Size: px
Start display at page:

Download ""

Transcription

1

2 ()

3 n A 79 A A A A

4 0 II 3

5 1 1.1 m d2 r dt 2 = F (1.1) 1 ( r, dr ) (1.2) dt 2 (1.1) p (1.1) p mv (1.3) dp dt = F (1.4) v p (r, p) 1 (1.1) 2 4

6 1.1.2 F (r) 1. 2 A B F (r) F dr (1.5) A B A B 2. rot F = 0 (1.6) 3. F (r) U(r) F = grad U(r) (1.7) F (1.1) dr/dt [ d 1 dt 2 m m d2 r dt 2 = U(r) m d2 r dr = ( U(r)) dt 2 dr dt ( ) dr 2 + U(r)] = 0 dt dt E 1 2 m ( dr dt ) 2 + U(r) (1.8) E 3 5

7 1.1.4 L L r p (1.9) (1.9) r L O (1.4) dl dt = d (r p) dt = dr dt p + r dp dt = r F N (1.10) N F r (1.11) r F = 0 dl dt = 0 (1.12) 1.2 A B A B = F r = r U(r) x m d2 x = kx (1.13) dt2 6

8 x(t) = A cos (ω 0 t + θ) ; ω 0 k m (1.14) A θ (1.13 e λt λ λ 2 + ω 2 0 = 0 λ = ±iω 0 (1.15) λ (1.13) x(t) = C 1 e iω 0t + C 2 e iω 0t (1.16) C 1 C 2 C 1 C 2 (1.16) x(t) (1.13) x C 1 C 2 x (1.13) x c (t) Re[x c (t)] Im[x c (t)] C = Ae iθ x c (t) = Ce iωt (1.14) 1.4 (1.16) x(t) C 1 C 2 t x(t) = x (t) 1.5 (1.14) (1.16) C 1 C x c (t) (1.13) Re[x c (t)] Im[x c (t)] (1.13) 1.7 C = Ae iθ x c (t) = Ce iωt (1.14) 7

9 0 2i ω = ω = 0 C 10 C 5 4i 6i 8i 0 0 π/2 θ 10i π ω 0 ω 0 1.5ω 0 2ω 0 ω 1.1: ω C C θ ω ω 0 γ =1, 0.5, 0.2, 0.1 mω 0 ω 1 0 F/(ω2 0m) m (1.13) m d2 x dt 2 dx = kx γ + F cos ωt (1.17) dt (1.17) m d2 x dt 2 + γ dx dt + kx = F eiωt (1.18) (1.17) (1.18) (1.18) x(t) = Ce iωt (1.19) (1.18) F C = m ( ) ω 2 + iγω/m + ω0 2 = F ω0 2 ω 2 iγω/m ( m ω 2 0 ω 2) 2 ( ) 2 (1.20) + γω/m ω 0 (1.14) C C θ C = F m 1 (ω 2 0 ω 2) 2 ( ) (1.21) 2 + γω/m θ = Arg C atan2 ( γω/m, ω 2 0 ω 2) (1.22) 8

10 (1.17) (1.19) x(t) = Re [ Ce iωt] = C cos(ωt + θ) (1.23) C C θ 1.1 C ω γ γ ω ω 0 ω > 0 C θ < ω ω 0 θ π 1.9 (1.18) (1.19) i m i r i i F i j i F ij i m i d 2 r i dt 2 = j i F ij + F i (1.24) d 2 r i m i dt = ( ) F 2 ij + F i (1.25) i i i j i F ji = F ij (1.26) P T F T (1.25) dp T = F T (1.27) dt 4 θ π < θ π 9

11 i L i r i p i ( ) dl i = r i F ij + F i dt j i L T i L i dl T dt = i r i F ij + i j i r i F i (1.28) F ij ( r i r j ) (1.29) dl T dt = i r i F i = N T (1.30) N T 1.11 (1.26) (1.25) 1.12 (1.29) (1.28) R R 1 m i r i ; M i M i m i (1.31) r i r i r i R (1.32) P T = i m i dr i dt = M dr dt (1.33) M 10

12 L T L T = r i p i = ( ri + R ) ( d ri m i dt + dr ) dt i i = R P T + ( ) d r i r i m i L CM + L (1.34) dt i L CM L K K = i 1 2 m i = 1 2 M ( dr dt ( ) 2 dri dt ) 2 + i 1 2 m i ( ) 2 d ri K CM + K (1.35) dt K CM K 1.13 (1.34) 1.14 (1.35) 1.4 (1.27) (1.30) (1.33), (1.34), (1.35) 11

13 1.2: dp T dt = 0, dl T dt = 0 F T = 0, N T = O P O P 1.2 PP O O O O P P PP = PP + P P = OO + P P P P O P O O P v P ω v P = ω OP 12

14 O v P = V O + ω OP (1.36) 1.15 O ω O O ω O (1.36) P v P ω O = ω O V O = V O + ω O OO OP = OO + O P 13

15 2 2.1 f(x) x f (x) = 0 (2.1) x (2.1) x x x + δx f f(x + δx) f(x) + f (x)δx + (2.2) x δx δx f(x + δx) f(x) f (x)δx δf(x) (2.3) δf f f (2.1) f(x) x x f x δf(x) = 0 (2.4) 14

16 r i i F i N {δr i } {F i } δw δw F i δr i = 0 (2.5) i {δr i } (2.5) δw {δr i } 1 F i = 0; (i = 1, 2,, N) (2.6) (2.6) (2.5) (2.6) {δr i } δw (2.5) (2.5) δw {δr i } 2 15

17 (i) (ii) () {δr i } {δ r i } 3 (2.5) {δr i } δw {δ r i } δ W δ W i F i δ r i = 0 (2.7) i F i S i K i F i = S i + K i (2.8) (2.7) δ W = i ( Si + K i ) δ r i (2.9) S i δ r i = 0 (2.10) i δ W = i K i δ r i = 0 (2.11) 3 δ r δ W δr δw {δ r i } {δ r i } 16

18 {δ r i } δ W (2.10) (2.11) {S i } {K i } {δ r i } (2.10) {S i } {δ r i } (2.11) {K i } {δ r i } {δ r i } {δ r i } δ W {δ r i } (2.11) {K i } S i = K i (2.11) (2.10) F i = K i + S i = 0 {δ r i } {K i } δ W = i K i δ r i = 0 (2.12) {K i } 17

19 {K i } 4 K i = i U(r 1, r 2,, r N ) δ W = i δ r i i U = δ U (2.13) 2.1 δr A δr = 0 A = {r i (t)} r(t) t {F i ( r(t), t ) } 5 {r i (t)} t δr i (t) ( ) ( ) d 2 r i (t) F i r(t), t mi δr dt 2 i (t) = 0 (2.14) i F i (t) m d2 r i (t) dt 2 = 0 (2.15) (2.15) (2.14) t (2.14) (2.15) ( 4 i i,, x i y i z i 5 r (r 1, r 2,, r N ) ) 18

20 δ r i (t) i F i S i K i (2.14) ( ) S i (t) + K i (t) m d2 r i (t) δ r dt 2 i (t) = 0 (2.16) i (2.10) ( ) K i (t) m d2 r i (t) δ r dt 2 i (t) = 0 (2.17) i 19

21 3 3.1 t 2 {r i ( )} {r i (t 2 )} {r i (t)} I t2 ( ) T U dt (3.1) T U {r i } { r i } L ( r, ṙ, t ) T ( ṙ ) U ( r, t ) (3.2) I I r(t) t [, t 2 ] {r i (t)} < t < t 2 {δr i (t)} ( t2 ( ) ) δi = δ T U dt = 0 (3.3) 20

22 δr i ( ) = δr i (t 2 ) = 0 (3.4) t 2 {r i (t)} t (, t 2 ) δr i (t) (2.14) t2 ( ) ( ) d 2 r i (t) F i r(t), t mi δr dt 2 i (t)dt = 0. (3.5) F i U i F i = i U(r 1, r 2,, t) (3.6) 1 (3.5) t2 F i δr i (t)dt = i t2 t2 = = δ δr i (t) i Udt i t ( 1 t2 δu ( r 1 (t), r 2 (t),, t ) dt U ( r 1 (t), r 2 (t),, t ) ) dt (3.7) δu r i (t) r i (t) + δr i (t) U (3.5) t2 ( i [ ) m i r i δr i (t) dt = i ( t2 = δ i m i ṙ i δr i ] t2 ) 1 2 m iṙ i ṙ i dt δ t2 + t 1 ( t2 m i ṙ i δṙ i dt i ) T dt (3.8) (3.4) T T i 1 2 m iṙ i ṙ i (3.9) 1 U 21

23 (3.7) (3.8) (3.5) ( t2 ( δ T ( ṙ(t) ) U ( r(t), t )) ) dt = 0 (3.10) 2 {r i (t)} (3.1) δr i (t) (3.5) (2.15) (2.14) 3.1 f(t) δx(t) t2 f(t)δx(t)dt = 0 f(t) = 0 ( t t 2 ) f(t) f(t) = (3.1) I r(t) I x ẋ t L(x, ẋ, t) t [, t 2 ] x(t) I[x] = t2 L ( x(t), ẋ(t), t ) dt (3.11) I[x] t x x(t) t t 2 x(t) 3 x( ) = x 1, x(t 2 ) = x 2 (3.12) I x(t) 2 (r 1, r 2, ) r 3 t x ẋ L t [, t 2 ] x(t) x(t) ẋ(t) 22

24 x(t) x(t) + δx(t) I δi δx(t) δi x(t) x(t) δx(t) (3.12) δx( ) = δx(t 2 ) = 0 (3.13) I δi δx(t) δi = I[x + δx] I[x] = = = t2 t2 [ L L δx(t) + x [ L ẋ δx(t) ] t2 t2 + ẋ δẋ(t) [ ] L(x + δx, ẋ + δẋ, t) L(x, ẋ, t) dt ] dt ( L x d dt ) L δx(t) dt (3.14) ẋ 1 (3.13) δx(t) δi = 0 d L dt ẋ L x = 0 (3.15) x(t) (3.15) (3.14) (3.11) I[x] (3.15) L (3.2) 3.3 L L(x, ẋ, t) = 1 2 m ẋ2 U(x) (3.15) A (3.11) I t2 t2 ( ) L L L δi = δl(x, ẋ, t) dt = δx + δẋ + x ẋ t δt dt 23

25 4 4.1 (1.1) (3.1) (3.10) (3.15) q 1 = q 1 (x, y, z, t), q 2 = q 2 (x, y, z, t), q 3 = q 3 (x, y, z, t) (4.1) L(q, q, t) = T (q, q, t) U(q, t) (4.2) 1 δi = 0 (3.15) d L L = 0 (4.3) dt q i q i (4.1) q i Q i U q i (4.4) δq i δw δw = Q i δq i (4.5) i (2.5) δw = j F j δr j = i j F j r j q i δq i F j r j = q i j j r j q i j U = U q i = Q i (4.5) (4.1) t 1 T ṙ r T q t 24

26 4.2 (r, θ) (x, y) x = r cos θ, y = r sin θ ẋ = ṙ cos θ r θ sin θ, ẏ = ṙ sin θ + r θ cos θ L = 1 2 m(ẋ2 + ẏ 2 ) U(x, y) L = 1 2 m (ṙ 2 + ( r θ ) 2 ) U(r, θ) U(r, θ) (r, θ) d L dt ṙ L r = 0 m r = mr θ 2 U r d L L dt θ θ = 0 d ( ) mr 2 θ = U dt θ (4.6) (4.7) (4.6) (4.7) mr 2 θ r (4.7) mr 2 θ = l (4.8) 1 (4.6) m r = ( ) 1 l 2 r 2 mr + U(r) 2 (4.9) 4.1 (4.7) mr 2 θ 4.2 (r, θ, ϕ) 25

27 4.3 (x, y) θ (X, Y ) (X, Y ) ω θ = ωt x y (e x, e y ) X Y (e X, e Y ) ( ) ( ) ( ) ( ) e X cos θ, sin θ e x = e Y sin θ, cos θ ˆR(θ) e x (4.10) ˆR(θ) 2 (x, y) (X, Y ) r r = xe x + ye y = Xe X + Y e Y (4.10) (e X, e Y ) (e x, e y ) x = X cos ωt Y sin ωt (4.11) y = X sin ωt + Y cos ωt θ = ωt T T = 1 2 m( ẋ 2 + ẏ 2) e y e y = 1 2 m [Ẋ2 + Ẏ 2 + 2ω ( ẊY + Ẏ X) + ω 2( X 2 + Y 2)] = 1 2 m [ (Ẋ ωy ) 2 + (Ẏ + ωx ) 2 ] (4.12) mẍ = 2mωẎ + mω2 X U X mÿ = 2mωẊ + mω2 Y U Y (4.13) (4.14) 4.3 (4.10) ˆR(θ) ˆR(θ) 1 = ˆR( θ) ˆR(θ) (4.11) 4.4 (4.12) (4.13) (4.14) 2 ˆR t = ˆR 1 26

28 4.4 f l (q 1, q 2,, q n, t) = 0; l = 1, 2,, m (4.15) 3 (4.15) f(q 1, q 2,, q n, t) > 0 (4.16) n a k (q, t) dq k + a 0 (q, t)dt = 0 (4.17) k=1 a θ ϕ (x, y) dx a cos θ dϕ = 0, dy a sin θ dϕ = 0 θ, ϕ 4 (4.15) n m n m (4.3) ω L 3 t 4 27

29 J[y] b a G(y, y, x)dx = s (4.18) s I[y] b a L(y, y, x)dx (4.19) y(x) y(x) y(a) = y a, y(b) = y b (4.20) (4.18) y(x) δy(x) 5 y(x) (4.18) y s (x) δy(x) (4.18) δ y s (x) { J[y s ] = s δ J[y J[y s + δ s ] J[y s + δ y s ] J[y s ] = 0. (4.21) y s ] = s I[y s ] δ I[y s ] = δ ( b a ) L(y s, y s, x)dx = 0 (4.22) y s (x) δ (4.18) (4.21) δ y s (x) 5 (4.20) 28

30 λ Ĩ[y] I[y] + λj[y] = b a ( L(y, y, x) + λg(y, y, x) ) dx Ĩ[y] δy(x) [ b δĩ[y] = δ ( L(y, y, x) + λg(y, y, x) ) ] dx = 0 (4.23) a y(x; λ) λ y(x; λ) (4.18) s λ λ λ s y s (x) y s (x) = y ( x; λ s ) (4.24) (4.24) (4.18) (4.22) (4.18) λ s (4.22) y ( x; λ s ) δy(x) (4.23) δ y s (x) δ Ĩ[y s ] = δ I[y s ] + λ δ J[y s ] = 0 (4.25) y(x; λ s ) (4.18) s δ y s (x) (4.21) δ J[y s ] = 0 y(x; λ s ) (4.22) (4.23) y(x) L(y, y, x) + λg(y, y, x) ( d dx y ) ( L(y, y, x) + λg(y, y, x)) = 0 (4.26) y 4.7 J l [y] b a G l (y, y, x)dx = s l ; l = 1, 2,, m 29

31 (±a, 0) l y = y(x) y(x) y(x) L[y] 0 = y(±a) (4.27) a a U[y] = a a 1 + y 2 dx = l (4.28) g y ρ 1 + y 2 dx (4.29) ρ g (4.27) (4.28) (4.29) U y(x) y(x) y(x) + δ y(x) (4.28) δ y U[y] δ U = 0 y(x) gρλ I[y] U[y] + gρλ L[y] δy y(x; λ) y(x; λ) (4.28) λ 4.1: 30

32 J[y] δy(x) (4.26) ( ) d (y + λ)y 1 + y dx 2 = 0 (4.30) 1 + y 2 y(x; λ) = C cosh x + D C λ (4.31) 6 C D cosh C, D λ (4.27) D = 0, 0 = C cosh a C λ (4.28) l = 2C sinh a C C λ a, l 4.8 (4.31) (4.30) (4.17) a k (q, t)dq k + a 0 (q, t)dt = 0 (4.32) k q k (t) q k (t) = dq k /dt a k (q, t) q k (t) + a 0 (q, t) = 0 (4.33) k f(q 1, q 2,, q n, t) = 0 (4.34) f dq 1 + f dq 2 + f dq n + f dt = 0 (4.35) q 1 q 2 q n t 6 II p.18 31

33 (4.32) (4.32) (4.32) n a k (q, t) δ q k (t) = 0 (4.36) k=1 δ q k (t) ( t2 ) δ I[q] = δ L(q, q, t) dt = 0 (4.37) δ q k (t) (4.36) (4.32) dt = 0 dq k δ q k (t) (4.36) (4.37) ( t2 ) t2 n ( L δ L dt = d ) L δ q k (t) dt = 0 (4.38) q k dt q k k=1 δq k (t) (3.15) (4.36) (4.36) λ(t) δq k (t) ( t2 n ) δĩ[q] δi[q] + λ(t) a k (q, t)δq k (t) dt = 0 (4.39) k=1 (4.36) λ(t) t2 n ( L d ) L + λ(t)a k (q, t) δq k (t) dt = 0 (4.40) q k dt q k k=1 7 δ 32

34 δq k (t) q k (t) L d L + λ(t)a k (q, t) = 0 ; k = 1, 2,, n (4.41) q k dt q k t λ(t) q k (t; λ) t λ(t) q k (t; λ) (4.33) (4.34) λ(t) λ s (t) q k (t; λ) q k (t; λ s ) 4.9 (4.39) (4.40) q k (t; λ s ) q k (t; λ s ) δq k (t) (4.39) δ δ ( t2 n ) δ Ĩ[q] = δ I[q] + λ(t) a k (q, t)δ q k (t) dt = 0 (4.42) k=1 δ q k (t) (4.36) a k (q, t) q k (t; λ s ) (4.42) 2 q k (t) (4.37) (4.41) d L L = λ(t)a k (q, t); k = 1, 2,, n (4.43) dt q k q k λ(t)a k (q, t) Q k ; k = 1, 2,, n (4.44) q k 4.10 (4.32) m a lk (q, t)dq k + a l (q, t)dt = 0; l = 1, 2,, m k 4.11 I

35 4.2: l θ L 4.2 (x, y) L = 1 2 m(ẋ2 + ẏ 2 ) + mgx (4.45) ( t2 ) [ t2 ( L δ L dt = d ) ] L δ x i (t) dt = 0 (4.46) x i dt ẋ i i=1,2 x 1 = x, x 2 = y l x 2 + y 2 = l 2 (4.47) δ x i (t) xδ x(t) + yδ y(t) = 0 x, y λ(t) δx i (t) [ t2 ( L d ) ] L + λ(t)x i δx i (t) dt = 0 (4.48) x i dt ẋ i i=1,2 (4.47) λ(t) 34

36 (4.48) L d L + λ(t)x i = 0; i = 1, 2 x i dt ẋ i (4.45) mẍ = mg + λ(t)x mÿ = λ(t)y t λ(t) λ(t) x = l cos θ, y = l sin θ mẍ = mg + λ(t) l cos θ mÿ = λ(t) l sin θ λ T T (t) = λ(t)l 35

37 5 5.1 L d L L = 0 (5.1) dt q i q i L T U (5.2) q i p i (5.1) p i L q i (5.3) dp i dt = L q i (5.4) L q i L/ q i = 0 (5.4) dp i dt = 0 p i = const. (5.5) q i L 1 q i q i α q i + α 1 36

38 1 L = 1 2 mẋ2 U(x) x p x = mẋ 2 L = 1 2 m (ṙ 2 + ( r θ ) 2 ) U(r, θ) r p r = mṙ θ p θ = mr 2 θ 5.1: 2 q i q i q i p i x x x p x θ 5.1 x p x θ ϕ z 5.2 L t H i p i q i L (5.6) H 3 dh dt = 0. (5.7) dh dt = i = i = i ( ṗ i q i + p i q i L q i L ) q i q i q i ( ( ) d L ṗ i q i + p i q i q i L ) q i dt q i q i ) (ṗ i q i + p i q i ṗ i q i p i q i = p (5.3) q q p (5.6) q 7 37

39 (5.6) H U q i T q i H = T + U (5.8) T q i a ij T = 1 a ij q i q j ; a ij = a ji (5.9) 2 i,j a ij q U q i p i = L = ( ) T U = a ij q j (5.10) q i q i j p i q i = i i,j (5.6) a ij q i q j = 2T H = 2T (T U) = T + U. 5.2 f(x) 5x x 1 x 2 + 3x 2 2 f(x) = 1 a ij x i x j a ij 2 i,j 5.3 (5.9) a ij a ij a ij T = 1 a ij q i q j 2 ij 5.4 (5.10) 1/2 5.5 L (5.3) p i (5.6) H A H

40 5.1 ( ) q i q i (t) q i (t, α) (5.11) L α Q = q i p i (5.12) α α=0 i p i q i q i (t, α) t α α = 0 q i q i (t, α) α=0 = q i (t). (5.13) L α d ( L ( q i (t, α), q i (t, α), t )) = 0 dα i q i α = α i ( L q i q i α + L ) q i = 0 q i α d dt q i(t, α) = d q i (t, α) dt α ( L q i q i α + L q i d dt ) q i = 0 α α 0 L L = d q i q i dt L (α 0) q i [( ) d L qi + L ( d qi )] = 0 dt q i α α=0 q i dt α α=0 i ( ) ( ) d L q i = d q i p i = 0 dt q i α α=0 dt α α=0 i i 39

41 5.2 ( ) I = t2 L(q, q, t)dt (5.14) t 2 t i t i t i + α q i (t) q i ( t) q i (t) = q i ( t α) H H = i L q i q i L I = = = t 2 t 1 t2 +α +α t2 +α +α L ( q( t), q( t), t ) d t L ( q( t α), q( t α), t ) d t L ( q(t α), q(t α), t ) dt α t t I α di = 0 α = 0 dα 0 = di dα = L ( ) ( ) q 2, q 2, t 2 L q1, q 1, α=0 t2 ( L q i + L ) q i dt q i i q i t2 dl t2 = dt dt [( ) d L q i + L ] d q i dt dt q i q i dt = t2 d dt [ L i i L q i q i t 2 ] dt L i L q i q i = H 40

42 5.6 (5.12) 5.7 (x, y) ( x(α), ȳ(α) ) x(α) = x cos α y sin α, ȳ(α) = x sin α + y cos α (x, y) ( x(α), ȳ(α) ) α Q Q 41

43 6 6.1 q q = q 0 U(q) du(q) d 2 U(q) dq = 0, q=q0 dq 2 > 0 q=q0 U(q) = U(q 0 ) + du dq (q q 0 ) + 1 d 2 U q0 2 dq 2 (q q 0 ) 2 + q0 1 2 kx2 + const. (6.1) k d2 U dq 2 > 0 (6.2) q0 x q q 0 (6.3) T = 1 2 a(q) q2 1 2 a(q 0) q 2 = 1 2 mẋ2 (6.4) m a(q 0 ) > 0 m > 0 L = 1 2 mẋ2 1 2 kx2, (6.5) mẍ = kx, ẍ = ω 2 0x (6.6) ω 0 42 k m. (6.7)

44 (6.6) x = A cos ω 0 t + B sin ω 0 t = C cos ( ω 0 t + δ ) = Re [ De iω 0t ] (6.8) A, B, C, δ D 6.1 (6.8) (C, δ) (A, B) (C, δ) D 6.2 (6.6) x = e iωt ω = ±ω 0 (6.6) x = C 1 e iω 0t + C 2 e iω 0t C 1 C 2 x C 1 C 2 (6.8) V (x, t) U(x) x = 0 V (x, t) V (x, t) = V (0, t) + x x + x=0 xf (t) + const. (6.9) V (0, t) const. V (x, t) F (t) x (6.10) x=0 L = 1 2 mẋ2 1 2 kx2 + xf (t) (6.11) mẍ + kx = F (t) (6.12) F (t) = f cos ωt = Re [ fe iωt] (6.13) (6.12) = + (6.14) 43

45 (6.8) (6.12) (6.12) x = Ee iωt ( ) mω 2 + mω0 2 Ee iωt = fe iωt, E = f m ( ω 2 0 ω 2) for ω ω 0 (6.12) [ ] x = Re De iω0t f + m ( ω0 2 ω 2)eiωt (6.15) ω = ω 0 [( ) ] f x = Re D i t e iω 0t (6.16) 2mω 0 2 t (6.12) 6.3 ω = ω 0 (6.16) (6.12) 6.2 q = (q 1, q 2,, q n ) q = q 0 U q i = 0 (6.17) q=q0 q 0 U(q) = U(q 0 ) U 2 q i q j (q i q 0,i )(q j q 0,j ) + q0 = 1 2 C ijx i x j + const. (6.18) 1 x q q 0 (6.19) 1 n n C ij x i x j = C ij x i x j i=1 j=1 44

46 C ij C ij 2 U q i q j (6.20) q0 T = 1 2 B ij(q) q i q j 1 2 B ij(q 0 )ẋ i ẋ j (6.21) L = 1 2 B ijẋ i ẋ j 1 2 C ijx i x j = 1 2ẋt ˆBẋ 1 2 xt Ĉx (6.22) ˆB (B ij ) Ĉ (C ij) B ij = B ji, C ij = C ji (6.23) 6.4 C ij C ij x i C ij x i x j = x t Ĉx > B ij C ij (6.22) x i p i p i = L ẋ i = B ij ẋ j (6.24) B ij ẍ j + C ij x j = 0 (i = 1, 2,, n) (6.25) x j = a j e iωt (6.26) a j ω a j 2 (6.25) ω 2 B ij a j + C ij a j = 0 (i = 1, 2,, n) (6.27) ω 2 ˆBa = Ĉa (6.28) 2 45

47 (6.28) ω 2 a ω 2 a ˆB Ĉ (6.28) ( ) ω 2 ˆB Ĉ a = 0 a = 0 ( ω 2 ˆB Ĉ ) det ω 2 ˆB Ĉ = 0 (6.29) 3 ω 2 (6.29) n n ω 2 n n ω 2 α (α = 1, 2,, n) ω 2 α ω 2 α (6.28) aα ˆB Ĉ (6.28) ωα 2 aα (1) ω 2 α (2) a α a β a α ˆB a β = 0 (6.30) 4 ˆB Ĉ (3) ω 2 α a α (6.30) a α ˆB a β = δ α,β (6.31) Â Â ( a 1, a 2,, a n) A iα a α i (6.32) Â ˆBÂ = Î (6.33) Î 3 a = ( ω 2 ˆB Ĉ ) 1 0 = 0 a = 0 4 a a a t 46

48 6.6 (6.25) (6.26) x j ω x j 6.7  x = 0 x = 0 det  = (1), (2), (3) (6.28) (ω 2 α, a α ) (6.26) x α j (t) = a α j e iω αt x α (t) = a α e iω αt (6.34) C α n x(t) = C α x α (t) = α=1 n C α a α e iωαt = α=1 n a α C α e iω αt α=1 (6.35) Q α (t) C α e iω αt (6.36) (6.35) x(t) = n a α Q α (t) (6.37) α=1 Q α (6.37) (6.32)  x =  Q x j = a α j Q α (6.38) x j Q α Q α (6.22) L = 1 2ẋ ˆB ẋ 1 2 x Ĉ x (6.39) 47

49 T T = 1 2ẋ 1 ) ˆB ẋ = (Â Q ˆB (Â Q) 2 = 1 2 Q Â ˆB Â Q = 1 2 Q Î Q = α 1 2 Q 2 α (6.40) (6.33) Q α U U = 1 2 x Ĉ x = 1 ) ) (Â Q Ĉ (Â Q 2 = 1 2 Q Â Ĉ Â Q (6.41) Â Ĉ Â = Â Ĉ ( a 1, a 2,, a n) = ( Â Ĉ a 1, Ĉ a2,, Ĉ an) a 1 a 2 ( = ω 2 1 ˆB a 1, ω 2 ˆB 2 a 2,, ω 2 ˆB n a n) = a n ω ω ωn 2 ˆΩ 2 d (6.42) U = 1 2 Q ˆΩ2 d Q = α 1 2 ω2 αq 2 α (6.43) Q (6.40) (6.43) L = n α=1 1 ( ) Q 2 α ω 2 2 αq 2 α (6.44) n P α = L Q α = Q α (6.45) Q α = ω 2 αq α (6.46)

50 6.9 ω 2 ω ±ω α (6.34) (6.35) +ω α 6.10 (6.33) (6.42) 49

51 L(q, q, t) = T U (7.1) ( t2 ) δ L(q, q, t)dt = 0 (7.2) d L dt q L q = 0 (7.3) (7.3) q p L q ṗ = L q (7.4) (7.5) L (q, q, t) q (7.4) p (q, p, t) L (5.6) H H p q L(q, q, t) (7.6) L dl = L q H L L dq + d q + q t dt = ṗ dq + p d q + L t dh = p d q + q dp dl = ṗ dq + q dp L t 50 dt (7.7) dt (7.8)

52 (q, p, t) H (7.4) q q = q(q, p, t) (7.9) (7.6) H (q, p, t) H(q, p, t) 1 H(q, p, t) dh = H q (7.8) dq + H p dp + H t dt q = H p, ṗ = H q, (7.10) H t = L t q q p (7.10) (7.4) L t H t H dh dt = H p ṗ + H q = q ṗ ṗ q = 0. q 7.1 (7.8) 7.2 H (7.6) (7.9) H/ q H/ p (7.10) 7.3 A H p = ( ) p q L(q, q, t) = ( ) p q ( ) L(q, q, t) = q 0 p p p 7.4 L = (1/2)mẋ 2 U(x) H 7.5 H L = 1 2 m [ (Ẋ ωy ) 2 + (Ẏ + ωx ) 2 ] U(X, Y ) H H 1 (5.8) H 51

53 7.2 (3.3) (7.10) t [, t 2 ] ( q(t), p(t) ) ( t2 ( ) ) δ p q H(q, p, t) dt = 0 (7.11) q(t) p(t) (7.11) F (q, q, p, t) d F dt q = F q d F dt ṗ = F p ṗ = H q 0 = q H p (7.12) (7.10) (7.2) L (7.6) 2 q(t) ( q(t), p(t) ) q(t) q(t) p L/ q q(t) p(t) q p (7.12) q( ) q(t 2 ) q(t) δq (q( ), p( )) (q(t 2 ), p(t 2 )) 2 52

54 q δq p δp (7.11) ṗ (7.12) q p ( δq(t1 ), δp( ) ) = ( δq(t 2 ), δp(t 2 ) ) = 0 (7.13) 3 (3.1) (7.11) 7.7 (7.11) ṗ q H(q, p, t) (7.10) 7.3 q i p i u(q, p) v(q, p) {u, v} ( u v u ) v (7.14) q i i p i p i q i 3 Classical Mechanics third ed. (Goldstein, Poole, and Safko, 2002 ) 8.5 (p.353) 53

55 {, } dq i = H = {q i, H} (7.15) dt p i dp i dt = H = {p i, H} (7.16) q i (q, p, t) F (q, p, t) df dt = ( F q i + F ) ṗ i + F q i i p i t = ( F H F ) H + F q i i p i p i q i t = {F, H} + F (7.17) t t F {F, H} = 0 (7.18) 7.8 {q i, q j } = {p i, p j } = 0, {q i, p j } = δ i,j 7.9 H = 1 ( ) p 2 2m x + p 2 y + p 2 z + U(r); r = x2 + y 2 + z 2 l r p (7.3) q q = q(q, t) Q = Q(q, t) (7.19) Q Q (7.3) Q 3.1 (7.19) 54

56 (7.3) Q (7.10) (7.10) (7.19) Q = Q(q, p, t), P = P (q, p, t) (7.20) (7.20) (7.10) K(Q, P, t) (7.10) Q = K P, P = K Q (7.21) K(Q, P, t) (7.10) (7.21) (q, p) (Q, P ) (7.10) (7.11) (7.11) (Q, P ) p q H(q, p, t) = P Q K(Q, P, t) (7.22) ( t2 ( ) ) δ P Q K(Q, P, t) dt = 0 (7.23) (7.21) 55

57 (7.22) 4 (7.22) t p q H(q, p, t) = P Q K(Q, P, t) + d F (q, p, Q, P, t) (7.24) dt (Q, P ) (7.21) F (q, p, Q, P, t) ( t2 δ ( P Q K(Q, P, t) + df dt df/dt t2 ) ) dt = 0 (7.25) df [ ] dt dt = t2 F (q, p, Q, P, t) (7.26) (q, p, Q, P ) t = t 2 t (, t 2 ) (7.25) [ ] t2 P δq + δf + ( t2 ( P + K Q ) ( δq + Q K ) ) δp dt = 0 (7.27) P (7.13) (q, p) ( δq(t1 ), δp ( ) ) = ( δq(t 2 ), δp (t 2 ) ) = 0 (7.28) (7.27) [ [ ] t2 P δq + δf = P δq(t) + F F δq(t) + q p δp(t) + F F δq(t) + δp (t) Q P (7.27) (7.21) ] t2 = 0 (q, p) (7.24) (Q, P ) df = p dq P dq + (K H)dt (7.29) F 4n (q, p) (Q, P ) 2n 5 F 4 (7.22) q Q q Q (7.19) 5 (q, p) (Q, P ) n (q i, p i ), (Q i, P i ) (i = 1, 2,, n) 56

58 1. F q, Q t F = W 1 (q, Q, t) 2. F = P Q + W 2 (q, P, t) 3. F = pq + W 3 (p, Q, t) 4. F = pq P Q + W 4 (p, P, t) 1. F = W 1 (q, Q, t) (7.29) F (q, Q, t) F (7.29) F = W 1 (q, Q, t) (7.30) dw 1 (q, Q, t) = p dq P dq + (K H)dt (7.31) p = W 1(q, Q, t) q P = W 1(q, Q, t) Q K = H + W 1(q, Q, t) t (7.32) (q, p) (Q, P ) K F W 1 2. F = P Q + W 2 (q, P, t) F df = P dq Q dp + dw 2 (q, P, t) (7.29) dw 2 (q, P, t) = p dq + Q dp + (K H)dt (7.33) p = W 2(q, P, t) q Q = W 2(q, P, t) P K = H + W 2(q, P, t) t (7.34) 57

59 3. F = pq + W 3 (p, Q, t) F df = p dq + q dp + dw 3 (p, Q, t) (7.29) dw 3 (p, Q, t) = q dp P dq + (K H)dt (7.35) q = W 3(p, Q, t) p P = W 3(p, Q, t) Q K = H + W 3(p, Q, t) t (7.36) 4. F = pq P Q + W 4 (p, P, t) F df = p dq + q dp P dq Q dp + dw 4 (p, P, t) (7.29) dw 4 (p, P, t) = q dp + Q dp + (K H)dt (7.37) q = W 4(p, P, t) p Q = W 4(p, P, t) P K = H + W 4(p, P, t) t (7.38) W i (i = 1 4) 7.10 (7.25) (7.27) (7.27) 7.11 W 1 = qq (Q, P ) 7.12 Q i = f i (q, t) (i = 1,, n) W 2 (q, P ) W 2 (q, P ) (7.20) Q p (7.22) 6 58

60 7.4.2 (7.34) W 2 (q, P ) = qp (7.39) p = W 2 q = P, Q = W 2 P = q, K = H (7.40) Q = q + δq, P = p + δp (7.41) (7.39) W 2 (q, P ) = qp + ϵg(q, P ) (7.42) (7.34) p = P + ϵ G(q, P ) q Q = q + ϵ G(q, P ) P G(q, p) P = p ϵ q G(q, p) Q = q + ϵ p (7.43) ϵ P p G(q, p) (7.43) G G(q, p) δp = ϵ q G(q, p) δq = +ϵ p = ϵ{p, G} = ϵ{q, G} (7.44) G = H H ϵ = t (7.43) P Q = p t H q = q + t H p = p + ṗ t = q + q t (7.45) 59

61 H 7.14 (7.39) W i 7.15 G(q, p) (1) G = p x, (2) G = l z xp y yp x ( z ) 7.16 (7.44) G p δq q δq L 5.3 Q G 7.17 G(q, p) (7.43) g(q, p) δg g(q, P ) g(q, p) δg = ϵ{g, G} g = p q (7.44) 7.18 H G n Ω J n dq 1 dq n dp 1 dp n (7.46) Ω 2n (q, p) j(q, p) 2n j(q, p) = 0 60

62 j(q, p) (q, p) j(q, p) ( q, ṗ) j = i = i ( qi + ṗ ) i q i p i ( H ) H = 0 q i p i p i q i (7.14) (q, p) {u, v} q,p i ( u v u ) v q i p i p i q i (7.47) u, v, w (q, p) 1. {u, v} = {v, u} (7.48) 2. c 1, c 2 {c 1 u + c 2 v, w} = c 1 {u, w} + c 2 {v, w} {w, c 1 u + c 2 v} = c 1 {w, u} + c 2 {w, v} (7.49) 3. {u v, w} = u{v, w} + {u, w}v {w, u v} = u{w, v} + {w, u}v (7.50) {q i, u} = u p i, {p i, u} = u q i (7.51) {u, {v, w}} + {w, {u, v}} + {v, {w, u}} = 0 (7.52)

63 7.5.1 (7.52) F (q, p, t) G(q, p, t) {F, G} (i) F, G t (7.52) {H, {F, G}} + {F, {G, H}} + {G, {H, F }} = 0 F G (7.18) {F, G} {F, H} = {G, H} = 0 {H, {F, G}} = 0 (ii) F, G t {F, G} (7.17) d dt {F, G} = {{F, G}, H} + {F, G} t { } { F = {{G, H}, F } {{H, F }, G} + t, G + F, G } t { = F, {G, H} + G } { + {F, H} + F } t t, G { = F, dg } { } df + dt dt, G = (7.47) {q i, q j } q,p = {p i, p j } q,p = 0, {q i, p j } q,p = δ i,j (7.53) (q i, p i ) (i = 1, 2,, n) Q i = Q i (q, p), P i = P i (q, p), (i = 1, 2,, n) (7.54) (Q, P ) (Q, P ) {Q i, Q j } q,p = {P i, P j } q,p = 0, {Q i, P j } q,p = δ i,j (7.55) 62

64 n = 1 (7.55) {Q, Q} q,p = {P, P } q,p = 0 (7.47) {Q, P } q,p = 1 (7.56) (Q, P ) W 1 (q, Q) (7.54) p = W 1(q, Q) q ϕ(q, Q), P = W 1(q, Q) Q ψ(q, Q) (7.57) P Q (q, p) P p = ψ Q Q p, P q = ψ q + ψ Q Q q (7.56) {Q, P } q,p = Q q = Q q = ψ Q = Q p P p Q P p q ψ Q Q p Q ( ψ p q + ψ Q ( Q Q q p Q Q p q ψ q ) Q q ) Q ψ p q (7.58) Q = Q(q, p) = Q ( q, ϕ(q, Q) ) 1 = Q Q = Q ϕ p q Q (7.57) ϕ Q = 2 W 1 Q q = 2 W 1 q Q = ψ q (7.59) 1 = Q ϕ p q Q = Q ψ p q q (7.59) (7.60) (7.61) (7.58) (7.56) 63

65 (Q, P ) (7.54) p = W 1(q, Q), P = W 1(q, Q) q Q (7.62) W 1 (q, Q) (7.54) p = ϕ(q, Q), P = ψ(q, Q) (7.63) ϕ Q = ψ q (7.64) ϕ(q, Q)dq ψ(q, Q)dQ = dw 1 (q, Q) W 1 (q, Q) (7.56) (7.58) 1 = {Q, P } q,p = Q ψ (7.65) p q (7.54) (7.63) Q(q, p) = Q(q, ϕ(q, Q)) 1 = Q Q = Q p ϕ Q (7.65) (7.64) (7.66) (q, p) (u, v) (q, p) (Q, P ) {u, v} q,p = {u, v} Q,P (7.67) {u, v} q,p = u q k = u q k = v Q l v u v p k p k q ( k v Q l + v ) P l Q l p k P l p k ( u Q l u Q l q k p k p k q k u ( v p k ) + v P l Q l + v ) P l Q l q k P l q k ( u P l u ) P l q k p k p k q k = v Q l {u, Q l } q,p + v P l {u, P l } q,p. (7.68) 64

66 u = Q s (7.55) {Q s, v} q,p = v Q l {Q s, Q l } q,p + v P l {Q s, P l } q,p u = P s = v P l δ s,l = v P s (7.69) {P s, v} q,p = v Q s (7.70) v u (7.68) {u, v} q,p = + v Q l ( {Q l, u} q,p ) + v P l ( {P l, u} q,p ) = v u + v u Q l P l P l Q l = {v, u} Q,P = {u, v} Q,P {u, v} 65

67 8 8.1 q c L p c q c H ṗ c = H q c = 0 ϕ z p ϕ (Q, P ) K P P i P i = K(P ) = 0 P i = α i (8.1) Q i Q i P i (8.1) Q i = K(P ) P i v i (α) Q i = v i (α)t + β i (8.2) β i α i K = 0 K Q P K = 0 66

68 P i = 0 Q i = 0 P i = α i Q i = β i (8.3) K = (q i, p i ), H(q, p, t) (8.4) W (q, P, t) W 2 (q, P, t) p i = W (q, P, t) q i, Q i = W (q, P, t) P i (8.5) (Q, P ) K = H(q, p, t) + W (q, P, t) t = 0 (8.6) W K (8.6) (8.5) ( H q, W ) q, t + W = 0 (8.7) t W (q, P, t) n (8.7) n q t n + 1 n + 1 (8.7) W W q t (8.7) P 67

69 8.2.1 (8.7) n + 1 α i (i = 1,, n + 1) W (q 1,, q n, α 1,, α n, t) + α n+1 (8.8) α n+1 W P i (q, p) (8.5) P i = α i ; n = 1,, n (8.9) p i = W (q 1,, q n, α 1,, α n, t) q i (8.10) Q i = W = W (q 1,, q n, α 1,, α n, t) = β i P i α i (8.11) (8.11) Q i β i (8.10) (8.11) (q, p) 2n (α, β) t = 0 (q, p) (8.10) (8.11) (8.7) q t H H t H (8.7) ( W t + H q, W ) = 0 (8.12) q q t W (q, t) = S(q) + Θ(t) (8.13) (8.13) (8.12) ( H q, S ) = E (8.14) q Θ = E Θ = Et + (8.15) t 68

70 E S 1 (8.14) E n W n 1 α i (n = 2,, n) W S(q 1,, q n, α 2,, α n ; E) + α 1 (8.16) W = Et + S(q 1,, q n, α 2,, α n ; E) + α 1 (8.17) P i W E P 1 P 1 = E, P i = α i (i = 2,, n) (8.18) (8.5) (8.6) p i = W q i Q i = W P i K = H + W t = S q i (8.19) { Q1 = t + S E = β 1 Q i = S α i = β i (i = 2,, n) (8.20) = 0 E = H(q, p) (8.21) 2n E, α, β (8.21) E (8.20) β 1 (8.20) (i = 2,, n) t q q n (8.12) q n W (q) = S(q 1,, q n 1 ) + Φ(q n ) Et (8.22) t ( ) S S Φ H q 1,, q n 1,,,, = E (8.23) q 1 q n 1 q n 1 S W 69

71 q n Φ q i ( H q 1,, q n 1, S S ),,, L = E (8.24) q 1 q n 1 Φ(q n ) q n = L Φ(q n ) = Lq n + (8.25) L q n p n W (q, α, t) (q, p) H(q, p, t) ( H q, W ) q, t + W = 0 (8.26) t W (q, α, t) p i = W (q, α, t) q i, β i = W (q, α, t) α i (i = 1, 2,, n) (8.27) (q, p) q i = H p i, ṗ i = H q i (i = 1, 2,, n) (8.28) α i (8.26) W (q, α, t) β i n = 1 2 q (8.27) 2 t α β q(t) t 0 = q 2 W q α + 2 W (8.29) t α ( ) 2 1 W 2 W q = q α t α (8.30) (8.26) α W α H(q, p, t) p = W/ q α 2 W α q 2 i H(q, p, t) p + 2 W p= W/ q α t = 0 (8.31) 70

72 (8.30) (8.31) 2 W/ t α ( ) 2 1 W 2 W H(q, p, t) q = q α α q p = H (8.32) p= W/ q p 3 (8.28) p (8.27) t ṗ = q 2 W q W t q (8.33) (8.26) q H q + 2 W H q 2 p + 2 W p= W/ q q t = 0 (8.34) 2 W/ q t ( ṗ = q H ) 2 W p q 2 H q = H q (8.35) (8.32) (8.28) n n = H = 1 2m p2 x (8.7) W t + 1 ( ) 2 W = 0 2m x t W (x, t) = Θ(t) + S(x) Θ(t) + 1 ( 2 S (x)) = 0 2m 3 W/ q = p 71

73 1 t 2 x t x E E 1 ( 2 S (x)) = E 2m S(x) = ± 2mE x + Θ(t) = E Θ(t) = Et + W (x, t) = Et ± 2mE x + E P (8.19) (8.21) p x = W x = ± 2mE Q = W P = W E = t ± m 2E x = β ( ) K = H + W t = H E = 0 H = E E 2 2E ( ) x = ± t + β m y H = 1 2m p2 y + mgy ( ) 2 1 W + mgy + W 2m y t = 0 t W (y, t) = S(y) + Θ(t) 72

74 E ( ) 2 1 S + mgy = E 2m y Θ t = E Θ(t) = Et + const. S(y) = 2 1 2m (E mgy) 3/2 + const. 3 mg W (y, t) = 2 1 2m (E mgy) 3/2 Et + const. 3 mg E P p y = W y = ± 2m ( E mgy ) Q = W P = W 2 E == 1 E mgy t = β g m β Q 1 p y y 1 2m p2 y + mgy = E 2 y = 1 2 g(t + β)2 + E mg x H = 1 ( ) p 2 2m x + p 2 y + mgy W ( ( W ) 2 ( ) ) 2 1 W + + mgy + W = 0 (8.36) 2m x y t H t x x t W = Et + αx + S(y) 73

75 E α (8.36) ( ( ) ) 2 1 S α mgy E = 0 2m y ( ) S y = ± 2m E α2 2m mgy W = Et + αx ± dy 2m ( ) E α2 2m mgy (8.37) E α P 1 = E, P 2 = α β 1 = Q 1 = W P 1 = W E = t ± β 2 = Q 2 = W = W P 2 α = x ± m dy ( ) (8.38) 2m E α2 2m mgy α dy ( ) (8.39) 2m E α2 2m mgy β i y t x y y = h 1 2 g( t + β 1 ) 2 y = h 1 2 g ( m α ( x β2 ) ) 2 h 1 ) (E α2 2m 2m β i α p x H = 1 2m p kq2 = 1 ( p 2 + m 2 ω 2 q 2) ; ω k/m 2m 74

76 [ ( W ) ] m 2 ω 2 q 2 + W 2m q t = 0 W = S(q) + Θ(t) 1 2m [ ( S ) ] 2 + m 2 ω 2 q 2 = E (8.40) q Θ(t) = Et K E K = H + W E = 0 H = E (8.40) S S 2mE q = ± 2mE m 2 ω 2 q 2 S(q) = ± m2 ω 2 q 2 dq p = W q = ± 2mE m 2 ω 2 q 2 1 ) (p 2 + m 2 ω 2 q 2 = E 2m Q = W P = S E t = ± m 2mE m2 ω 2 q 2 dq t = β 2 q = ± 1 2E ω m sin( ω(t + β) ) 1 p = ± 2mE cos ( ω(t + β) ) ± β 4 ( ) H = 1 ( ) p 2 r + p2 θ + V (r) (8.41) 2m r 2 4 β β + π/ω 75

77 HJ ( ( W ) m r r 2 ( W θ ) 2 ) + V (r) + W t = 0 (8.42) θ t W W = Et + lθ + S(r) (8.43) E l HJ 1 2m ( ( S ) ) 2 + l2 + V (r) = E (8.44) r r 2 S(r) S(r) = ± dr 2m ( E V (r) ) l 2 /r 2 (8.45) E l P 1 = E, P 2 = l Q 1 = W P 1 = W E, Q 2 = W = W P 2 θ Q i = β i β 1 = W E, β 2 = W θ β 1 = t ± m dr 2m ( E V (r) ) (8.46) l 2 /r 2 β 2 = θ ± l/r 2 dr 2m ( E V (r) ) (8.47) l 2 /r 2 r t r θ 76

78 : V (r) = k r (8.47) 1 θ β 2 = du (2m/l )( 2 E + ku ) ; u 1 u 2 r ( l 2 = ± cos 1 / ( mk r ) ) l2 E/(mk 2 ) 1 r = mk ( 1 ± ϵ cos ( ) ) θ θ l 2 0 ; ϵ 1 + 2l2 E mk 2 (8.48) θ 0 β 2 ϵ > 1 (E > 0) ϵ = 1 (E = 0) 0 < ϵ < 1 ( mk 2 /2l 2 < E < 0 ) ϵ = 0 ( E = mk 2 /2l 2) 8.4 n n (8.27) 2 t β j 0 = q j 2 W q j α i + 2 W t α i (8.49) δ ji = q l β j (8.50) 2 W q l α i (8.50) A ij q j β i, B ij 2 W q i α j (8.51) Â = ˆB 1 Â ˆB = ˆB Â = Î (8.52) 77

79 q l β i 2 W q l α j = 2 W q i α l q j β l = δ ij (8.53) (8.49) Â ( ) 2 W 0 = q j + 2 W qk q j α i t α i β i = q j δ jk + 2 W q k t α i β i q k = 2 W t α i q k β i (8.54) (8.26) α i q k = q k β i 2 W H + 2 W α i q j p j α i t = 0 (8.55) 2 W α i q j H H = δ kj = H (8.56) p j p j p k (8.53) p (8.27) t ṗ l = q i 2 W + 2 W (8.57) q i q l t q l (8.26) q l H q l + 2 W q l q i H p i + 2 W q l t = 0 (8.58) ( ) 2 W H ṗ l = q i + 2 W H q i q l q l q l q i p i ( = q i H ) 2 W H = H (8.59) p i q i q l q l q l 78

80 A A.1 m r = qe + qṙ B (A.1) E = grad Φ A t B = rot A (A.2) (A.3) Φ A (A.2) B A.1.1 (A.1) L = 1 2 m ṙ2 + q ( ṙ A Φ ) (A.4) (A.4) d L = d dt ẋ j dt (m ẋ j + qa j ) = m ẍ j + q ( L A i = q ẋ i Φ ) x j x j x j ( Aj ẋ i + A ) j x i t 79

81 ( ( Ai mẍ j = q ẋ i A ) ) j Φ A j x j x i x j t (A.5) (A.2) (A.3) (A.1) 3.2 I[r] = t2 L dt (A.6) p = L ṙ = m ṙ + qa mṙ (A.7) H = 1 ( ) 2 p qa + Φ (A.8) 2m A.1 (A.5) (A.1) A.2 H (A.8) A.1.2 Λ { Φ A Φ = Φ Λ t A = A + grad Λ (A.9) (A.2) (A.3) L L = 1 2 m ṙ2 + q ( ṙ A Φ ) ( = L + q ṙ grad Λ + Λ ) t = L + q dλ dt (A.10) (A.10) 80

82 E B dλ/dt t2 t2 ( δ L dt = δ L + q dλ ) t2 dt = δ L dt (A.11) dt (A.10) Φ A L Φ = Φ Γ t A = A + grad Γ L = L + q dγ dt (A.12) (A.10) L Φ A L L = 1 2 m ṙ2 + q ( ṙ A Φ ) (A.13) A.2 F r F r = k v (A.14) k F r U(r) m r = U + F r (A.15) (A.14) R R 1 2 k v2 = 1 2 k ṙ2 F r = R ṙ 81 (A.16) (A.17)

83 (A.15) d L L = R, dt ẋ i x i ẋ i ( r (x1, x 2, x 3 ) ) (A.18) L L = 1 2 m ṙ2 U(r) (A.19) (A.16) R F r W dw = F r dr = F r v dt = kv 2 dt = 2R dt 2R q j = q j (x, t), x i = x i (q, t) (A.20) (A.18) d L L = Q j dt q j q j (A.21) Q j (A.14) Q j = F r,i x i q j = R ẋ i x i q j (A.22) ẋ i = x i q j q j + x i t ẋ i q j = x i q j Q j = R ẋ i ẋ i q j = R q j (A.21) q d L L = R dt q j q j q j (A.23) (A.18) A.3 H = p ṙ L L dh dt = 2R R ṙ 2 82

B ver B

B ver B B ver. 2017.02.24 B Contents 1 11 1.1....................... 11 1.1.1............. 11 1.1.2.......................... 12 1.2............................. 14 1.2.1................ 14 1.2.2.......................

More information

C : q i (t) C : q i (t) q i (t) q i(t) q i(t) q i (t)+δq i (t) (2) δq i (t) δq i (t) C, C δq i (t 0 )0, δq i (t 1 ) 0 (3) δs S[C ] S[C] t1 t 0 t1 t 0

C : q i (t) C : q i (t) q i (t) q i(t) q i(t) q i (t)+δq i (t) (2) δq i (t) δq i (t) C, C δq i (t 0 )0, δq i (t 1 ) 0 (3) δs S[C ] S[C] t1 t 0 t1 t 0 1 2003 4 24 ( ) 1 1.1 q i (i 1,,N) N [ ] t t 0 q i (t 0 )q 0 i t 1 q i (t 1 )q 1 i t 0 t t 1 t t 0 q 0 i t 1 q 1 i S[q(t)] t1 t 0 L(q(t), q(t),t)dt (1) S[q(t)] L(q(t), q(t),t) q 1.,q N q 1,, q N t C :

More information

* 1 2014 7 8 *1 iii 1. Newton 1 1.1 Newton........................... 1 1.2............................. 4 1.3................................. 5 2. 9 2.1......................... 9 2.2........................

More information

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin 2 2.1 F (t) 2.1.1 mẍ + kx = F (t). m ẍ + ω 2 x = F (t)/m ω = k/m. 1 : (ẋ, x) x = A sin ωt, ẋ = Aω cos ωt 1 2-1 x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ

More information

08-Note2-web

08-Note2-web r(t) t r(t) O v(t) = dr(t) dt a(t) = dv(t) dt = d2 r(t) dt 2 r(t), v(t), a(t) t dr(t) dt r(t) =(x(t),y(t),z(t)) = d 2 r(t) dt 2 = ( dx(t) dt ( d 2 x(t) dt 2, dy(t), dz(t) dt dt ), d2 y(t) dt 2, d2 z(t)

More information

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ SO(3) 71 5.7 5.7.1 1 ħ L k l k l k = iϵ kij x i j (5.117) l k SO(3) l z l ± = l 1 ± il = i(y z z y ) ± (z x x z ) = ( x iy) z ± z( x ± i y ) = X ± z ± z (5.118) l z = i(x y y x ) = 1 [(x + iy)( x i y )

More information

ver F = i f i m r = F r = 0 F = 0 X = Y = Z = 0 (1) δr = (δx, δy, δz) F δw δw = F δr = Xδx + Y δy + Zδz = 0 (2) δr (2) 1 (1) (2 n (X i δx

ver F = i f i m r = F r = 0 F = 0 X = Y = Z = 0 (1) δr = (δx, δy, δz) F δw δw = F δr = Xδx + Y δy + Zδz = 0 (2) δr (2) 1 (1) (2 n (X i δx ver. 1.0 18 6 20 F = f m r = F r = 0 F = 0 X = Y = Z = 0 (1 δr = (δx, δy, δz F δw δw = F δr = Xδx + Y δy + Zδz = 0 (2 δr (2 1 (1 (2 n (X δx + Y δy + Z δz = 0 (3 1 F F = (X, Y, Z δr = (δx, δy, δz S δr δw

More information

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) 4 4 ) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) a b a b = 6i j 4 b c b c 9) a b = 4 a b) c = 7

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a = II 6 ishimori@phys.titech.ac.jp 6.. 5.4.. f Rx = f Lx = fx fx + lim = lim x x + x x f c = f x + x < c < x x x + lim x x fx fx x x = lim x x f c = f x x < c < x cosmx cosxdx = {cosm x + cosm + x} dx = [

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

IA

IA IA 31 4 11 1 1 4 1.1 Planck.............................. 4 1. Bohr.................................... 5 1.3..................................... 6 8.1................................... 8....................................

More information

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d m v = mg + kv m v = mg k v v m v = mg + kv α = mg k v = α e rt + e rt m v = mg + kv v mg + kv = m v α + v = k m v (v α (v + α = k m ˆ ( v α ˆ αk v = m v + α ln v α v + α = αk m t + C v α v + α = e αk m

More information

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d A 2. x F (t) =f sin ωt x(0) = ẋ(0) = 0 ω θ sin θ θ 3! θ3 v = f mω cos ωt x = f mω (t sin ωt) ω t 0 = f ( cos ωt) mω x ma2-2 t ω x f (t mω ω (ωt ) 6 (ωt)3 = f 6m ωt3 2.2 u ( v w) = v ( w u) = w ( u v) ma22-9

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1.

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1. 1.1 1. 1.3.1..3.4 3.1 3. 3.3 4.1 4. 4.3 5.1 5. 5.3 6.1 6. 6.3 7.1 7. 7.3 1 1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N

More information

chap1.dvi

chap1.dvi 1 1 007 1 e iθ = cos θ + isin θ 1) θ = π e iπ + 1 = 0 1 ) 3 11 f 0 r 1 1 ) k f k = 1 + r) k f 0 f k k = 01) f k+1 = 1 + r)f k ) f k+1 f k = rf k 3) 1 ) ) ) 1+r/)f 0 1 1 + r/) f 0 = 1 + r + r /4)f 0 1 f

More information

C (q, p) (1)(2) C (Q, P ) ( Qi (q, p) P i (q, p) dq j + Q ) i(q, p) dp j P i dq i (5) q j p j C i,j1 (q,p) C D C (Q,P) D C Phase Space (1)(2) C p i dq

C (q, p) (1)(2) C (Q, P ) ( Qi (q, p) P i (q, p) dq j + Q ) i(q, p) dp j P i dq i (5) q j p j C i,j1 (q,p) C D C (Q,P) D C Phase Space (1)(2) C p i dq 7 2003 6 26 ( ) 5 5.1 F K 0 (q 1,,q N,p 1,,p N ) (Q 1,,Q N,P 1,,P N ) Q i Q i (q, p). (1) P i P i (q, p), (2) (p i dq i P i dq i )df. (3) [ ] Q αq + βp, P γq + δp α, β, γ, δ [ ] PdQ pdq (γq + δp)(αdq +

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

dynamics-solution2.dvi

dynamics-solution2.dvi 1 1. (1) a + b = i +3i + k () a b =5i 5j +3k (3) a b =1 (4) a b = 7i j +1k. a = 14 l =/ 14, m=1/ 14, n=3/ 14 3. 4. 5. df (t) d [a(t)e(t)] =ti +9t j +4k, = d a(t) d[a(t)e(t)] e(t)+ da(t) d f (t) =i +18tj

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

K E N Z OU

K E N Z OU K E N Z OU 11 1 1 1.1..................................... 1.1.1............................ 1.1..................................................................................... 4 1.........................................

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 -

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 - M3............................................................................................ 3.3................................................... 3 6........................................... 6..........................................

More information

215 11 13 1 2 1.1....................... 2 1.2.................... 2 1.3..................... 2 1.4...................... 3 1.5............... 3 1.6........................... 4 1.7.................. 4

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

I 1

I 1 I 1 1 1.1 1. 3 m = 3 1 7 µm. cm = 1 4 km 3. 1 m = 1 1 5 cm 4. 5 cm 3 = 5 1 15 km 3 5. 1 = 36 6. 1 = 8.64 1 4 7. 1 = 3.15 1 7 1 =3 1 7 1 3 π 1. 1. 1 m + 1 cm = 1.1 m. 1 hr + 64 sec = 1 4 sec 3. 3. 1 5 kg

More information

2 1 x 2 x 2 = RT 3πηaN A t (1.2) R/N A N A N A = N A m n(z) = n exp ( ) m gz k B T (1.3) z n z = m = m ρgv k B = erg K 1 R =

2 1 x 2 x 2 = RT 3πηaN A t (1.2) R/N A N A N A = N A m n(z) = n exp ( ) m gz k B T (1.3) z n z = m = m ρgv k B = erg K 1 R = 1 1 1.1 1827 *1 195 *2 x 2 t x 2 = 2Dt D RT D = RT N A 1 6πaη (1.1) D N A a η 198 *3 ( a =.212µ) *1 Robert Brown (1773-1858. *2 Albert Einstein (1879-1955 *3 Jean Baptiste Perrin (187-1942 2 1 x 2 x 2

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

() (, y) E(, y) () E(, y) (3) q ( ) () E(, y) = k q q (, y) () E(, y) = k r r (3).3 [.7 ] f y = f y () f(, y) = y () f(, y) = tan y y ( ) () f y = f y

() (, y) E(, y) () E(, y) (3) q ( ) () E(, y) = k q q (, y) () E(, y) = k r r (3).3 [.7 ] f y = f y () f(, y) = y () f(, y) = tan y y ( ) () f y = f y 5. [. ] z = f(, y) () z = 3 4 y + y + 3y () z = y (3) z = sin( y) (4) z = cos y (5) z = 4y (6) z = tan y (7) z = log( + y ) (8) z = tan y + + y ( ) () z = 3 8y + y z y = 4 + + 6y () z = y z y = (3) z =

More information

d (K + U) = v [ma F(r)] = (2.4.4) t = t r(t ) = r t 1 r(t 1 ) = r 1 U(r 1 ) U(r ) = t1 t du t1 = t F(r(t)) dr(t) r1 = F dr (2.4.5) r F 2 F ( F) r A r

d (K + U) = v [ma F(r)] = (2.4.4) t = t r(t ) = r t 1 r(t 1 ) = r 1 U(r 1 ) U(r ) = t1 t du t1 = t F(r(t)) dr(t) r1 = F dr (2.4.5) r F 2 F ( F) r A r 2.4 ( ) U(r) ( ) ( ) U F(r) = x, U y, U = U(r) (2.4.1) z 2 1 K = mv 2 /2 dk = d ( ) 1 2 mv2 = mv dv = v (ma) (2.4.2) ( ) U(r(t)) r(t) r(t) + dr(t) du du = U(r(t) + dr(t)) U(r(t)) = U x = U(r(t)) dr(t)

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

1

1 Chapter Fgure.: x x s T = 2 mv2 mgx = 0 (.) s = X 0 x 0 x x v = 2gx + + ( ) 2 2 y x 2 ( ) 2 2 y x 2 /2gx (.2) y(x) 2 . S = L(t, r, ṙ) r(t) ṙ = r L(t, r, ṙ) t, r, ṙ L x t r, ṙ r + δr, ṙ + δṙ δs δs = δr

More information

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g( 06 5.. ( y = x x y 5 y 5 = (x y = x + ( y = x + y = x y.. ( Y = C + I = 50 + 0.5Y + 50 r r = 00 0.5Y ( L = M Y r = 00 r = 0.5Y 50 (3 00 0.5Y = 0.5Y 50 Y = 50, r = 5 .3. (x, x = (, u = = 4 (, x x = 4 x,

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

1 3 1.1.......................... 3 1............................... 3 1.3....................... 5 1.4.......................... 6 1.5........................ 7 8.1......................... 8..............................

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

Gmech08.dvi

Gmech08.dvi 145 13 13.1 13.1.1 0 m mg S 13.1 F 13.1 F /m S F F 13.1 F mg S F F mg 13.1: m d2 r 2 = F + F = 0 (13.1) 146 13 F = F (13.2) S S S S S P r S P r r = r 0 + r (13.3) r 0 S S m d2 r 2 = F (13.4) (13.3) d 2

More information

sec13.dvi

sec13.dvi 13 13.1 O r F R = m d 2 r dt 2 m r m = F = m r M M d2 R dt 2 = m d 2 r dt 2 = F = F (13.1) F O L = r p = m r ṙ dl dt = m ṙ ṙ + m r r = r (m r ) = r F N. (13.2) N N = R F 13.2 O ˆn ω L O r u u = ω r 1 1:

More information

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c)   yoshioka/education-09.html pdf 1 2009 1 ( ) ( 40 )+( 60 ) 1 1. 2. Schrödinger 3. (a) (b) (c) http://goofy.phys.nara-wu.ac.jp/ yoshioka/education-09.html pdf 1 1. ( photon) ν λ = c ν (c = 3.0 108 /m : ) ɛ = hν (1) p = hν/c = h/λ (2) h

More information

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d )

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d ) 23 M R M ϕ : R M M ϕt, x) ϕ t x) ϕ s ϕ t ϕ s+t, ϕ 0 id M M ϕ t M ξ ξ ϕ t d ϕ tx) ξϕ t x)) U, x 1,...,x n )) ϕ t x) ϕ 1) t x),...,ϕ n) t x)), ξx) ξ i x) d ϕi) t x) ξ i ϕ t x)) M f ϕ t f)x) f ϕ t )x) fϕ

More information

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ II p = mv p x > h/4π λ = h p m v Ψ 2 Ψ Ψ Ψ 2 0 x P'(x) m d 2 x = mω 2 x = kx = F(x) dt 2 x = cos(ωt + φ) mω 2 = k ω = m k v = dx = -ωsin(ωt + φ) dt = d 2 x dt 2 0 y v θ P(x,y) θ = ωt + φ ν = ω [Hz] 2π

More information

23 7 28 i i 1 1 1.1................................... 2 1.2............................... 3 1.2.1.................................... 3 1.2.2............................... 4 1.2.3 SI..............................

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z I 1 m 2 l k 2 x = 0 x 1 x 1 2 x 2 g x x 2 x 1 m k m 1-1. L x 1, x 2, ẋ 1, ẋ 2 ẋ 1 x = 0 1-2. 2 Q = x 1 + x 2 2 q = x 2 x 1 l L Q, q, Q, q M = 2m µ = m 2 1-3. Q q 1-4. 2 x 2 = h 1 x 1 t = 0 2 1 t x 1 (t)

More information

I ( ) 2019

I ( ) 2019 I ( ) 2019 i 1 I,, III,, 1,,,, III,,,, (1 ) (,,, ), :...,, : NHK... NHK, (YouTube ),!!, manaba http://pen.envr.tsukuba.ac.jp/lec/physics/,, Richard Feynman Lectures on Physics Addison-Wesley,,,, x χ,

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 = #A A A. F, F d F P + F P = d P F, F P F F A. α, 0, α, 0 α > 0, + α +, α + d + α + + α + = d d F, F 0 < α < d + α + = d α + + α + = d d α + + α + d α + = d 4 4d α + = d 4 8d + 6 http://mth.cs.kitmi-it.c.jp/

More information

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq 49 2 I II 2.1 3 e e = 1.602 10 19 A s (2.1 50 2 I SI MKSA 2.1.1 r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = 3 10 8 m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq F = k r

More information

(u(x)v(x)) = u (x)v(x) + u(x)v (x) ( ) u(x) = u (x)v(x) u(x)v (x) v(x) v(x) 2 y = g(t), t = f(x) y = g(f(x)) dy dx dy dx = dy dt dt dx., y, f, g y = f (g(x))g (x). ( (f(g(x)). ). [ ] y = e ax+b (a, b )

More information

( ) ( )

( ) ( ) 20 21 2 8 1 2 2 3 21 3 22 3 23 4 24 5 25 5 26 6 27 8 28 ( ) 9 3 10 31 10 32 ( ) 12 4 13 41 0 13 42 14 43 0 15 44 17 5 18 6 18 1 1 2 2 1 2 1 0 2 0 3 0 4 0 2 2 21 t (x(t) y(t)) 2 x(t) y(t) γ(t) (x(t) y(t))

More information

KENZOU

KENZOU KENZOU 2008 8 2 3 2 3 2 2 4 2 4............................................... 2 4.2............................... 3 4.2........................................... 4 4.3..............................

More information

i

i i 3 4 4 7 5 6 3 ( ).. () 3 () (3) (4) /. 3. 4/3 7. /e 8. a > a, a = /, > a >. () a >, a =, > a > () a > b, a = b, a < b. c c n a n + b n + c n 3c n..... () /3 () + (3) / (4) /4 (5) m > n, a b >, m > n,

More information

LCR e ix LC AM m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x (k > 0) k x = x(t)

LCR e ix LC AM m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x (k > 0) k x = x(t) 338 7 7.3 LCR 2.4.3 e ix LC AM 7.3.1 7.3.1.1 m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x k > 0 k 5.3.1.1 x = xt 7.3 339 m 2 x t 2 = k x 2 x t 2 = ω 2 0 x ω0 = k m ω 0 1.4.4.3 2 +α 14.9.3.1 5.3.2.1 2 x

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

Kroneher Levi-Civita 1 i = j δ i j = i j 1 if i jk is an even permutation of 1,2,3. ε i jk = 1 if i jk is an odd permutation of 1,2,3. otherwise. 3 4

Kroneher Levi-Civita 1 i = j δ i j = i j 1 if i jk is an even permutation of 1,2,3. ε i jk = 1 if i jk is an odd permutation of 1,2,3. otherwise. 3 4 [2642 ] Yuji Chinone 1 1-1 ρ t + j = 1 1-1 V S ds ds Eq.1 ρ t + j dv = ρ t dv = t V V V ρdv = Q t Q V jdv = j ds V ds V I Q t + j ds = ; S S [ Q t ] + I = Eq.1 2 2 Kroneher Levi-Civita 1 i = j δ i j =

More information

2 Chapter 4 (f4a). 2. (f4cone) ( θ) () g M. 2. (f4b) T M L P a θ (f4eki) ρ H A a g. v ( ) 2. H(t) ( )

2 Chapter 4 (f4a). 2. (f4cone) ( θ) () g M. 2. (f4b) T M L P a θ (f4eki) ρ H A a g. v ( ) 2. H(t) ( ) http://astr-www.kj.yamagata-u.ac.jp/~shibata f4a f4b 2 f4cone f4eki f4end 4 f5meanfp f6coin () f6a f7a f7b f7d f8a f8b f9a f9b f9c f9kep f0a f0bt version feqmo fvec4 fvec fvec6 fvec2 fvec3 f3a (-D) f3b

More information

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy z fz fz x, y, u, v, r, θ r > z = x + iy, f = u + iv γ D fz fz D fz fz z, Rm z, z. z = x + iy = re iθ = r cos θ + i sin θ z = x iy = re iθ = r cos θ i sin θ x = z + z = Re z, y = z z = Im z i r = z = z

More information

DE-resume

DE-resume - 2011, http://c-faculty.chuo-u.ac.jp/ nishioka/ 2 11 21131 : 4 1 x y(x, y (x,y (x,,y (n, (1.1 F (x, y, y,y,,y (n =0. (1.1 n. (1.1 y(x. y(x (1.1. 1 1 1 1.1... 2 1.2... 9 1.3 1... 26 2 2 34 2.1,... 35 2.2

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

untitled

untitled - k k k = y. k = ky. y du dx = ε ux ( ) ux ( ) = ax+ b x u() = ; u( ) = AE u() = b= u () = a= ; a= d x du ε x = = = dx dx N = σ da = E ε da = EA ε A x A x x - σ x σ x = Eε x N = EAε x = EA = N = EA k =

More information

入試の軌跡

入試の軌跡 4 y O x 4 Typed by L A TEX ε ) ) ) 6 4 ) 4 75 ) http://kumamoto.s.xrea.com/plan/.. PDF) Ctrl +L) Ctrl +) Ctrl + Ctrl + ) ) Alt + ) Alt + ) ESC. http://kumamoto.s.xrea.com/nyusi/kumadai kiseki ri i.pdf

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x n= n 2 = π2 6 3 2 28 + 4 + 9 + = π2 6 2 f(z) f(z) 2 f(z) = u(z) + iv(z) * f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x f x = i f y * u, v 3 3. 3 f(t) = u(t) + v(t) [, b] f(t)dt = u(t)dt

More information

note1.dvi

note1.dvi (1) 1996 11 7 1 (1) 1. 1 dx dy d x τ xx x x, stress x + dx x τ xx x+dx dyd x x τ xx x dyd y τ xx x τ xx x+dx d dx y x dy 1. dx dy d x τ xy x τ x ρdxdyd x dx dy d ρdxdyd u x t = τ xx x+dx dyd τ xx x dyd

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4 35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m

More information

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) = 1 1 1.1 I R 1.1.1 c : I R 2 (i) c C (ii) t I c (t) (0, 0) c (t) c(i) c c(t) 1.1.2 (1) (2) (3) (1) r > 0 c : R R 2 : t (r cos t, r sin t) (2) C f : I R c : I R 2 : t (t, f(t)) (3) y = x c : R R 2 : t (t,

More information

II 1 II 2012 II Gauss-Bonnet II

II 1 II 2012 II Gauss-Bonnet II II 1 II 212 II Gauss-Bonnet II 1 1 1.1......................................... 1 1.2............................................ 2 1.3.................................. 3 1.4.............................................

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes ) ( 3 7 4 ) 2 2 ) 8 2 954 2) 955 3) 5) J = σe 2 6) 955 7) 9) 955 Statistical-Mechanical Theory of Irreversible Processes 957 ) 3 4 2 A B H (t) = Ae iωt B(t) = B(ω)e iωt B(ω) = [ Φ R (ω) Φ R () ] iω Φ R (t)

More information

2.2 ( y = y(x ( (x 0, y 0 y (x 0 (y 0 = y(x 0 y = y(x ( y (x 0 = F (x 0, y(x 0 = F (x 0, y 0 (x 0, y 0 ( (x 0, y 0 F (x 0, y 0 xy (x, y (, F (x, y ( (

2.2 ( y = y(x ( (x 0, y 0 y (x 0 (y 0 = y(x 0 y = y(x ( y (x 0 = F (x 0, y(x 0 = F (x 0, y 0 (x 0, y 0 ( (x 0, y 0 F (x 0, y 0 xy (x, y (, F (x, y ( ( (. x y y x f y = f(x y x y = y(x y x y dx = d dx y(x = y (x = f (x y = y(x x ( (differential equation ( + y 2 dx + xy = 0 dx = xy + y 2 2 2 x y 2 F (x, y = xy + y 2 y = y(x x x xy(x = F (x, y(x + y(x 2

More information

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j = 72 Maxwell. Maxwell e r ( =,,N Maxwell rot E + B t = 0 rot H D t = j dv D = ρ dv B = 0 D = ɛ 0 E H = μ 0 B ρ( r = j( r = N e δ( r r = N e r δ( r r = : 2005 ( 2006.8.22 73 207 ρ t +dv j =0 r m m r = e E(

More information

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1 4 1 1.1 ( ) 5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1 da n i n da n i n + 3 A ni n n=1 3 n=1

More information

4 5.............................................. 5............................................ 6.............................................. 7......................................... 8.3.................................................4.........................................4..............................................4................................................4.3...............................................

More information

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2 1 1.1 R(x) = 0 y + P (x)y + Q(x)y = R(x)...(1) y + P (x)y + Q(x)y = 0...(2) 1 2 u(x) v(x) c 1 u(x)+ c 2 v(x) = 0 c 1 = c 2 = 0 c 1 = c 2 = 0 2 0 2 u(x) v(x) u(x) u (x) W (u, v)(x) = v(x) v (x) 0 1 1.2

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

27 1 21 19 i WKB ii i 1 1 1.1................................. 1 1.2......................................... 1 1.2.1.................................. 1 1.2.2.................................. 3 1.3........................................

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx i B5 7.8. p89 4. ψ x, tψx, t = ψ R x, t iψ I x, t ψ R x, t + iψ I x, t = ψ R x, t + ψ I x, t p 5.8 π π π F e ix + F e ix + F 3 e 3ix F e ix + F e ix + F 3 e 3ix dx πψ x πψx p39 7. AX = X A [ a b c d x

More information

untitled

untitled 0. =. =. (999). 3(983). (980). (985). (966). 3. := :=. A A. A A. := := 4 5 A B A B A B. A = B A B A B B A. A B A B, A B, B. AP { A, P } = { : A, P } = { A P }. A = {0, }, A, {0, }, {0}, {}, A {0}, {}.

More information

master.dvi

master.dvi 4 Maxwell- Boltzmann N 1 4.1 T R R 5 R (Heat Reservor) S E R 20 E 4.2 E E R E t = E + E R E R Ω R (E R ) S R (E R ) Ω R (E R ) = exp[s R (E R )/k] E, E E, E E t E E t E exps R (E t E) exp S R (E t E )

More information

Morse ( ) 2014

Morse ( ) 2014 Morse ( ) 2014 1 1 Morse 1 1.1 Morse................................ 1 1.2 Morse.............................. 7 2 12 2.1....................... 12 2.2.................. 13 2.3 Smale..............................

More information

2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP

2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP 1. 1 213 1 6 1 3 1: ( ) 2: 3: SF 1 2 3 1: 3 2 A m 2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP

More information

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1)

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1) D d dx 1 1.1 n d n y a 0 dx n + a d n 1 y 1 dx n 1 +... + a dy n 1 dx + a ny = f(x)...(1) dk y dx k = y (k) a 0 y (n) + a 1 y (n 1) +... + a n 1 y + a n y = f(x)...(2) (2) (2) f(x) 0 a 0 y (n) + a 1 y

More information

AC Modeling and Control of AC Motors Seiji Kondo, Member 1. q q (1) PM (a) N d q Dept. of E&E, Nagaoka Unive

AC Modeling and Control of AC Motors Seiji Kondo, Member 1. q q (1) PM (a) N d q Dept. of E&E, Nagaoka Unive AC Moeling an Control of AC Motors Seiji Kono, Member 1. (1) PM 33 54 64. 1 11 1(a) N 94 188 163 1 Dept. of E&E, Nagaoka University of Technology 163 1, Kamitomioka-cho, Nagaoka, Niigata 94 188 (a) 巻数

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

DVIOUT

DVIOUT A. A. A-- [ ] f(x) x = f 00 (x) f 0 () =0 f 00 () > 0= f(x) x = f 00 () < 0= f(x) x = A--2 [ ] f(x) D f 00 (x) > 0= y = f(x) f 00 (x) < 0= y = f(x) P (, f()) f 00 () =0 A--3 [ ] y = f(x) [, b] x = f (y)

More information

x x x 2, A 4 2 Ax.4 A A A A λ λ 4 λ 2 A λe λ λ2 5λ + 6 0,...λ 2, λ 2 3 E 0 E 0 p p Ap λp λ 2 p 4 2 p p 2 p { 4p 2 2p p + 2 p, p 2 λ {

x x x 2, A 4 2 Ax.4 A A A A λ λ 4 λ 2 A λe λ λ2 5λ + 6 0,...λ 2, λ 2 3 E 0 E 0 p p Ap λp λ 2 p 4 2 p p 2 p { 4p 2 2p p + 2 p, p 2 λ { K E N Z OU 2008 8. 4x 2x 2 2 2 x + x 2. x 2 2x 2, 2 2 d 2 x 2 2.2 2 3x 2... d 2 x 2 5 + 6x 0 2 2 d 2 x 2 + P t + P 2tx Qx x x, x 2 2 2 x 2 P 2 tx P tx 2 + Qx x, x 2. d x 4 2 x 2 x x 2.3 x x x 2, A 4 2

More information