main.dvi

Size: px
Start display at page:

Download "main.dvi"

Transcription

1 3 Signicant discrepancies (between the computed and the true result) are very rare, too rare to worry about all the time, yet not rare enough to ignore. by W.M.Kahan supercomputer 1 supercomputer supercomputer ( ) () supercomputer \GFLOPS 2 " \GBYTE 3 " (Fortran, C, C++, Pascal, etc.) ( ) () 3 1 JIS F 2 FLOPS G( ) 5GFLPOS GBYTE=1024MBYTE= BYTE 1

2 1 (1) (2) ( ' ) \ " (compute) \" (+,0, 2, 4 ) (computer) \" computer ( ) ( ) AIR TEX Graphics make

3 supercomputer supercomputer computer computer =computer 2 Computation Computation on the computer Algebraic Computation - computing without errors - ring of integers or field of rational numbers - algebraic number fields Numerical Computation - approximation of the exact result - floating-point arithmetic Verified Inclusions - approximation with a guaranteed error bound - interval arithmetic - fixed point theorem Mathematica CALC Fortran C++ Pascal ACRITH Pascal/XSC PROFIL 3

4 3 Computation Algebraic Computation algebraic computation Error-Free computation Algebraic computation : = 4 9 exact, sin 1 11, log = [11] Veri- ed Computation a; b 0 Z 1 0 (e 0 a2 x 2 0 e 0 b2 x 2 )dx =(b 0 a) p Algebraic Computation Numerical Computation Numerical Computation exact 7 2 ( 0 1 ) 8 4

5 exact 7 15 Numerical Computation Veried Inclusions Veried Inclusions (Veried computation) Algebraic Computation Numerical Computation (interval arithmetic) Numerical Computation p 2 p 2=1: [1:414; 1:415] fx 2 IR; 1:414 x 1:415g Veried computation exact 1:0 x=[ , ] ( ) Veried Inclusions [3] Veried Inclusions [11] 5

6 3 = a 0 + c c c n 10 n a 0, c n 0 0 a 0 < 1, 0 c n < [1] 10 1 t t = a 0 + c 1 t + c 2 t ; (0 c n <t) (1) m (1) t m 0 = 6( x 1 t + x 2 t 2 + x 3 t )tm (2) x i 0 <x 1 <t,0x i <t(i =2; 3; 111) x i (oating point number) (2) n = 6( x 1 t + x 2 t + 111x n 2 t n )tm (3) m m L, m U 0m L m m U 4 n, t, m L, m U (t 0 1)t n01 (m L + m U +1) 2(t 0 1)t n01 (m L + m U +1)+1 n, t, m L, m U Fujitsu M1800/20 UXP/Fortran77 EX {z} 16 t {z} 14 n 064 {z} {z} m 63 m L m U ( )+1 = M1800/20

7 4 (round-o error) n n +1 (round-o error) 10 1X c i 10 i i=0 {z } = nx c i 10 i i=0 {z } n + 1X c i 10 i i=n+1 {z } ( ) 9 n Fortran [2] 2 SSL II NUMPAC

8 2 ax 2 + bx + c =0; a 6= 0 x = 0b 6 p b 2 0 4ac 2a b p b 2 0 4ac [4] n n =5 a =1; b = 0(10 n +10 0n ); c =1 x 1 = 10 n x 2 = 10 0n x 1 = x 2 = 0:00001 SSL II RQDR Fujitsu M1800/20 Fortran77 EX VS. SSL II program niji real complex z(2) a/1.0/,b,c/1.0/,x1,x2 b = -1.0E5-1.0E-5 <--- n=5 x1 = ( -b + sqrt(b**2-4*a*c) )/(2.0*a) x2 = ( -b - sqrt(b**2-4*a*c) )/(2.0*a) print*,x1,x2 call rqdr(a,b,c,z,icon) print*,z end <--- <--- SSL II x1= x2=0.0 <--- x1= x2= <--- SSL II 8

9 x 2 0 SSL II (cf.[5]) 2 IF ([2]) 4 x1= x2= x1= x2= =) =) 0! time ( / / ) 9

10 5 vs. computer Fortran x 4 0 4y 2 0 4y 4 for x =665857:0 and y = :0 z = x 4 0 4y 2 0 4y z = x 4 0 4y 2 0 4y 4 Fortran Fortran program ex1 real real*8 xr/ e0/,yr/ e0/ xd/ d0/,yd/ d0/ print*,'single precision : ',xr**4-4*yr**2-4*yr**4 print*,'double precision : ',xd**4-4*yd**2-4*yd**4 end 5... single precision : e+16 double precision :

11 program ex2 real xr/ e0/,yr/ e0/ real*8 xd/ d0/,yd/ d0/ print*,'single precision : ',xr**4-4*yr**4-4*yr**2 print*,'double precision : ',xd**4-4*yd**4-4*yd**2 end... single precision : e+16 double precision : x 4 : = 1: : = 1: : CALC exact (algebraic computation) exact Fortran CALC c CALC {C-style arbitrary precision calculator. calc version: k1.0 Copyright (c) 1992 David I. Bell Modied 1993 by Masahide Kashiwagi CALC UXP, MSP 11

12 > **4-4*470832**4-4*470832**2 1 3 <--- 02> ** < > 4*470832** > 4*470832** > < ( ) ( ) 1 x 4 0 4y 2 0 4y 4 for x = and y = x 4, y 2, y 4 x 4 x 2 2 x 2 12

13 x 4 0 4y 2 0 4y 4 1 x 4 0 4y 2 0 4y 4 0 1=(x 2 +2y 2 +1)(x 2 0 2y 2 0 1) x 2, y 2 x 2 +2y 2 +1> 0 x 2 0 2y 2 =1 2 (x 2, y 2 ) x

14 program ex3 real real*8 xr/ e0/,yr/ e0/ xd/ d0/,yd/ d0/ real*16 xq/ q0/,yq/ q0/ print*,'single precision print*,'double precision print*,'quadruple precision end single precision : e+16 double precision : : ',xr**4-4*yr**2-4*yr**4 : ',xd**4-4*yd**2-4*yd**4 : ',xq**4-4*yq**2-4*yq**4 quadruple precision :

15 :75b 6 + a 2 (11a 2 b 2 0 b b 4 0 2) + 5:5b 8 + a 2b (4) for a = 77617:0 and b = 33096:0 b 8 a=(2b) z =333:75y 6 + x 2 (11x 2 y 2 0 y y 4 0 2) + 5:5y 8 + x=(2y) x>0, y>0 \" z =333:75y 6 + x 2 (11x 2 y 2 0 y y 4 0 2) + 5:5y 8 + x=(2y) Fortran Fortran Fujitsu M1800/20 (4) f 1 (a; b) = 333:75b 6 +11a 4 b 2 0 b 6 a b 4 a 2 0 2a 2 +5:5b 8 + a=(2b) f 2 (a; b) = (333:75 + 5:5b 2 )b 6 + a 2 (11a 2 b 2 )+a 2 (0b b 4 0 2) + a=(2b) f 3 (a; b) = 333:75b 6 + a 2 (11a 2 b 2 0 b b 4 0 2) + 5:5b 8 + a=(2b) 4 f 1 = f 2 = f 3 15

16 f 1, f 2, f 3 C C C & & & program ex3 real real*8 a1/ e0/,b1/ e0/,f1 a2/ d0/,b2/ d0/,f2 real*16 a3/ q0/,b3/ q0/,f3 external f1,f2,f3 print*,'single precision print*,'double precision print*,'quadruple precision function f1(a,b) real a,b : ',f1(a1,b1) : ',f2(a2,b2) : ',f3(a3,b3) f1=333.75e0*b**6+11.0e0*a**4*b**2 -b**6*a** e0*b**4*a**2-2.0e0*a**2 +5.5E0*b**8 + a/(2.0e0*b) return end real*8 function f2(a,b) real*8 a,b f2=(333.75d E0*b**2)*b**6 + a**2*(11.0d0*a**2*b**2) + a**2*( -b** d0*b**4-2.0d0) + a/(2.0d0*b) return end real*16 function f3(a,b) real*16 a,b f3=333.75q0*b**6+a**2*(11.0q0*a**2*b**2-b** q0*b**4-2.0q0) +5.5Q0*b**8 + a/(2.0q0*b) return end () single precision : double precision : quadruple precision : :

17 Mathematica algebraic computation exact 11 ( ) CALC Mathematica 12 Mathematica Mathematica CALC In[1]:= a= Out[1]= In[2]:= b= Out[2]= In[3]:= 33375/100 b^6 + a^2(11 a^2 b^2 - b^6-121 b^4-2) + 55/10 b^8 + a/(2 b) Out[3]= -(-----) In[4]:= N[%,16] <--- exact value <--- Out[4]= <--- 6 Mathematica 00: :75 = 33375=100, 5:5 =55=10 12 Stephen Wolfram Fortran, C, TEX PostScript 17

18 7 1. LU band matrix band matrix full matrix LU ( band matrix ) Fortran LU [7] n 2 n A =(a ij ) 2 a ij =( n +1 ) ij 1 2 sin( n +1 ) A orthogonal symmetric matrix A 01 = A 1. Fortran77 EX + SSL II SSL II [5] DALU DLUIV DALU LU DLUIV LU 2. Fortran77 EX + NUMPAC NUMPAC[6] MINVD LU 3. gcc + utility Sun Sparc 10 gcc(c++) PROFIL [8] utility 18

19 n =10 n =150 A =(a ij ) numerical computation B =(b ij )( A = B ) error 13 error max 1i;jn ja ij 0 b ij j n =10 n =150 Fortran + SSL II 3: : Fortran + NUMPAC 3: : gcc + utility 7: : gcc + utility Fortran [7] ( ) n =2; 8; 10 0 B@ n CA B@ x 1 x 2 x 3 x CA = B@ (5) n Algebraic Computation Mathematica n doronpa% math 3 0 Mathematica 2.0 for SPARC <--- Mathematica Copyright Wolfram Research, Inc. -- Terminal graphics initialized -- In[1]:= m=ff1-10^(-n),-1,1,-1g,f1,-1,1,-1g,f1,-1,0,0g,f1,0,0,-1gg 1 CA (5) 13 error 19

20 Out[1]= ff1-10 -n, -1, 1, -1g, f1, -1, 1, -1g, f1, -1, 0, 0g, f1, 0, 0, -1gg In[2]:= LinearSolve[m,f-3,-2,-1,-3g] <--- n n n n n Out[2]= f10, , (-1-10 ), g In[3]:= Factor[%] <--- n n n n Out[3]= f10, , , g In[4]:= Quit <--- Mathematica (5) Numerical Computation 0 B@ x 1 x 2 x 3 x 4 1 CA = 10n 10 n n n +3 numerical computation Fortran n SSL II DLAX n= n =2 n n= n 20 1 CA

21 n= Veried Computation Hamburg-Harburg Olaf Knuppel C++ PROFIL ([8]) PROFIL solver S. M. Rump (cf.[9]) Theorem Let A2IPIR n2n, B2IPIR n be given and let ~x 2 IR n, R 2 IR n2n, ; 6= X 2 IPIR n, X being compact. Dene Z = R 1 (B 0A~x) and C = I 0 R 1A; L(X) =Z + C1X; all operations being power set operations. If L(X) int(x) then R and every A 2 IR n2n, A 2Ais nonsingular and for every b 2Bthe unique solution ^x = A 01 b satises ^x =~x + L(X): Ax = b ~x ^x A L(X) int(x) ~x + L(X) n PROFIL veried computation n=2 [ , ] [ , ] [ , ] [ , ] 21

22 n=8 [ , ] [ , ] [ , ] [ , ] n=10 [ , ] [ , ] [ , ] [ , ] n =10 veried computation algebraic computation Numerical Computation [10] n 2 n A A = 0 B@ (6) NUMPAC HEQRVD n =17 Eigenvalue i i i 22 1 CA (6)

23 i i i i i z =1 exact A n 1 n =17 A 1 17 Mathematica (6) In[1]:= ReadList[``matrix.data'', Number, RecordLists -> True] Out[1]= ff1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1g, : ( ) In[2]:= Eigenvalues[%] : <-- Out[2]= f1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1g Rump [10] W. M. Kahan \" + \ " \ " \ " 23

24 (prime number) ( ) Mathematica 10 ( ) etc. Colin Wilson & Damon Wilson \The Encyclopedia of Unsolved Mysteries" Colin Wilson [1] :, (1939). [2] :, 7, (1991). 24

25 [3] :,, Vol.31, No.9, 1177{1190 (1990). [4] Forsythe, G.E., Malcolm, M. A. and Moler, C. B. : Computer methods for mathematical computations, Prentice-Hall, Inc. (1977). [5] SSL II 99SP{0050, (1980). [6] ( : NUMPAC ), (1989). [7] Gregory, R. T. and Karney, D. L.: A collection of matrices for testing computational algorithms, John Wiley & Sons, New York (1969). [8] Knuppel, O. : PROFIL Programmer's runtime optimized fast interval library, Berichte des Forschungsschwerpunktes Informations- und Kommunikationstechnik, TUHH (1993). [9] Rump, S. M. : Solving algebraic problems with high accuracy, in Kulish, U. W., and Miranker, W. L., editors, A New Approach to Scientic Computation, Academic Press, New York, 51{120 (1983). [10] Rump, S. M. : Verication methods for dense and sparse system of equations, Berichte des Forschungsschwerpunktes Informations- und Kommunikationstechnik, TUHH (1993). [11], :, 831,, 53{72 (1993). 25

II

II II 2016 7 21 computer-assisted proof 1 / 64 1. 2. 3. Siegfried M. Rump : [1] I,, 14:3 (2004), pp. 214 223. [2] II,, 14:4 (2004), pp. 346 359. 2 / 64 Risch 18 3 / 64 M n = 2 n 1 (n = 1, 2,... ) 2 2 1 1

More information

main.dvi

main.dvi y () 5 C Fortran () Fortran 32bit 64bit 2 0 1 2 1 1bit bit 3 0 0 2 1 3 0 1 2 1 bit bit byte 8bit 1byte 3 0 10010011 2 1 3 0 01001011 2 1 byte Fortran A A 8byte double presicion y ( REAL*8) A 64bit 4byte

More information

応用数学特論.dvi

応用数学特論.dvi 1 1 1.1.1 ( ). P,Q,R,.... 2+3=5 2 1.1.2 ( ). P T (true) F (false) T F P P T P. T 2 F 1.1.3 ( ). 2 P Q P Q P Q P Q P or Q P Q P Q P Q T T T T F T F T T F F F. P = 5 4 Q = 3 2 P Q = 5 4 3 2 P F Q T P Q T

More information

) 9 81

) 9 81 4 4.0 2000 ) 9 81 10 4.1 natural numbers 1, 2, 3, 4, 4.2, 3, 2, 1, 0, 1, 2, 3, integral numbers integers 1, 2, 3,, 3, 2, 1 1 4.3 4.3.1 ( ) m, n m 0 n m 82 rational numbers m 1 ( ) 3 = 3 1 4.3.2 3 5 = 2

More information

MBLAS¤ÈMLAPACK; ¿ÇÜĹÀºÅÙÈǤÎBLAS/LAPACK¤ÎºîÀ®

MBLAS¤ÈMLAPACK; ¿ÇÜĹÀºÅÙÈǤÎBLAS/LAPACK¤ÎºîÀ® MBLAS MLAPACK; BLAS/LAPACK maho@riken.jp February 23, 2009 MPACK(MBLAS/MLAPACK) ( ) (2007 ) ( ) http://accc.riken.jp/maho/ BLAS/LAPACK http://mplapack.sourceforge.net/ BLAS (Basic Linear Algebra Subprograms)

More information

A A = a 41 a 42 a 43 a 44 A (7) 1 (3) A = M 12 = = a 41 (8) a 41 a 43 a 44 (3) n n A, B a i AB = A B ii aa

A A = a 41 a 42 a 43 a 44 A (7) 1 (3) A = M 12 = = a 41 (8) a 41 a 43 a 44 (3) n n A, B a i AB = A B ii aa 1 2 21 2 2 [ ] a 11 a 12 A = a 21 a 22 (1) A = a 11 a 22 a 12 a 21 (2) 3 3 n n A A = n ( 1) i+j a ij M ij i =1 n (3) j=1 M ij A i j (n 1) (n 1) 2-1 3 3 A A = a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33

More information

( 9 1 ) 1 2 1.1................................... 2 1.2................................................. 3 1.3............................................... 4 1.4...........................................

More information

kokyuroku.dvi

kokyuroku.dvi On Applications of Rigorous Computing to Dynamical Systems (Zin ARAI) Department of Mathematics, Kyoto University email: arai@math.kyoto-u.ac.jp 1 [12, 13] Lorenz 2 Lorenz 3 4 2 Lorenz 2.1 Lorenz E. Lorenz

More information

. a, b, c, d b a ± d bc ± ad = c ac b a d c = bd ac b a d c = bc ad n m nm [2][3] BASIC [4] B BASIC [5] BASIC Intel x * IEEE a e d

. a, b, c, d b a ± d bc ± ad = c ac b a d c = bd ac b a d c = bc ad n m nm [2][3] BASIC [4] B BASIC [5] BASIC Intel x * IEEE a e d 3 3 BASIC C++ 8 Tflop/s 8TB [] High precision symmetric eigenvalue computation through exact tridiagonalization by using rational number arithmetic Hikaru Samukawa Abstract: Since rational number arithmetic,

More information

1

1 005 11 http://www.hyuki.com/girl/ http://www.hyuki.com/story/tetora.html http://www.hyuki.com/ Hiroshi Yuki c 005, All rights reserved. 1 1 3 (a + b)(a b) = a b (x + y)(x y) = x y a b x y a b x y 4 5 6

More information

all.dvi

all.dvi fortran 1996 4 18 2007 6 11 2012 11 12 1 3 1.1..................................... 3 1.2.............................. 3 2 fortran I 5 2.1 write................................ 5 2.2.................................

More information

untitled

untitled yoshi@image.med.osaka-u.ac.jp http://www.image.med.osaka-u.ac.jp/member/yoshi/ II Excel, Mathematica Mathematica Osaka Electro-Communication University (2007 Apr) 09849-31503-64015-30704-18799-390 http://www.image.med.osaka-u.ac.jp/member/yoshi/

More information

ad bc A A A = ad bc ( d ) b c a n A n A n A A det A A ( ) a b A = c d det A = ad bc σ {,,,, n} {,,, } {,,, } {,,, } ( ) σ = σ() = σ() = n sign σ sign(

ad bc A A A = ad bc ( d ) b c a n A n A n A A det A A ( ) a b A = c d det A = ad bc σ {,,,, n} {,,, } {,,, } {,,, } ( ) σ = σ() = σ() = n sign σ sign( I n n A AX = I, YA = I () n XY A () X = IX = (YA)X = Y(AX) = YI = Y X Y () XY A A AB AB BA (AB)(B A ) = A(BB )A = AA = I (BA)(A B ) = B(AA )B = BB = I (AB) = B A (BA) = A B A B A = B = 5 5 A B AB BA A

More information

untitled

untitled 2 (numerical algorithm) 2. = ratio of the circumference to its diameter, number, Ludolph s number... sin, cos =3.45926535... 0 e x2 dx = /2 etc. : 999 : 99 : 974 P.: 973, J.-P.: 200 J. Arndt, Ch. Haenel:

More information

joho09.ppt

joho09.ppt s M B e E s: (+ or -) M: B: (=2) e: E: ax 2 + bx + c = 0 y = ax 2 + bx + c x a, b y +/- [a, b] a, b y (a+b) / 2 1-2 1-3 x 1 A a, b y 1. 2. a, b 3. for Loop (b-a)/ 4. y=a*x*x + b*x + c 5. y==0.0 y (y2)

More information

Talk/7Akita-cont.tex Dated: 7/Feb/ Fibonacci Quartery L n = i n T n i/).) F n = i n U n i/).6).),.6) n = 7, F 7 = F n = cos π ) cos π 7 7 ) F = 8 [n )

Talk/7Akita-cont.tex Dated: 7/Feb/ Fibonacci Quartery L n = i n T n i/).) F n = i n U n i/).6).),.6) n = 7, F 7 = F n = cos π ) cos π 7 7 ) F = 8 [n ) Talk/7Akita-cont.tex Dated: 7/Feb/ wikipedia Pafnuty Lvovich Chebyshev 8 6-89 8 6 Chebychev Chebyshov Tchebycheff Tschebyscheff https://ja.wikipedia.org/wiki/ wikipediaa) 96 cos π 7 cos π 7 cos π 7 = x

More information

19 Systematization of Problem Solving Strategy in High School Mathematics for Improving Metacognitive Ability

19 Systematization of Problem Solving Strategy in High School Mathematics for Improving Metacognitive Ability 19 Systematization of Problem Solving Strategy in High School Mathematics for Improving Metacognitive Ability 1105402 2008 2 4 2,, i Abstract Systematization of Problem Solving Strategy in High School

More information

Abstract This paper concerns with a method of dynamic image cognition. Our image cognition method has two distinguished features. One is that the imag

Abstract This paper concerns with a method of dynamic image cognition. Our image cognition method has two distinguished features. One is that the imag 2004 RGB A STUDY OF RGB COLOR INFORMATION AND ITS APPLICATION 03R3237 Abstract This paper concerns with a method of dynamic image cognition. Our image cognition method has two distinguished features. One

More information

untitled

untitled II(c) 1 October. 21, 2009 1 CS53 yamamoto@cs.kobe-u.ac.jp 3 1 7 1.1 : : : : : : : : : : : : : : : : : : : : : : 7 1.2 : : : : : : : : : : : : : : : : 8 1.2.1 : : : : : : : : : : : : : : : : : : : 8 1.2.2

More information

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + (

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + ( IA 2013 : :10722 : 2 : :2 :761 :1 23-27) : : 1 1.1 / ) 1 /, ) / e.g. Taylar ) e x = 1 + x + x2 2 +... + xn n! +... sin x = x x3 6 + x5 x2n+1 + 1)n 5! 2n + 1)! 2 2.1 = 1 e.g. 0 = 0.00..., π = 3.14..., 1

More information

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2 7 1995, 2017 7 21 1 2 2 3 3 4 4 6 (1).................................... 6 (2)..................................... 6 (3) t................. 9 5 11 (1)......................................... 11 (2)

More information

3. ( 1 ) Linear Congruential Generator:LCG 6) (Mersenne Twister:MT ), L 1 ( 2 ) 4 4 G (i,j) < G > < G 2 > < G > 2 g (ij) i= L j= N

3. ( 1 ) Linear Congruential Generator:LCG 6) (Mersenne Twister:MT ), L 1 ( 2 ) 4 4 G (i,j) < G > < G 2 > < G > 2 g (ij) i= L j= N RMT 1 1 1 N L Q=L/N (RMT), RMT,,,., Box-Muller, 3.,. Testing Randomness by Means of RMT Formula Xin Yang, 1 Ryota Itoi 1 and Mieko Tanaka-Yamawaki 1 Random matrix theory derives, at the limit of both dimension

More information

2.2 Sage I 11 factor Sage Sage exit quit 1 sage : exit 2 Exiting Sage ( CPU time 0m0.06s, Wall time 2m8.71 s). 2.2 Sage Python Sage 1. Sage.sage 2. sa

2.2 Sage I 11 factor Sage Sage exit quit 1 sage : exit 2 Exiting Sage ( CPU time 0m0.06s, Wall time 2m8.71 s). 2.2 Sage Python Sage 1. Sage.sage 2. sa I 2017 11 1 SageMath SageMath( Sage ) Sage Python Sage Python Sage Maxima Maxima Sage Sage Sage Linux, Mac, Windows *1 2 Sage Sage 4 1. ( sage CUI) 2. Sage ( sage.sage ) 3. Sage ( notebook() ) 4. Sage

More information

2S III IV K A4 12:00-13:30 Cafe David 1 2 TA 1 appointment Cafe David K2-2S04-00 : C

2S III IV K A4 12:00-13:30 Cafe David 1 2 TA 1  appointment Cafe David K2-2S04-00 : C 2S III IV K200 : April 16, 2004 Version : 1.1 TA M2 TA 1 10 2 n 1 ɛ-δ 5 15 20 20 45 K2-2S04-00 : C 2S III IV K200 60 60 74 75 89 90 1 email 3 4 30 A4 12:00-13:30 Cafe David 1 2 TA 1 email appointment Cafe

More information

Pari-gp /7/5 1 Pari-gp 3 pq

Pari-gp /7/5 1 Pari-gp 3 pq Pari-gp 3 2007/7/5 1 Pari-gp 3 pq 3 2007 7 5 Pari-gp 3 2007/7/5 2 1. pq 3 2. Pari-gp 3. p p 4. p Abel 5. 6. 7. Pari-gp 3 2007/7/5 3 pq 3 Pari-gp 3 2007/7/5 4 p q 1 (mod 9) p q 3 (3, 3) Abel 3 Pari-gp 3

More information

newmain.dvi

newmain.dvi 数論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/008142 このサンプルページの内容は, 第 2 版 1 刷発行当時のものです. Daniel DUVERNEY: THÉORIE DES NOMBRES c Dunod, Paris, 1998, This book is published

More information

SQUFOF NTT Shanks SQUFOF SQUFOF Pentium III Pentium 4 SQUFOF 2.03 (Pentium 4 2.0GHz Willamette) N UBASIC 50 / 200 [

SQUFOF NTT Shanks SQUFOF SQUFOF Pentium III Pentium 4 SQUFOF 2.03 (Pentium 4 2.0GHz Willamette) N UBASIC 50 / 200 [ SQUFOF SQUFOF NTT 2003 2 17 16 60 Shanks SQUFOF SQUFOF Pentium III Pentium 4 SQUFOF 2.03 (Pentium 4 2.0GHz Willamette) 60 1 1.1 N 62 16 24 UBASIC 50 / 200 [ 01] 4 large prime 943 2 1 (%) 57 146 146 15

More information

2 ( ) i

2 ( ) i 25 Study on Rating System in Multi-player Games with Imperfect Information 1165069 2014 2 28 2 ( ) i ii Abstract Study on Rating System in Multi-player Games with Imperfect Information Shigehiko MORITA

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

漸化式のすべてのパターンを解説しましたー高校数学の達人・河見賢司のサイト

漸化式のすべてのパターンを解説しましたー高校数学の達人・河見賢司のサイト https://www.hmg-gen.com/tuusin.html https://www.hmg-gen.com/tuusin1.html 1 2 OK 3 4 {a n } (1) a 1 = 1, a n+1 a n = 2 (2) a 1 = 3, a n+1 a n = 2n a n a n+1 a n = ( ) a n+1 a n = ( ) a n+1 a n {a n } 1,

More information

IDRstab(s, L) GBiCGSTAB(s, L) 2. AC-GBiCGSTAB(s, L) Ax = b (1) A R n n x R n b R n 2.1 IDR s L r k+1 r k+1 = b Ax k+1 IDR(s) r k+1 = (I ω k A)(r k dr

IDRstab(s, L) GBiCGSTAB(s, L) 2. AC-GBiCGSTAB(s, L) Ax = b (1) A R n n x R n b R n 2.1 IDR s L r k+1 r k+1 = b Ax k+1 IDR(s) r k+1 = (I ω k A)(r k dr 1 2 IDR(s) GBiCGSTAB(s, L) IDR(s) IDRstab(s, L) GBiCGSTAB(s, L) Verification of effectiveness of Auto-Correction technique applied to preconditioned iterative methods Keiichi Murakami 1 Seiji Fujino 2

More information

main.dvi

main.dvi 3 4 2 3 4 2 3 ( ) ( ) 1 1.1 R n R n n Euclid R n R n f =(f 1 ;f 2 ;:::;f n ) T : f(x) =0 (1) x = (x 1 ;x 2 ;:::;x n ) T 2 R n 1 \T " f i (1 i n) R n R (1) f i (x) =0 (1 i n) n 2 n x =cosx f(x) :=x 0 cos

More information

num2.dvi

num2.dvi kanenko@mbk.nifty.com http://kanenko.a.la9.jp/ 16 32...... h 0 h = ε () 0 ( ) 0 1 IEEE754 (ieee754.c Kerosoft Ltd.!) 1 2 : OS! : WindowsXP ( ) : X Window xcalc.. (,.) C double 10,??? 3 :, ( ) : BASIC,

More information

HITACHI 液晶プロジェクター CP-EX301NJ/CP-EW301NJ 取扱説明書 -詳細版- 【技術情報編】 日本語

HITACHI 液晶プロジェクター CP-EX301NJ/CP-EW301NJ 取扱説明書 -詳細版- 【技術情報編】 日本語 A B C D E F G H I 1 3 5 7 9 11 13 15 17 19 2 4 6 8 10 12 14 16 18 K L J Y CB/PB CR/PR COMPONENT VIDEO OUT RS-232C RS-232C RS-232C Cable (cross) LAN cable (CAT-5 or greater) LAN LAN LAN LAN RS-232C BE

More information

Trapezoidal Rule θ = 1/ x n x n 1 t = 1 [f(t n 1, x n 1 ) + f(t n, x n )] (6) 1. dx dt = f(t, x), x(t 0) = x 0 (7) t [t 0, t 1 ] f t [t 0, t 1 ], x x

Trapezoidal Rule θ = 1/ x n x n 1 t = 1 [f(t n 1, x n 1 ) + f(t n, x n )] (6) 1. dx dt = f(t, x), x(t 0) = x 0 (7) t [t 0, t 1 ] f t [t 0, t 1 ], x x University of Hyogo 8 8 1 d x(t) =f(t, x(t)), dt (1) x(t 0 ) =x 0 () t n = t 0 + n t x x n n x n x 0 x i i = 0,..., n 1 x n x(t) 1 1.1 1 1 1 0 θ 1 θ x n x n 1 t = θf(t n 1, x n 1 ) + (1 θ)f(t n, x n )

More information

II

II II 16 16.0 2 1 15 x α 16 x n 1 17 (x α) 2 16.1 16.1.1 2 x P (x) P (x) = 3x 3 4x + 4 369 Q(x) = x 4 ax + b ( ) 1 P (x) x Q(x) x P (x) x P (x) x = a P (a) P (x) = x 3 7x + 4 P (2) = 2 3 7 2 + 4 = 8 14 +

More information

2009 4

2009 4 2009 4 LU QR Cholesky A: n n A : A = IEEE 754 10 100 = : 1 / 36 A A κ(a) := A A 1. = κ(a) = Ax = b x := A 1 b Ay = b + b y := A 1 (b + b) x = y x x x κ(a) b b 2 / 36 IEEE 754 = 1 : u 1.11 10 16 = 10 16

More information

(2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y

(2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y (2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = a c b d (a c, b d) P = (a, b) O P a p = b P = (a, b) p = a b R 2 { } R 2 x = x, y R y 2 a p =, c q = b d p + a + c q = b + d q p P q a p = c R c b

More information

Microsoft PowerPoint - IntroAlgDs-05-5.ppt

Microsoft PowerPoint - IntroAlgDs-05-5.ppt アルゴリズムとデータ構造入門 25 年 月 日 アルゴリズムとデータ構造入門. 手続きによる抽象の構築.3 Formulating Astractions with Higher-Order Procedures ( 高階手続きによる抽象化 ) 奥乃 博. 3,5,7で割った時の余りが各々,2,3という数は何か? 月 日 本日のメニュー.2.6 Example: Testing for Primality.3.

More information

HITACHI 液晶プロジェクター CP-AX3505J/CP-AW3005J 取扱説明書 -詳細版- 【技術情報編】

HITACHI 液晶プロジェクター CP-AX3505J/CP-AW3005J 取扱説明書 -詳細版- 【技術情報編】 B A C E D 1 3 5 7 9 11 13 15 17 19 2 4 6 8 10 12 14 16 18 H G I F J M N L K Y CB/PB CR/PR COMPONENT VIDEO OUT RS-232C LAN RS-232C LAN LAN BE EF 03 06 00 2A D3 01 00 00 60 00 00 BE EF 03 06 00 BA D2 01

More information

( ) a C n ( R n ) R a R C n. a C n (or R n ) a 0 2. α C( R ) a C n αa = α a 3. a, b C n a + b a + b ( ) p 8..2 (p ) a = [a a n ] T C n p n a

( ) a C n ( R n ) R a R C n. a C n (or R n ) a 0 2. α C( R ) a C n αa = α a 3. a, b C n a + b a + b ( ) p 8..2 (p ) a = [a a n ] T C n p n a 9 8 m n mn N.J.Nigham, Accuracy and Stability of Numerical Algorithms 2nd ed., (SIAM) x x = x2 + y 2 = x + y = max( x, y ) x y x () (norm) (condition number) 8. R C a, b C a b 0 a, b a = a 0 0 0 n C n

More information

CPU Levels in the memory hierarchy Level 1 Level 2... Increasing distance from the CPU in access time Level n Size of the memory at each level 1: 2.2

CPU Levels in the memory hierarchy Level 1 Level 2... Increasing distance from the CPU in access time Level n Size of the memory at each level 1: 2.2 FFT 1 Fourier fast Fourier transform FFT FFT FFT 1 FFT FFT 2 Fourier 2.1 Fourier FFT Fourier discrete Fourier transform DFT DFT n 1 y k = j=0 x j ω jk n, 0 k n 1 (1) x j y k ω n = e 2πi/n i = 1 (1) n DFT

More information

LCM,GCD LCM GCD..,.. 1 LCM GCD a b a b. a divides b. a b. a, b :, CD(a, b) = {d a, b }, CM(a, b) = {m a, b }... CM(a, b). q > 0, m 1, m 2 CM

LCM,GCD LCM GCD..,.. 1 LCM GCD a b a b. a divides b. a b. a, b :, CD(a, b) = {d a, b }, CM(a, b) = {m a, b }... CM(a, b). q > 0, m 1, m 2 CM LCM,GCD 2017 4 21 LCM GCD..,.. 1 LCM GCD a b a b. a divides b. a b. a, b :, CD(a, b) = {d a, b }, CM(a, b) = {m a, b }... CM(a, b). q > 0, m 1, m 2 CM(a, b) = m 1 + m 2 CM(a, b), qm 1 CM(a, b) m 1, m 2

More information

ii

ii ii iii 1 1 1.1..................................... 1 1.2................................... 3 1.3........................... 4 2 9 2.1.................................. 9 2.2...............................

More information

untitled

untitled ,, 2 2.,, A, PC/AT, MB, 5GB,,,, ( ) MB, GB 2,5,, 8MB, A, MB, GB 2 A,,,? x MB, y GB, A (), x + 2y () 4 (,, ) (hanba@eee.u-ryukyu.ac.jp), A, x + 2y() x y, A, MB ( ) 8 MB ( ) 5GB ( ) ( ), x x x 8 (2) y y

More information

25 II :30 16:00 (1),. Do not open this problem booklet until the start of the examination is announced. (2) 3.. Answer the following 3 proble

25 II :30 16:00 (1),. Do not open this problem booklet until the start of the examination is announced. (2) 3.. Answer the following 3 proble 25 II 25 2 6 13:30 16:00 (1),. Do not open this problem boolet until the start of the examination is announced. (2) 3.. Answer the following 3 problems. Use the designated answer sheet for each problem.

More information

agora04.dvi

agora04.dvi Workbook E-mail: kawahira@math.nagoya-u.ac.jp 2004 8 9, 10, 11 1 2 1 2 a n+1 = pa n + q x = px + q a n better 2 a n+1 = aan+b ca n+d 1 (a, b, c, d) =(p, q, 0, 1) 1 = 0 3 2 2 2 f(z) =z 2 + c a n+1 = a 2

More information

橡固有値セミナー2_棚橋改.PDF

橡固有値セミナー2_棚橋改.PDF 1 II. 2003 5 14 2... Arnoldi. Lanczos. Jacobi-Davidson . 3 4 Ax = x A A Ax = Mx M: M 5 Householder ln ln-1 0 l3 0 l2 l1 6 Lanczos Lanczos, 1950 Arnoldi Arnoldi, 1951 Hessenberg Jacobi-Davidson Sleijpen

More information

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18 2013 8 29y, 2016 10 29 1 2 2 Jordan 3 21 3 3 Jordan (1) 3 31 Jordan 4 32 Jordan 4 33 Jordan 6 34 Jordan 8 35 9 4 Jordan (2) 10 41 x 11 42 x 12 43 16 44 19 441 19 442 20 443 25 45 25 5 Jordan 26 A 26 A1

More information

T rank A max{rank Q[R Q, J] t-rank T [R T, C \ J] J C} 2 ([1, p.138, Theorem 4.2.5]) A = ( ) Q rank A = min{ρ(j) γ(j) J J C} C, (5) ρ(j) = rank Q[R Q,

T rank A max{rank Q[R Q, J] t-rank T [R T, C \ J] J C} 2 ([1, p.138, Theorem 4.2.5]) A = ( ) Q rank A = min{ρ(j) γ(j) J J C} C, (5) ρ(j) = rank Q[R Q, (ver. 4:. 2005-07-27) 1 1.1 (mixed matrix) (layered mixed matrix, LM-matrix) m n A = Q T (2m) (m n) ( ) ( ) Q I m Q à = = (1) T diag [t 1,, t m ] T rank à = m rank A (2) 1.2 [ ] B rank [B C] rank B rank

More information

num3.dvi

num3.dvi kanenko@mbk.nifty.com http://kanenko.a.la9.jp/ ,, ( ) Taylor. ( 1) i )x 2i+1 sinx = (2i+1)! i=0 S=0.0D0 T=X; /* */ DO 100 I=1,N S=S+T /* */ T=-T*X*X/(I+I+2)/(I+I+3) /* */ 100 CONTINUE. S=S+(-1)**I*X**(2*i+1)/KAIJO(2*I+1).

More information

A Feasibility Study of Direct-Mapping-Type Parallel Processing Method to Solve Linear Equations in Load Flow Calculations Hiroaki Inayoshi, Non-member

A Feasibility Study of Direct-Mapping-Type Parallel Processing Method to Solve Linear Equations in Load Flow Calculations Hiroaki Inayoshi, Non-member A Feasibility Study of Direct-Mapping-Type Parallel Processing Method to Solve Linear Equations in Load Flow Calculations Hiroaki Inayoshi, Non-member (University of Tsukuba), Yasuharu Ohsawa, Member (Kobe

More information

取扱説明書 -詳細版- 液晶プロジェクター CP-AW3019WNJ

取扱説明書 -詳細版- 液晶プロジェクター CP-AW3019WNJ B A C D E F K I M L J H G N O Q P Y CB/PB CR/PR COMPONENT VIDEO OUT RS-232C LAN RS-232C LAN LAN BE EF 03 06 00 2A D3 01 00 00 60 00 00 BE EF 03 06 00 BA D2 01 00 00 60 01 00 BE EF 03 06 00 19 D3 02 00

More information

example2_time.eps

example2_time.eps Google (20/08/2 ) ( ) Random Walk & Google Page Rank Agora on Aug. 20 / 67 Introduction ( ) Random Walk & Google Page Rank Agora on Aug. 20 2 / 67 Introduction Google ( ) Random Walk & Google Page Rank

More information

149 (Newell [5]) Newell [5], [1], [1], [11] Li,Ryu, and Song [2], [11] Li,Ryu, and Song [2], [1] 1) 2) ( ) ( ) 3) T : 2 a : 3 a 1 :

149 (Newell [5]) Newell [5], [1], [1], [11] Li,Ryu, and Song [2], [11] Li,Ryu, and Song [2], [1] 1) 2) ( ) ( ) 3) T : 2 a : 3 a 1 : Transactions of the Operations Research Society of Japan Vol. 58, 215, pp. 148 165 c ( 215 1 2 ; 215 9 3 ) 1) 2) :,,,,, 1. [9] 3 12 Darroch,Newell, and Morris [1] Mcneil [3] Miller [4] Newell [5, 6], [1]

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

DOPRI5.dvi

DOPRI5.dvi ODE DOPRI5 ( ) 16 3 31 Runge Kutta Dormand Prince 5(4) [1, pp. 178 179] DOPRI5 http://www.unige.ch/math/folks/hairer/software.html Fortran C C++ [3, pp.51 56] DOPRI5 C cprog.tar % tar xvf cprog.tar cprog/

More information

Microsoft Word - 触ってみよう、Maximaに2.doc

Microsoft Word - 触ってみよう、Maximaに2.doc i i e! ( x +1) 2 3 ( 2x + 3)! ( x + 1) 3 ( a + b) 5 2 2 2 2! 3! 5! 7 2 x! 3x! 1 = 0 ",! " >!!! # 2x + 4y = 30 "! x + y = 12 sin x lim x!0 x x n! # $ & 1 lim 1 + ('% " n 1 1 lim lim x!+0 x x"!0 x log x

More information

(, Goo Ishikawa, Go-o Ishikawa) ( ) 1

(, Goo Ishikawa, Go-o Ishikawa) ( ) 1 (, Goo Ishikawa, Go-o Ishikawa) ( ) 1 ( ) ( ) ( ) G7( ) ( ) ( ) () ( ) BD = 1 DC CE EA AF FB 0 0 BD DC CE EA AF FB =1 ( ) 2 (geometry) ( ) ( ) 3 (?) (Topology) ( ) DNA ( ) 4 ( ) ( ) 5 ( ) H. 1 : 1+ 5 2

More information

1 (bit ) ( ) PC WS CPU IEEE754 standard ( 24bit) ( 53bit)

1 (bit ) ( ) PC WS CPU IEEE754 standard ( 24bit) ( 53bit) GNU MP BNCpack tkouya@cs.sist.ac.jp 2002 9 20 ( ) Linux Conference 2002 1 1 (bit ) ( ) PC WS CPU IEEE754 standard ( 24bit) ( 53bit) 10 2 2 3 4 5768:9:; = %? @BADCEGFH-I:JLKNMNOQP R )TSVU!" # %$ & " #

More information

A S- hara/lectures/lectures-j.html r A = A 5 : 5 = max{ A, } A A A A B A, B A A A %

A S-   hara/lectures/lectures-j.html r A = A 5 : 5 = max{ A, } A A A A B A, B A A A % A S- http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html r A S- 3.4.5. 9 phone: 9-8-444, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office

More information

function2.pdf

function2.pdf 2... 1 2009, http://c-faculty.chuo-u.ac.jp/ nishioka/ 2 11 38 : 5) i) [], : 84 85 86 87 88 89 1000 ) 13 22 33 56 92 147 140 120 100 80 60 40 20 1 2 3 4 5 7.1 7 7.1 1. *1 e = 2.7182 ) fx) e x, x R : 7.1)

More information

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g( 06 5.. ( y = x x y 5 y 5 = (x y = x + ( y = x + y = x y.. ( Y = C + I = 50 + 0.5Y + 50 r r = 00 0.5Y ( L = M Y r = 00 r = 0.5Y 50 (3 00 0.5Y = 0.5Y 50 Y = 50, r = 5 .3. (x, x = (, u = = 4 (, x x = 4 x,

More information

記号と準備

記号と準備 tbasic.org * 1 [2017 6 ] 1 2 1.1................................................ 2 1.2................................................ 2 1.3.............................................. 3 2 5 2.1............................................

More information

, = = 7 6 = 42, =

, = = 7 6 = 42, = http://www.ss.u-tokai.ac.jp/~mahoro/2016autumn/alg_intro/ 1 1 2016.9.26, http://www.ss.u-tokai.ac.jp/~mahoro/2016autumn/alg_intro/ 1.1 1 214 132 = 28258 2 + 1 + 4 1 + 3 + 2 = 7 6 = 42, 4 + 2 = 6 2 + 8

More information

(2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y

(2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y (2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = a c b d (a c, b d) P = (a, b) O P a p = b P = (a, b) p = a b R 2 { } R 2 x = x, y R y 2 a p =, c q = b d p + a + c q = b + d q p P q a p = c R c b

More information

, MATLAB LMI MATLAB Mathematica Maple Mathematica Control System Professional 2 LMI MATLAB Mathematica Maple MATLAB SCILAB SCILAB MATLAB

, MATLAB LMI MATLAB Mathematica Maple Mathematica Control System Professional 2 LMI MATLAB Mathematica Maple MATLAB SCILAB SCILAB MATLAB J.JSSAC (2005) Vol. 11, No. 3,4, pp. 99-117 Noda2005 SCILAB 1 Matlab is one of the most popular commercial software among the researchers in the area of control and system engineering. Although Matlab

More information

> > <., vs. > x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D > 0 x (2) D = 0 x (3

> > <., vs. > x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D > 0 x (2) D = 0 x (3 13 2 13.0 2 ( ) ( ) 2 13.1 ( ) ax 2 + bx + c > 0 ( a, b, c ) ( ) 275 > > 2 2 13.3 x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D >

More information

ex01.dvi

ex01.dvi ,. 0. 0.0. C () /******************************* * $Id: ex_0_0.c,v.2 2006-04-0 3:37:00+09 naito Exp $ * * 0. 0.0 *******************************/ #include int main(int argc, char **argv) { double

More information

1 (1) vs. (2) (2) (a)(c) (a) (b) (c) 31 2 (a) (b) (c) LENCHAR

1 (1) vs. (2) (2) (a)(c) (a) (b) (c) 31 2 (a) (b) (c) LENCHAR () 601 1 () 265 OK 36.11.16 20 604 266 601 30.4.5 (1) 91621 3037 (2) 20-12.2 20-13 (3) ex. 2540-64 - LENCHAR 1 (1) vs. (2) (2) 605 50.2.13 41.4.27 10 10 40.3.17 (a)(c) 2 1 10 (a) (b) (c) 31 2 (a) (b) (c)

More information

自動残差修正機能付き GBiCGSTAB$(s,L)$法 (科学技術計算アルゴリズムの数理的基盤と展開)

自動残差修正機能付き GBiCGSTAB$(s,L)$法 (科学技術計算アルゴリズムの数理的基盤と展開) 1733 2011 149-159 149 GBiCGSTAB $(s,l)$ GBiCGSTAB(s,L) with Auto-Correction of Residuals (Takeshi TSUKADA) NS Solutions Corporation (Kouki FUKAHORI) Graduate School of Information Science and Technology

More information

( )

( ) 18 10 01 ( ) 1 2018 4 1.1 2018............................... 4 1.2 2018......................... 5 2 2017 7 2.1 2017............................... 7 2.2 2017......................... 8 3 2016 9 3.1 2016...............................

More information

A Brief Introduction to Modular Forms Computation

A Brief Introduction to Modular Forms Computation A Brief Introduction to Modular Forms Computation Magma Supported by GCOE Program Math-For-Industry Education & Research Hub What s this? Definitions and Properties Demonstration H := H P 1 (Q) some conditions

More information

( ) kadai4, kadai4.zip.,. 3 cos x [ π, π] Python. ( 100 ), x cos x ( ). (, ). def print cos(): print cos()

( ) kadai4, kadai4.zip.,. 3 cos x [ π, π] Python. ( 100 ), x cos x ( ). (, ). def print cos(): print cos() 4 2010.6 1 :, HP.. HP 4 (, PGM/PPM )., python,,, 2, kadai4,.,,, ( )., ( ) N, exn.py ( 3 ex3.py ). N 3.., ( )., ( ) N, (exn.txt).. 1 ( ) kadai4, kadai4.zip.,. 3 cos x [ π, π] Python. ( 100 ), x cos x (

More information

ohp1.dvi

ohp1.dvi 2008 1 2008.10.10 1 ( 2 ) ( ) ( ) 1 2 1.5 3 2 ( ) 50:50 Ruby ( ) Ruby http://www.ruby-lang.org/ja/ Windows Windows 3 Web Web http://lecture.ecc.u-tokyo.ac.jp/~kuno/is08/ / ( / ) / @@@ ( 3 ) @@@ :!! ( )

More information

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f ,,,,.,,,. R f : R R R a R, f(a + ) f(a) lim 0 (), df dx (a) f (a), f(x) x a, f (a), f(x) x a ( ). y f(a + ) y f(x) f(a+) f(a) f(a + ) f(a) f(a) x a 0 a a + x 0 a a + x y y f(x) 0 : 0, f(a+) f(a)., f(x)

More information

Mantel-Haenszelの方法

Mantel-Haenszelの方法 Mantel-Haenszel 2008 6 12 ) 2008 6 12 1 / 39 Mantel & Haenzel 1959) Mantel N, Haenszel W. Statistical aspects of the analysis of data from retrospective studies of disease. J. Nat. Cancer Inst. 1959; 224):

More information

ver 0.3 Chapter 0 0.1 () 0( ) 0.2 3 4 CHAPTER 0. http://www.jaist.ac.jp/~t-yama/k116 0.3 50% ( Wikipedia ) ( ) 0.4! 2006 0.4. 5 MIT OCW ( ) MIT Open Courseware MIT (Massachusetts Institute of Technology)

More information

Web Web Web Web Web, i

Web Web Web Web Web, i 22 Web Research of a Web search support system based on individual sensitivity 1135117 2011 2 14 Web Web Web Web Web, i Abstract Research of a Web search support system based on individual sensitivity

More information

200708_LesHouches_02.ppt

200708_LesHouches_02.ppt Numerical Methods for Geodynamo Simulation Akira Kageyama Earth Simulator Center, JAMSTEC, Japan Part 2 Geodynamo Simulations in a Sphere or a Spherical Shell Outline 1. Various numerical methods used

More information

(Basic Theory of Information Processing) Fortran Fortan Fortan Fortan 1

(Basic Theory of Information Processing) Fortran Fortan Fortan Fortan 1 (Basic Theory of Information Processing) Fortran Fortan Fortan Fortan 1 17 Fortran Formular Tranlator Lapack Fortran FORTRAN, FORTRAN66, FORTRAN77, FORTRAN90, FORTRAN95 17.1 A Z ( ) 0 9, _, =, +, -, *,

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

Collatzの問題 (数学/数理科学セレクト1)

Collatzの問題 (数学/数理科学セレクト1) / AICHI UNIVERSITY OF EDUCATION A { z = x + iy 0.100

More information

fx-3650P_fx-3950P_J

fx-3650P_fx-3950P_J SA1109-E J fx-3650p fx-3950p http://edu.casio.jp RCA500002-001V04 AB2 Mode

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

26 Development of Learning Support System for Fixation of Basketball Shoot Form

26 Development of Learning Support System for Fixation of Basketball Shoot Form 26 Development of Learning Support System for Fixation of Basketball Shoot Form 1175094 ,.,,.,,.,,.,,,.,,,,.,,,.,,,,, Kinect i Abstract Development of Learning Support System for Fixation of Basketball

More information

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C 8 ( ) 8 5 4 I II III A B C( ),,, 5 I II A B ( ),, I II A B (8 ) 6 8 I II III A B C(8 ) n ( + x) n () n C + n C + + n C n = 7 n () 7 9 C : y = x x A(, 6) () A C () C P AP Q () () () 4 A(,, ) B(,, ) C(,,

More information

橡ボーダーライン.PDF

橡ボーダーライン.PDF 1 ( ) ( ) 2 3 4 ( ) 5 6 7 8 9 10 11 12 13 14 ( ) 15 16 17 18 19 20 ( ) 21 22 23 24 ( ) 25 26 27 28 29 30 ( ) 31 To be or not to be 32 33 34 35 36 37 38 ( ) 39 40 41 42 43 44 45 46 47 48 ( ) 49 50 51 52

More information

Microsoft Word - Sample_CQS-Report_English_backslant.doc

Microsoft Word - Sample_CQS-Report_English_backslant.doc ***** Corporation ANSI C compiler test system System test report 2005/11/16 Japan Novel Corporation *****V43/NQP-DS-501-1 Contents Contents......2 1. Evaluated compiler......3 1.1. smp-compiler compiler...3

More information

さくらの個別指導 ( さくら教育研究所 ) A 2 P Q 3 R S T R S T P Q ( ) ( ) m n m n m n n n

さくらの個別指導 ( さくら教育研究所 ) A 2 P Q 3 R S T R S T P Q ( ) ( ) m n m n m n n n 1 1.1 1.1.1 A 2 P Q 3 R S T R S T P 80 50 60 Q 90 40 70 80 50 60 90 40 70 8 5 6 1 1 2 9 4 7 2 1 2 3 1 2 m n m n m n n n n 1.1 8 5 6 9 4 7 2 6 0 8 2 3 2 2 2 1 2 1 1.1 2 4 7 1 1 3 7 5 2 3 5 0 3 4 1 6 9 1

More information

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2 filename=mathformula58.tex ax + bx + c =, x = b ± b 4ac, (.) a x + x = b a, x x = c a, (.) ax + b x + c =, x = b ± b ac. a (.3). sin(a ± B) = sin A cos B ± cos A sin B, (.) cos(a ± B) = cos A cos B sin

More information

行列代数2010A

行列代数2010A (,) A (,) B C = AB a 11 a 1 a 1 b 11 b 1 b 1 c 11 c 1 c a A = 1 a a, B = b 1 b b, C = AB = c 1 c c a 1 a a b 1 b b c 1 c c i j ij a i1 a i a i b 1j b j b j c ij = a ik b kj b 1j b j AB = a i1 a i a ik

More information

1. A0 A B A0 A : A1,...,A5 B : B1,...,B

1. A0 A B A0 A : A1,...,A5 B : B1,...,B 1. A0 A B A0 A : A1,...,A5 B : B1,...,B12 2. 3. 4. 5. A0 A B f : A B 4 (i) f (ii) f (iii) C 2 g, h: C A f g = f h g = h (iv) C 2 g, h: B C g f = h f g = h 4 (1) (i) (iii) (2) (iii) (i) (3) (ii) (iv) (4)

More information

熊本県数学問題正解

熊本県数学問題正解 00 y O x Typed by L A TEX ε ( ) (00 ) 5 4 4 ( ) http://www.ocn.ne.jp/ oboetene/plan/. ( ) (009 ) ( ).. http://www.ocn.ne.jp/ oboetene/plan/eng.html 8 i i..................................... ( )0... (

More information

I

I I 6 4 10 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

Bulletin of JSSAC(2014) Vol. 20, No. 2, pp (Received 2013/11/27 Revised 2014/3/27 Accepted 2014/5/26) It is known that some of number puzzles ca

Bulletin of JSSAC(2014) Vol. 20, No. 2, pp (Received 2013/11/27 Revised 2014/3/27 Accepted 2014/5/26) It is known that some of number puzzles ca Bulletin of JSSAC(2014) Vol. 20, No. 2, pp. 3-22 (Received 2013/11/27 Revised 2014/3/27 Accepted 2014/5/26) It is known that some of number puzzles can be solved by using Gröbner bases. In this paper,

More information

1 + 1 + 1 + 1 + 1 + 1 + 1 = 0? 1 2003 10 8 1 10 8, 2004 1, 2003 10 2003 10 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 ( )?, 1, 8, 15, 22, 29?, 1 7, 1, 8, 15, 22,

More information

: : : : ) ) 1. d ij f i e i x i v j m a ij m f ij n x i =

: : : : ) ) 1. d ij f i e i x i v j m a ij m f ij n x i = 1 1980 1) 1 2 3 19721960 1965 2) 1999 1 69 1980 1972: 55 1999: 179 2041999: 210 211 1999: 211 3 2003 1987 92 97 3) 1960 1965 1970 1985 1990 1995 4) 1. d ij f i e i x i v j m a ij m f ij n x i = n d ij

More information

211 年ハイパフォーマンスコンピューティングと計算科学シンポジウム Computing Symposium 211 HPCS /1/18 a a 1 a 2 a 3 a a GPU Graphics Processing Unit GPU CPU GPU GPGPU G

211 年ハイパフォーマンスコンピューティングと計算科学シンポジウム Computing Symposium 211 HPCS /1/18 a a 1 a 2 a 3 a a GPU Graphics Processing Unit GPU CPU GPU GPGPU G 211 年ハイパフォーマンスコンピューティングと計算科学シンポジウム Computing Symposium 211 HPCS211 211/1/18 GPU 4 8 BLAS 4 8 BLAS Basic Linear Algebra Subprograms GPU Graphics Processing Unit 4 8 double 2 4 double-double DD 4 4 8 quad-double

More information

2

2 2011 8 6 2011 5 7 [1] 1 2 i ii iii i 3 [2] 4 5 ii 6 7 iii 8 [3] 9 10 11 cf. Abstracts in English In terms of democracy, the patience and the kindness Tohoku people have shown will be dealt with as an exception.

More information