t + t = lim t 0 A c 2008 by Kuniaki Nakamitsu 1 1.1 t 2 sin t, cos t t ft t t vt t xt t + t xt + t xt + t xt t vt = xt + t xt t t t vt xt + t xt vt = lim t 0 t lim t 0 t 0 vt = dxt ft dft dft ft + t ft = lim t 0 t 1.1

More information

1 180m g 10m/s 2 2 6 1 3 v 0 (t=0) z max t max t z = z max 1 2 g(t t max) 2 (6) 1.3 2 3 3 r = (x, y, z) e x, e y, e z r = xe x + ye y + ze z. (7) v =

1 180m g 10m/s 2 2 6 1 3 v 0 (t=0) z max t max t z = z max 1 2 g(t t max) 2 (6) 1.3 2 3 3 r = (x, y, z) e x, e y, e z r = xe x + ye y + ze z. (7) v = 1. 2. 3 3. 4. 5. 6. 7. 8. 9. I http://risu.lowtem.hokudai.ac.jp/ hidekazu/class.html 1 1.1 1 a = g, (1) v = g t + v 0, (2) z = 1 2 g t2 + v 0 t + z 0. (3) 1.2 v-t. z-t. z 1 z 0 = dz = v, t1 dv v(t), v

More information

(w) F (3) (4) (5)??? p8 p1w Aさんの 背 中 が 壁 を 押 す 力 垂 直 抗 力 重 力 静 止 摩 擦 力 p8 p

(w) F (3) (4) (5)??? p8 p1w Aさんの 背 中 が 壁 を 押 す 力 垂 直 抗 力 重 力 静 止 摩 擦 力 p8 p F 1-1................................... p38 p1w A A A 1-................................... p38 p1w 1-3................................... p38 p1w () (1) ()?? (w) F (3) (4) (5)??? -1...................................

More information

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C 0 9 (1990 1999 ) 10 (2000 ) 1900 1994 1995 1999 2 SAT ACT 1 1990 IMO 1990/1/15 1:00-4:00 1 N 1990 9 N N 1, N 1 N 2, N 2 N 3 N 3 2 x 2 + 25x + 52 = 3 x 2 + 25x + 80 3 2, 3 0 4 A, B, C 3,, A B, C 2,,,, 7,

More information

(Basic of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Weak Law

(Basic of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Weak Law I (Radom Walks ad Percolatios) 3 4 7 ( -2 ) (Preface),.,,,...,,.,,,,.,.,,.,,. (,.) (Basic of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios, Meas).............................

More information

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y No1 1 (1) 2 f(x) =1+x + x 2 + + x n, g(x) = 1 (n +1)xn + nx n+1 (1 x) 2 x 6= 1 f 0 (x) =g(x) y = f(x)g(x) y 0 = f 0 (x)g(x)+f(x)g 0 (x) 3 (1) y = x2 x +1 x (2) y = 1 g(x) y0 = g0 (x) {g(x)} 2 (2) y = µ

More information

13 0 1 1 4 11 4 12 5 13 6 2 10 21 10 22 14 3 20 31 20 32 25 33 28 4 31 41 32 42 34 43 38 5 41 51 41 52 43 53 54 6 57 61 57 62 60 70 0 Gauss a, b, c x, y f(x, y) = ax 2 + bxy + cy 2 = x y a b/2 b/2 c x

More information

量子力学A

量子力学A c 1 1 1.1....................................... 1 1............................................ 4 1.3.............................. 6 10.1.................................. 10......................................

More information

10:30 12:00 P.G. vs vs vs 2

10:30 12:00 P.G. vs vs vs 2 1 10:30 12:00 P.G. vs vs vs 2 LOGIT PROBIT TOBIT mean median mode CV 3 4 5 0.5 1000 6 45 7 P(A B) = P(A) + P(B) - P(A B) P(B A)=P(A B)/P(A) P(A B)=P(B A) P(A) P(A B) P(A) P(B A) P(B) P(A B) P(A) P(B) P(B

More information

Z: Q: R: C: 3. Green Cauchy

Z: Q: R: C: 3. Green Cauchy 7 Z: Q: R: C: 3. Green.............................. 3.............................. 5.3................................. 6.4 Cauchy..................... 6.5 Taylor..........................6...............................

More information

( ) 2002 1 1 1 1.1....................................... 1 1.1.1................................. 1 1.1.2................................. 1 1.1.3................... 3 1.1.4......................................

More information

( ) 24 1 ( 26 8 19 ) i 0.1 1 (2012 05 30 ) 1 (), 2 () 1,,, III, C III, C, 1, 2,,, ( III, C ),, 1,,, http://ryuiki.agbi.tsukuba.ac.jp/lec/12-physics/ E104),,,,,, 75 3,,,, 0.2, 1,,,,,,,,,,, 2,,, 1000 ii,

More information

untitled

untitled (a) (b) (c) (d) Wunderlich 2.5.1 = = =90 2 1 (hkl) {hkl} [hkl] L tan 2θ = r L nλ = 2dsinθ dhkl ( ) = 1 2 2 2 h k l + + a b c c l=2 l=1 l=0 Polanyi nλ = I sinφ I: B A a 110 B c 110 b b 110 µ a 110

More information

nsg02-13/ky045059301600033210

nsg02-13/ky045059301600033210 φ φ φ φ κ κ α α μ μ α α μ χ et al Neurosci. Res. Trpv J Physiol μ μ α α α β in vivo β β β β β β β β in vitro β γ μ δ μδ δ δ α θ α θ α In Biomechanics at Micro- and Nanoscale Levels, Volume I W W v W

More information

= hυ = h c λ υ λ (ev) = 1240 λ W=NE = Nhc λ W= N 2 10-16 λ / / Φe = dqe dt J/s Φ = km Φe(λ)v(λ)dλ THBV3_0101JA Qe = Φedt (W s) Q = Φdt lm s Ee = dφe ds E = dφ ds Φ Φ THBV3_0102JA Me = dφe ds M = dφ ds

More information

F8302D_1目次_160527.doc

F8302D_1目次_160527.doc N D F 830D.. 3. 4. 4. 4.. 4.. 4..3 4..4 4..5 4..6 3 4..7 3 4..8 3 4..9 3 4..0 3 4. 3 4.. 3 4.. 3 4.3 3 4.4 3 5. 3 5. 3 5. 3 5.3 3 5.4 3 5.5 4 6. 4 7. 4 7. 4 7. 4 8. 4 3. 3. 3. 3. 4.3 7.4 0 3. 3 3. 3 3.

More information

B

B B YES NO 5 7 6 1 4 3 2 BB BB BB AA AA BB 510J B B A 510J B A A A A A A 510J B A 510J B A A A A A 510J M = σ Z Z = M σ AAA π T T = a ZP ZP = a AAA π B M + M 2 +T 2 M T Me = = 1 + 1 + 2 2 M σ Te = M 2 +T

More information

3/4/8:9 { } { } β β β α β α β β

3/4/8:9 { } { } β β β α β α β β α β : α β β α β α, [ ] [ ] V, [ ] α α β [ ] β 3/4/8:9 3/4/8:9 { } { } β β β α β α β β [] β [] β β β β α ( ( ( ( ( ( [ ] [ ] [ β ] [ α β β ] [ α ( β β ] [ α] [ ( β β ] [] α [ β β ] ( / α α [ β β ] [ ] 3

More information

> > <., vs. > x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D > 0 x (2) D = 0 x (3

> > <., vs. > x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D > 0 x (2) D = 0 x (3 13 2 13.0 2 ( ) ( ) 2 13.1 ( ) ax 2 + bx + c > 0 ( a, b, c ) ( ) 275 > > 2 2 13.3 x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D >

More information

I No. sin cos sine, cosine : trigonometric function π : π =.4 : n =, ±, ±, sin + nπ = sin cos + nπ = cos sin = sin : cos = cos :. sin. sin. sin + π si

I No. sin cos sine, cosine : trigonometric function π : π =.4 : n =, ±, ±, sin + nπ = sin cos + nπ = cos sin = sin : cos = cos :. sin. sin. sin + π si I 8 No. : No. : No. : No.4 : No.5 : No.6 : No.7 : No.8 : No.9 : No. : I No. sin cos sine, cosine : trigonometric function π : π =.4 : n =, ±, ±, sin + nπ = sin cos + nπ = cos sin = sin : cos = cos :. sin.

More information

『共形場理論』

『共形場理論』 T (z) SL(2, C) T (z) SU(2) S 1 /Z 2 SU(2) (ŜU(2) k ŜU(2) 1)/ŜU(2) k+1 ŜU(2)/Û(1) G H N =1 N =1 N =1 N =1 N =2 N =2 N =2 N =2 ĉ>1 N =2 N =2 N =4 N =4 1 2 2 z=x 1 +ix 2 z f(z) f(z) 1 1 4 4 N =4 1 = = 1.3

More information

R

R R ) R NTN NTN NTN NTN NTN @ 1. 2. 3. CONTENTS 4. 5. 6. NTN NTN NTN 1. NTN NTN NTN NTN NTN NTN NTN NTN NTN NTN NTN NTN NTN 2. L1 4 -M8 230 4 -M10 8-11 175 260 250 150 210 230 Bpx 150 250 210 Bx Bpx

More information

Hz

Hz ( ) 2006 1 3 3 3 4 10 Hz 1 1 1.1.................................... 1 1.2.................................... 1 2 2 2.1.................................... 2 2.2.................................... 3

More information

α = 2 2 α 2 = ( 2) 2 = 2 x = α, y = 2 x, y X 0, X 1.X 2,... x 0 X 0, x 1 X 1, x 2 X 2.. Zorn A, B A B A B A B A B B A A B N 2

α = 2 2 α 2 = ( 2) 2 = 2 x = α, y = 2 x, y X 0, X 1.X 2,... x 0 X 0, x 1 X 1, x 2 X 2.. Zorn A, B A B A B A B A B B A A B N 2 1. 2. 3. 4. 5. 6. 7. 8. N Z 9. Z Q 10. Q R 2 1. 2. 3. 4. Zorn 5. 6. 7. 8. 9. x x x y x, y α = 2 2 α x = y = 2 1 α = 2 2 α 2 = ( 2) 2 = 2 x = α, y = 2 x, y X 0, X 1.X 2,... x 0 X 0, x 1 X 1, x 2 X 2.. Zorn

More information

d dt A B C = A B C d dt x = Ax, A 0 B 0 C 0 = mm 0 mm 0 mm AP = PΛ P AP = Λ P A = ΛP P d dt x = P Ax d dt (P x) = Λ(P x) d dt P x =

d dt A B C = A B C d dt x = Ax, A 0 B 0 C 0 = mm 0 mm 0 mm AP = PΛ P AP = Λ P A = ΛP P d dt x = P Ax d dt (P x) = Λ(P x) d dt P x = 3 MATLAB Runge-Kutta Butcher 3. Taylor Taylor y(x 0 + h) = y(x 0 ) + h y (x 0 ) + h! y (x 0 ) + Taylor 3. Euler, Runge-Kutta Adams Implicit Euler, Implicit Runge-Kutta Gear y n+ y n (n+ ) y n+ y n+ y n+

More information

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63> 単純適応制御 SAC サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/091961 このサンプルページの内容は, 初版 1 刷発行当時のものです. 1 2 3 4 5 9 10 12 14 15 A B F 6 8 11 13 E 7 C D URL http://www.morikita.co.jp/support

More information

nsg04-28/ky208684356100043077

nsg04-28/ky208684356100043077 δ!!! μ μ μ γ UBE3A Ube3a Ube3a δ !!!! α α α α α α α α α α μ μ α β α β β !!!!!!!! μ! Suncus murinus μ Ω! π μ Ω in vivo! μ μ μ!!! ! in situ! in vivo δ δ !!!!!!!!!! ! in vivo Orexin-Arch Orexin-Arch !!

More information

第86回日本感染症学会総会学術集会後抄録(I)

第86回日本感染症学会総会学術集会後抄録(I) κ κ κ κ κ κ μ μ β β β γ α α β β γ α β α α α γ α β β γ μ β β μ μ α ββ β β β β β β β β β β β β β β β β β β γ β μ μ μ μμ μ μ μ μ β β μ μ μ μ μ μ μ μ μ μ μ μ μ μ β

More information

lim lim lim lim 0 0 d lim 5. d 0 d d d d d d 0 0 lim lim 0 d

lim lim lim lim 0 0 d lim 5. d 0 d d d d d d 0 0 lim lim 0 d lim 5. 0 A B 5-5- A B lim 0 A B A 5. 5- 0 5-5- 0 0 lim lim 0 0 0 lim lim 0 0 d lim 5. d 0 d d d d d d 0 0 lim lim 0 d 0 0 5- 5-3 0 5-3 5-3b 5-3c lim lim d 0 0 5-3b 5-3c lim lim lim d 0 0 0 3 3 3 3 3 3

More information

http://know-star.com/ 3 1 7 1.1................................. 7 1.2................................ 8 1.3 x n.................................. 8 1.4 e x.................................. 10 1.5 sin

More information

橡博論表紙.PDF

橡博論表紙.PDF Study on Retaining Wall Design For Circular Deep Shaft Undergoing Lateral Pressure During Construction 2003 3 Study on Retaining Wall Design For Circular Deep Shaft Undergoing Lateral Pressure During Construction

More information

I

I I II 1 2 3 4 5 6 7 8 9 10 11 Rp.1) 50mg 3 3 14 Rp.2) 2.5mg 2 14 Rp.1) 2.5mg 3 2 2:1 14 Rp.) 15g 1 3 28 Rp.2) 50 600mg 1 2 28 12 Rp.1) CR 20mg 1 1 1 14 Rp.2) R 200 1 2 14 Rp.3) 3 1 3 14 Rp.1) 2.5mg 0.4

More information

17 3 31 1 1 3 2 5 3 9 4 10 5 15 6 21 7 29 8 31 9 35 10 38 11 41 12 43 13 46 14 48 2 15 Radon CT 49 16 50 17 53 A 55 1 (oscillation phenomena) e iθ = cos θ + i sin θ, cos θ = eiθ + e iθ 2, sin θ = eiθ e

More information

O E ( ) A a A A(a) O ( ) (1) O O () 467

O E ( ) A a A A(a) O ( ) (1) O O () 467 1 1.0 16 1 ( 1 1 ) 1 466 1.1 1.1.1 4 O E ( ) A a A A(a) O ( ) (1) O O () 467 ( ) A(a) O A 0 a x ( ) A(3), B( ), C 1, D( 5) DB C A x 5 4 3 1 0 1 3 4 5 16 A(1), B( 3) A(a) B(b) d ( ) A(a) B(b) d AB d = d(a,

More information

2 (f4eki) ρ H A a g. v ( ) 2. H(t) ( ) Chapter 5 (f5meanfp) ( ( )? N [] σ e = 8π ( ) e mc 2 = cm 2 e m c (, Thomson cross secion). Cha

2 (f4eki) ρ H A a g. v ( ) 2. H(t) ( ) Chapter 5 (f5meanfp) ( ( )? N [] σ e = 8π ( ) e mc 2 = cm 2 e m c (, Thomson cross secion). Cha http://astr-www.kj.yamagata-u.ac.jp/~shibata P a θ T P M Chapter 4 (f4a). 2.. 2. (f4cone) ( θ) () g M θ (f4b) T M L 2 (f4eki) ρ H A a g. v ( ) 2. H(t) ( ) Chapter 5 (f5meanfp) ( ( )? N [] σ e = 8π ( )

More information

1: *2 W, L 2 1 (WWL) 4 5 (WWL) W (WWL) L W (WWL) L L 1 2, 1 4, , 1 4 (cf. [4]) 2: 2 3 * , , = , 1

1: *2 W, L 2 1 (WWL) 4 5 (WWL) W (WWL) L W (WWL) L L 1 2, 1 4, , 1 4 (cf. [4]) 2: 2 3 * , , = , 1 I, A 25 8 24 1 1.1 ( 3 ) 3 9 10 3 9 : (1,2,6), (1,3,5), (1,4,4), (2,2,5), (2,3,4), (3,3,3) 10 : (1,3,6), (1,4,5), (2,2,6), (2,3,5), (2,4,4), (3,3,4) 6 3 9 10 3 9 : 6 3 + 3 2 + 1 = 25 25 10 : 6 3 + 3 3

More information

1 1 1 1 1 1 2 f z 2 C 1, C 2 f 2 C 1, C 2 f(c 2 ) C 2 f(c 1 ) z C 1 f f(z) xy uv ( u v ) = ( a b c d ) ( x y ) + ( p q ) (p + b, q + d) 1 (p + a, q + c) 1 (p, q) 1 1 (b, d) (a, c) 2 3 2 3 a = d, c = b

More information

Microsoft Word - 触ってみよう、Maximaに2.doc

Microsoft Word - 触ってみよう、Maximaに2.doc i i e! ( x +1) 2 3 ( 2x + 3)! ( x + 1) 3 ( a + b) 5 2 2 2 2! 3! 5! 7 2 x! 3x! 1 = 0 ",! " >!!! # 2x + 4y = 30 "! x + y = 12 sin x lim x!0 x x n! # $ & 1 lim 1 + ('% " n 1 1 lim lim x!+0 x x"!0 x log x

More information

i 1 1 1.1... 1 1.1.1... 2 1.1.2... 7 1.2... 9 1.3... 1 1.4... 12 1.4.1 s... 12 1.4.2... 12 1.5... 15 1.5.1... 15 1.5.2... 18 2 21 2.1... 21 2.2... 23

i 1 1 1.1... 1 1.1.1... 2 1.1.2... 7 1.2... 9 1.3... 1 1.4... 12 1.4.1 s... 12 1.4.2... 12 1.5... 15 1.5.1... 15 1.5.2... 18 2 21 2.1... 21 2.2... 23 2 III Copyright c 2 Kazunobu Yoshida. All rights reserved. i 1 1 1.1... 1 1.1.1... 2 1.1.2... 7 1.2... 9 1.3... 1 1.4... 12 1.4.1 s... 12 1.4.2... 12 1.5... 15 1.5.1... 15 1.5.2... 18 2 21 2.1... 21 2.2...

More information

A G A G A G 4 1 1 2 3 4 5 6 7 110119118 b A G C G 4 1 7 * * G A C b a HIKJ K J L f B c g 9 K c d g e 7 G 7 1 G 1 aa g g g c L M G L H G G 4 aa c c A a c CB B C A G f A G f G 9 8 1 2

More information

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory 10.3 Fubini 1 Introduction [1],, [2],, [3],, [4],, [5],, [6],, [7],, [8],, [1, 2, 3] 1980

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory 10.3 Fubini 1 Introduction [1],, [2],, [3],, [4],, [5],, [6],, [7],, [8],, [1, 2, 3] 1980 % 100% 1 Introduction 2 (100%) 2.1 2.2 2.3 3 (100%) 3.1 3.2 σ- 4 (100%) 4.1 4.2 5 (100%) 5.1 5.2 5.3 6 (100%) 7 (40%) 8 Fubini (90%) 2006.11.20 1 8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory

More information

001-007 扉・口絵・目次

001-007 扉・口絵・目次 1 6 6 7 1 a a a a 2 a a a 3 4 5 a 6 7 8 9 10 a 11 a a a 12 13 14 15 a 16 17 18 19 20 21 22 23 24 b b 25 b 26 27 aa 28 r r 29 a s d f 30 b b 31 32 33 1 34 35 36 37 38 6 39 6 40 41 42 43 44 45 7 47 48

More information

研修コーナー

研修コーナー l l l l l l l l l l l α α β l µ l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l

More information

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)............................................

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)............................................ 5 partial differentiation (total) differentiation 5. z = f(x, y) (a, b) A = lim h f(a + h, b) f(a, b) h........................................................... ( ) f(x, y) (a, b) x A (a, b) x (a, b)

More information

CSE2LEC2

CSE2LEC2 " dt = "r(t "T s dt = "r(t "T s T T s dt T "T s = "r ln(t "T s = "rt + rt 0 T = T s + Ae "rt T(0 = T 0 T(0 = T s + A A = T 0 "T s T(t = T s + (T 0 "T s e "rt dy dx = f (x, y (Euler dy dx = f (x, y y y(x

More information

( ) a, b c a 2 + b 2 = c 2. 2 1 2 2 : 2 2 = p q, p, q 2q 2 = p 2. p 2 p 2 2 2 q 2 p, q (QED)

( ) a, b c a 2 + b 2 = c 2. 2 1 2 2 : 2 2 = p q, p, q 2q 2 = p 2. p 2 p 2 2 2 q 2 p, q (QED) rational number p, p, (q ) q ratio 3.14 = 3 + 1 10 + 4 100 ( ) a, b c a 2 + b 2 = c 2. 2 1 2 2 : 2 2 = p q, p, q 2q 2 = p 2. p 2 p 2 2 2 q 2 p, q (QED) ( a) ( b) a > b > 0 a < nb n A A B B A A, B B A =

More information

http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n

http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 1 1 1.1 ɛ-n 1 ɛ-n lim n a n = α n a n α 2 lim a n = 1 n a k n n k=1 1.1.7 ɛ-n 1.1.1 a n α a n n α lim n a n = α ɛ N(ɛ) n > N(ɛ) a n α < ɛ

More information

populatio sample II, B II? [1] I. [2] 1 [3] David J. Had [4] 2 [5] 3 2

populatio sample II, B II?  [1] I. [2] 1 [3] David J. Had [4] 2 [5] 3 2 (2015 ) 1 NHK 2012 5 28 2013 7 3 2014 9 17 2015 4 8!? New York Times 2009 8 5 For Today s Graduate, Just Oe Word: Statistics Google Hal Varia I keep sayig that the sexy job i the ext 10 years will be statisticias.

More information

D:/BOOK/MAIN/MAIN.DVI

D:/BOOK/MAIN/MAIN.DVI 8 2 F (s) =L f(t) F (s) =L f(t) := Z 0 f()e ;s d (2.2) s s = + j! f(t) (f(0)=0 f(0) _ = 0 d n; f(0)=dt n; =0) L dn f(t) = s n F (s) (2.3) dt n Z t L 0 f()d = F (s) (2.4) s s =s f(t) L _ f(t) Z Z ;s L f(t)

More information

0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9

0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9 1-1. 1, 2, 3, 4, 5, 6, 7,, 100,, 1000, n, m m m n n 0 n, m m n 1-2. 0 m n m n 0 2 = 1.41421356 π = 3.141516 1-3. 1 0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c),

More information

2 1 17 1.1 1.1.1 1650

2 1 17 1.1 1.1.1 1650 1 3 5 1 1 2 0 0 1 2 I II III J. 2 1 17 1.1 1.1.1 1650 1.1 3 3 6 10 3 5 1 3/5 1 2 + 1 10 ( = 6 ) 10 1/10 2000 19 17 60 2 1 1 3 10 25 33221 73 13111 0. 31 11 11 60 11/60 2 111111 3 60 + 3 332221 27 x y xy

More information

Q E Q T a k Q Q Q T Q =

Q E Q T a k Q Q Q T Q = i 415 q q q q Q E Q T a k Q Q Q T Q = 10 30 j 19 25 22 E 23 R 9 i i V 25 60 1 20 1 18 59R1416R30 3018 1211931 30025R 10T1T 425R 11 50 101233 162 633315 22E1011 10T q 26T10T 12 3030 12 12 24 100 1E20 62

More information

0 (1 ) 0 (1 ) 01 Excel Excel ( ) = Excel Excel =5+ 5 + 7 =5-5 3 =5* 5 10 =5/ 5 5 =5^ 5 5 ( ), 0, Excel, Excel 13E+05 13 10 5 13000 13E-05 13 10 5 0000

0 (1 ) 0 (1 ) 01 Excel Excel ( ) = Excel Excel =5+ 5 + 7 =5-5 3 =5* 5 10 =5/ 5 5 =5^ 5 5 ( ), 0, Excel, Excel 13E+05 13 10 5 13000 13E-05 13 10 5 0000 1 ( S/E) 006 7 30 0 (1 ) 01 Excel 0 7 3 1 (-4 ) 5 11 5 1 6 13 7 (5-7 ) 9 1 1 9 11 3 Simplex 1 4 (shadow price) 14 5 (reduced cost) 14 3 (8-10 ) 17 31 17 3 18 33 19 34 35 36 Excel 3 4 (11-13 ) 5 41 5 4

More information

7) ẋt) =iaω expiωt) ibω exp iωt) 9) ẋ0) = iωa b) = 0 0) a = b a = b = A/ xt) = A expiωt) + exp iωt)) = A cosωt) ) ) vt) = Aω sinωt) ) ) 9) ) 9) E = mv

7) ẋt) =iaω expiωt) ibω exp iωt) 9) ẋ0) = iωa b) = 0 0) a = b a = b = A/ xt) = A expiωt) + exp iωt)) = A cosωt) ) ) vt) = Aω sinωt) ) ) 9) ) 9) E = mv - - m k F = kx ) kxt) =m d xt) dt ) ω = k/m ) ) d dt + ω xt) = 0 3) ) ) d d dt iω dt + iω xt) = 0 4) ω d/dt iω) d/dt + iω) 4) ) d dt iω xt) = 0 5) ) d dt + iω xt) = 0 6) 5) 6) a expiωt) b exp iωt) ) )

More information

31 33

31 33 17 3 31 33 36 38 42 45 47 50 52 54 57 60 74 80 82 88 89 92 98 101 104 106 94 1 252 37 1 2 2 1 252 38 1 15 3 16 6 24 17 2 10 252 29 15 21 20 15 4 15 467,555 14 11 25 15 1 6 15 5 ( ) 41 2 634 640 1 5 252

More information

学習内容と日常生活との関連性の研究-第2部-第6章

学習内容と日常生活との関連性の研究-第2部-第6章 378 379 10% 10%10% 10% 100% 380 381 2000 BSE CJD 5700 18 1996 2001 100 CJD 1 310-7 10-12 10-6 CJD 100 1 10 100 100 1 1 100 1 10-6 1 1 10-6 382 2002 14 5 1014 10 10.4 1014 100 110-6 1 383 384 385 2002 4

More information

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi II (Basics of Probability Theory ad Radom Walks) (Preface),.,,,.,,,...,,.,.,,.,,. (Basics of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios, Meas).............................

More information

x (0, 6, N x 2 (4 + 2(4 + 3 < 6 2 3, a 2 + a 2+ > 0. x (0, 6 si x > 0. (2 cos [0, 6] (0, 6 (cos si < 0. ( 5.4.6 (2 (3 cos 0, cos 3 < 0. cos 0 cos cos

x (0, 6, N x 2 (4 + 2(4 + 3 < 6 2 3, a 2 + a 2+ > 0. x (0, 6 si x > 0. (2 cos [0, 6] (0, 6 (cos si < 0. ( 5.4.6 (2 (3 cos 0, cos 3 < 0. cos 0 cos cos 6 II 3 6. π 3.459... ( /( π 33 π 00 π 34 6.. ( (a cos π 2 0 π (0, 2 3 π (b z C, m, Z ( ( cos z + π 2 (, si z + π 2 (cos z, si z, 4m, ( si z, cos z, 4m +, (cos z, si z, 4m + 2, (si z, cos z, 4m + 3. (6.

More information

34 2 2 h = h/2π 3 V (x) E 4 2 1 ψ = sin kxk = 2π/λ λ = h/p p = h/λ = kh/2π = k h 5 2 ψ = e ax2 ガウス 型 関 数 1.2 1 関 数 値 0.8 0.6 0.4 0.2 0 15 10 5 0 5 10

34 2 2 h = h/2π 3 V (x) E 4 2 1 ψ = sin kxk = 2π/λ λ = h/p p = h/λ = kh/2π = k h 5 2 ψ = e ax2 ガウス 型 関 数 1.2 1 関 数 値 0.8 0.6 0.4 0.2 0 15 10 5 0 5 10 33 2 2.1 2.1.1 x 1 T x T 0 F = ma T ψ) 1 x ψ(x) 2.1.2 1 1 h2 d 2 ψ(x) + V (x)ψ(x) = Eψ(x) (2.1) 2m dx 2 1 34 2 2 h = h/2π 3 V (x) E 4 2 1 ψ = sin kxk = 2π/λ λ = h/p p = h/λ = kh/2π = k h 5 2 ψ = e ax2

More information

Γ Ec Γ V BIAS THBV3_0401JA THBV3_0402JAa THBV3_0402JAb 1000 800 600 400 50 % 25 % 200 100 80 60 40 20 10 8 6 4 10 % 2.5 % 0.5 % 0.25 % 2 1.0 0.8 0.6 0.4 0.2 0.1 200 300 400 500 600 700 800 1000 1200 14001600

More information

213 2 katurada AT meiji.ac.jp http://nalab.mind.meiji.ac.jp/~mk/pde/ 213 9, 216 11 3 6.1....................................... 6.2............................. 8.3................................... 9.4.....................................

More information

A B 5 C 9 3.4 7 mm, 89 mm 7/89 = 3.4. π 3 6 π 6 6 = 6 π > 6, π > 3 : π > 3

A B 5 C 9 3.4 7 mm, 89 mm 7/89 = 3.4. π 3 6 π 6 6 = 6 π > 6, π > 3 : π > 3 π 9 3 7 4. π 3................................................. 3.3........................ 3.4 π.................... 4.5..................... 4 7...................... 7..................... 9 3 3. p

More information

untitled

untitled 17 5 16 1 2 2 2 3 4 4 5 5 7 5.1... 8 5.2... 9 6 10 1 1 (sample survey metod) 1981 4 27 28 51.5% 48.5% 5 10 51.75% 48.24% (complete survey ( ) ) (populatio) (sample) (parameter) (estimator) 1936 200 2 N

More information

1 6 2011 3 2011 3 7 1 2 1.1....................................... 2 1.2................................. 3 1.3............................................. 4 6 2.1................................................

More information

2 FIG. 1: : n FIG. 2: : n (Ch h ) N T B Ch h n(z) = (sin ϵ cos ω(z), sin ϵ sin ω(z), cos ϵ), (1) 1968 Meyer [5] 50 N T B Ch h [4] N T B 10 nm Ch h 1 µ

2 FIG. 1: : n FIG. 2: : n (Ch h ) N T B Ch h n(z) = (sin ϵ cos ω(z), sin ϵ sin ω(z), cos ϵ), (1) 1968 Meyer [5] 50 N T B Ch h [4] N T B 10 nm Ch h 1 µ : (Dated: February 5, 2016), (Ch), (Oblique Helicoidal) (Ch H ), Twist-bend (N T B ) I. (chiral: ) (achiral) (n) (Ch) (N ) 1996 [1] [2] 2013 (N T B ) [3] 2014 [4] (oblique helicoid) 2016 1 29 Electronic

More information

7 27 7.1........................................ 27 7.2.......................................... 28 1 ( a 3 = 3 = 3 a a > 0(a a a a < 0(a a a -1 1 6

7 27 7.1........................................ 27 7.2.......................................... 28 1 ( a 3 = 3 = 3 a a > 0(a a a a < 0(a a a -1 1 6 26 11 5 1 ( 2 2 2 3 5 3.1...................................... 5 3.2....................................... 5 3.3....................................... 6 3.4....................................... 7

More information

7 9 7..................................... 9 7................................ 3 7.3...................................... 3 A A. ω ν = ω/π E = hω. E

7 9 7..................................... 9 7................................ 3 7.3...................................... 3 A A. ω ν = ω/π E = hω. E B 8.9.4, : : MIT I,II A.P. E.F.,, 993 I,,, 999, 7 I,II, 95 A A........................... A........................... 3.3 A.............................. 4.4....................................... 5 6..............................

More information

1 1 ( ) ( 1.1 1.1.1 60% mm 100 100 60 60% 1.1.2 A B A B A 1

1 1 ( ) ( 1.1 1.1.1 60% mm 100 100 60 60% 1.1.2 A B A B A 1 1 21 10 5 1 E-mail: qliu@res.otaru-uc.ac.jp 1 1 ( ) ( 1.1 1.1.1 60% mm 100 100 60 60% 1.1.2 A B A B A 1 B 1.1.3 boy W ID 1 2 3 DI DII DIII OL OL 1.1.4 2 1.1.5 1.1.6 1.1.7 1.1.8 1.2 1.2.1 1. 2. 3 1.2.2

More information

閨75, 縺5 [ ィ チ573, 縺 ィ ィ

閨75, 縺5 [ ィ チ573, 縺 ィ ィ 39ィ 8 998 3. 753 68, 7 86 タ7 9 9989769 438 縺48 縺55 3783645 タ5 縺473 タ7996495 ィ 59754 8554473 9 8984473 3553 7. 95457357, 4.3. 639745 5883597547 6755887 67996499 ィ 597545 4953473 9 857473 3553, 536583, 89573,

More information

2 p T, Q

2 p T, Q 270 C, 6000 C, 2 p T, Q p: : p = N/ m 2 N/ m 2 Pa : pdv p S F Q 1 g 1 1 g 1 14.5 C 15.5 1 1 cal = 4.1855 J du = Q pdv U ( ) Q pdv 2 : z = f(x, y). z = f(x, y) (x 0, y 0 ) y y = y 0 z = f(x, y 0 ) x x =

More information

タ 縺29135 タ 縺5 [ y 1 x i R 8 x j 1 7,5 2 x , チ7192, (2) チ41299 f 675

タ 縺29135 タ 縺5 [ y 1 x i R 8 x j 1 7,5 2 x , チ7192, (2) チ41299 f 675 139ィ 48 1995 3. 753 165, 2 6 86 タ7 9 998917619 4381 縺48 縺55 317832645 タ5 縺4273 971927, 95652539358195 45 チ5197 9 4527259495 2 7545953471 129175253471 9557991 3.9. タ52917652 縺1874ィ 989 95652539358195 45

More information

z z x = y = /x lim y = + x + lim y = x (x a ) a (x a+) lim z z f(z) = A, lim z z g(z) = B () lim z z {f(z) ± g(z)} = A ± B (2) lim {f(z) g(z)} = AB z

z z x = y = /x lim y = + x + lim y = x (x a ) a (x a+) lim z z f(z) = A, lim z z g(z) = B () lim z z {f(z) ± g(z)} = A ± B (2) lim {f(z) g(z)} = AB z Tips KENZOU 28 6 29 sin 2 x + cos 2 x = cos 2 z + sin 2 z = OK... z < z z < R w = f(z) z z w w f(z) w lim z z f(z) = w x x 2 2 f(x) x = a lim f(x) = lim f(x) x a+ x a z z x = y = /x lim y = + x + lim y

More information

1 n =3, 2 n 3 x n + y n = z n x, y, z 3 a, b b = aq q a b a b b a b a a b a, b a 0 b 0 a, b 2

1 n =3, 2 n 3 x n + y n = z n x, y, z 3 a, b b = aq q a b a b b a b a a b a, b a 0 b 0 a, b 2 n =3, 200 2 10 1 1 n =3, 2 n 3 x n + y n = z n x, y, z 3 a, b b = aq q a b a b b a b a a b a, b a 0 b 0 a, b 2 a, b (a, b) =1a b 1 x 2 + y 2 = z 2, (x, y) =1, x 0 (mod 2) (1.1) x =2ab, y = a 2 b 2, z =

More information

example2_time.eps

example2_time.eps Google (20/08/2 ) ( ) Random Walk & Google Page Rank Agora on Aug. 20 / 67 Introduction ( ) Random Walk & Google Page Rank Agora on Aug. 20 2 / 67 Introduction Google ( ) Random Walk & Google Page Rank

More information

a q q y y a xp p q y a xp y a xp y a x p p y a xp q y x yaxp x y a xp q x p y q p x y a x p p p p x p

a q q y y a xp p q y a xp y a xp y a x p p y a xp q y x yaxp x y a xp q x p y q p x y a x p p p p x p a a a a y y ax q y ax q q y ax y ax a a a q q y y a xp p q y a xp y a xp y a x p p y a xp q y x yaxp x y a xp q x p y q p x y a x p p p p x p y a xp q y a x p q p p x p p q p q y a x xy xy a a a y a x

More information

(1) 1.1

(1) 1.1 1 1 1.1 1.1.1 1.1 ( ) ( ) ( ) { ( ) ( ) { ( ) ( ) { ( ) ( ) { ( ) ( ) { ( ) ( ) ( ) ( ) ( ) 2 1 1.1.2 (1) 1.1 1.1 3 (2) 1.2 4 1 (3) 1.3 ( ) ( ) (4) 1.1 5 (5) ( ) 1.4 6 1 (6) 1.5 (7) ( ) (8) 1.1 7 1.1.3

More information

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi I (Basics of Probability Theory ad Radom Walks) 25 4 5 ( 4 ) (Preface),.,,,.,,,...,,.,.,,.,,. (,.) (Basics of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios,

More information

橡Taro11-報告書0.PDF

橡Taro11-報告書0.PDF Research Center RC 2001 5-1- RC RC NHK -2- -3- 00/12/16 RC 01/01/07 RC 01/01/21 1 13 01/02/11 2 9 01/02/10 01/02/14 01/02/19 01/02/25 3 7 01/03/10 4 8 01/03/23 5 8 01/04/29 2001/01/07-4- -5- RC 1990 RC

More information

外因性内分泌攪乱化学物質調査暫定マニュアル(水質、底質、水生生物)

外因性内分泌攪乱化学物質調査暫定マニュアル(水質、底質、水生生物) N- 1) 2) 1) GC/MS HPLC GC/MS 2) 0.01~0.05µg/l 0.5~50µg/kg GC/MS SIM GC/MS SIM GC/MS SIM a) b) -d 10 -d 10 -d 12 -d 12 c) d) 600 C 4 e) 1 99.999% f) a) b) - IX-1 - c) (ODS) 200-1,000mg 5ml 5ml 5ml d) e)

More information

On the Limited Sample Effect of the Optimum Classifier by Bayesian Approach he Case of Independent Sample Size for Each Class Xuexian HA, etsushi WAKA

On the Limited Sample Effect of the Optimum Classifier by Bayesian Approach he Case of Independent Sample Size for Each Class Xuexian HA, etsushi WAKA Journal Article / 学術雑誌論文 ベイズアプローチによる最適識別系の有限 標本効果に関する考察 : 学習標本の大きさ がクラス間で異なる場合 (< 論文小特集 > パ ターン認識のための学習 : 基礎と応用 On the limited sample effect of bayesian approach : the case of each class 韓, 雪仙 ; 若林, 哲史

More information