example2_time.eps

Size: px
Start display at page:

Download "example2_time.eps"

Transcription

1 Google (20/08/2 ) ( ) Random Walk & Google Page Rank Agora on Aug. 20 / 67

2 Introduction ( ) Random Walk & Google Page Rank Agora on Aug / 67

3 Introduction Google ( ) Random Walk & Google Page Rank Agora on Aug / 67

4 Introduction Σ ( ) Random Walk & Google Page Rank Agora on Aug / 67

5 Introduction Plan of Talk Google (Section 2) (Section ) (Section ) (Section ) (Section ) Google (Section 5) ( ) Random Walk & Google Page Rank Agora on Aug / 67

6 Introduction Google ( ) Random Walk & Google Page Rank Agora on Aug / 67

7 Google Google ( ) Random Walk & Google Page Rank Agora on Aug / 67

8 Google Google Google (Section.) Google ( ) Random Walk & Google Page Rank Agora on Aug / 67

9 Google Google Google (Section 2) Google S.Brin L.Page (999 ) L.Page ( ) Random Walk & Google Page Rank Agora on Aug / 67

10 Google (Section 2.)...,, ( ) Random Walk & Google Page Rank Agora on Aug / 67

11 Google (Section 2.) HyperText Mark up Language HTML Hyper Link... A B A B ( ) Random Walk & Google Page Rank Agora on Aug. 20 / 67

12 Google (Section 2.) v, v 2, v 3, v v 2, v 3, v 2 v 3, v 3 v. v (Example 2.., P.5) v 2 v 3. (Definition 2..2, P. 5) ( ) Random Walk & Google Page Rank Agora on Aug / 67

13 Google (Section 2.) (Definition 2..3, P. 6) v i r(v i ) r(v i ) = r(v j ) v j v j B vi (2.) B vi v i {r(v i )} (2.). ( ) Random Walk & Google Page Rank Agora on Aug / 67

14 Google (Section 2.) Example 2..6 r = r 3, r 2 = 2 r, (2.2) (Example 2..6, P. 7) r 3 = 2 r + r 2, {r,r 2,r 3 } (2.2) r = k, r 2 = k/2, r 3 = k ( ) Random Walk & Google Page Rank Agora on Aug / 67

15 Google (Section 2.) Example (2.2) r r 3 = 0, 2 r + r 2 = 0, 2 r r 2 + r 3 = 0 (2.3) (0,0,0) (0,0,0) ( ) Random Walk & Google Page Rank Agora on Aug / 67

16 Google (Section 2.) (2.) ( ) Random Walk & Google Page Rank Agora on Aug / 67

17 Google (Section 2.2) t = n v i p i (n) v i t = n + ( ) Random Walk & Google Page Rank Agora on Aug / 67

18 Google (Section 2.2), p(v i ) = p i = lim n p i(n) v i. {p i (n)} {p i (n + )}. p i (n + ) = v j B vi v j p j(n) (2.4) ( ) Random Walk & Google Page Rank Agora on Aug / 67

19 Google (Section 2.2) Example 2.. p (n + ) = p 3 (n), p 2 (n + ) = 2 p (n), p 3 (n + ) = 2 p (n) + p 2 (n) (2.5) p (0) =, p 2 (0) = p 3 (0) = 0 t p 0 /2 /2 /4 /2 3/8 3/8 7/6 3/8 2/5 p 2 /2 0 /4 /2 /8 /4 3/6 3/6 7/32 /5 p 3 /2 /2 /4 /2 3/8 3/8 7/6 3/8 3/32 2/5 (p,p 2,p 3 ) = (2/5,/5,2/5) Example 2..6 ( ) Random Walk & Google Page Rank Agora on Aug / 67

20 Google (Section 2.2) Theorem (P. 9) {p i (n)} (2.4). i p i (n) n p i, {p i } p i = v j B vi v j p j (2.6), (2.6), (2.) ( ) Random Walk & Google Page Rank Agora on Aug / 67

21 Google (Section 2.3) ( ) Random Walk & Google Page Rank Agora on Aug / 67

22 Google (Section 2.3),,,, t = 0, ( ) Random Walk & Google Page Rank Agora on Aug / 67

23 ( ) Random Walk & Google Page Rank Agora on Aug / 67

24 (Section 3.) { ax + by = x, cx + dy = y, (3.),... a x + a 2 x a N x N = a, a 2 x + a 22 x a 2N x N = a 2,. a N x + a N2 x a NN x N = a N, ( ) Random Walk & Google Page Rank Agora on Aug / 67

25 (Section 3.) (3.), ax + by = x, cx + dy = y,, xy-, (3.).,. x = by dx ad bc, y = ay cx ad bc 2 ax + by = x, cx + dy = y, ax + by = x (3.). 3 ax + by = x, cx + dy = y,, (3.). ( ) Random Walk & Google Page Rank Agora on Aug / 67

26 (Section 3.). ax + by = x, cx + dy = y ad bc = 0 ax + by = x, cx + dy = y a : b : x = c : d : y (3.) ad bc 0, (3.) 2 ad bc = 0 by dx = 0 ( ay cx = 0, ax + by = x (x, y) (3.). 3 ad bc = 0 by dx 0 ( ay cx 0), (3.). ( ) Random Walk & Google Page Rank Agora on Aug / 67

27 (Section 3.) ad bc 0 ( ) ( ) x ax + by y cx + dy xy- (x,y) (ax + by,cx + dy) (ax+by,cx+dy) = (x,y ) (x,y) (x,y) (3.) ad bc 0 ( ) Random Walk & Google Page Rank Agora on Aug / 67

28 (Section 3.2) N {x i } N i= x x =. x N x = (x i ) (Definition 3.2., P. 3) x i x i ( ) Random Walk & Google Page Rank Agora on Aug / 67

29 (Section 3.2) N x R N = x =. : x i R x N N (Definition 3.2.2, P. 3) R N, 0 0 (Definition 3.2.4, P. 3) ( ) Random Walk & Google Page Rank Agora on Aug / 67

30 (Section 3.2) R 2 xy- xy- (x, y) ( x x = y) R 3 xyz- N R N ( ) Random Walk & Google Page Rank Agora on Aug / 67

31 (Section 3.2) R N x, y R N x + y x y x + y x =., y =. = x + y =. x N y N x N + y N a R, x R N x a x ax x =. = ax =. ax N x N (Definition 3.2.6, P. 4) ( ) Random Walk & Google Page Rank Agora on Aug / 67

32 (Section 3.2) ( ) Random Walk & Google Page Rank Agora on Aug / 67

33 (Section 3.2) R N W W W., 0 W. 2 W x, y W x + w W. 3 W x W a R ax W. R 2 xy- R 3 xyz- ( ) Random Walk & Google Page Rank Agora on Aug / 67

34 (Section 3.2, Example 3.2.9) x R 2 W = {ax : a R} xy-,, x ( ) {( )} a x = W = y = 2x 2 2a x, y R 3 x y W = {ax + by : a,b R} xyz-,, x, y x =, y = 0 W = a a + b 0 b x y + z = 0 ( ) Random Walk & Google Page Rank Agora on Aug / 67

35 (Section 3.2) ( ) Random Walk & Google Page Rank Agora on Aug / 67

36 (Section 3.2) R N k {x,... x k } a x + + a k x k = 0 = a = = a k = 0 (Definition 3.2., P. 5) {x,y} {x,y} ( ) Random Walk & Google Page Rank Agora on Aug / 67

37 (Section 3.2, Example 3.2.3) {x,y,z} ax + by + cz = 0 a, b, c 0 a 0, x = b a y c a z, x y z x z y ( ) Random Walk & Google Page Rank Agora on Aug / 67

38 (Section 3.2, Example 3.2.4) ( ) ( ) x =, y = 2 ( ) ( ) 2 x =, y = (y + 2x = 0) x =, y = 0 0 x =, y =, z = x =, y =, z = 3 (2x+y z = 0) 0 ( ) Random Walk & Google Page Rank Agora on Aug / 67

39 (Section 3.2) V k (dim V = k) V k V k + (Definition 3.2.5, P. 7) dim R N = N, R N N {x,...,x N } ( ) Random Walk & Google Page Rank Agora on Aug / 67

40 (Section 3.2) dim V = k V k (Definition 3.2.9, 8) R N 0 0 e =.,, e N =. 0 RN 0 R N ( ) Random Walk & Google Page Rank Agora on Aug / 67

41 (Section 3.2) dim V = k, {x,...,x k } x V x = a x + + a k x k ( ) Random Walk & Google Page Rank Agora on Aug / 67

42 (Section 3.2) R 2 (Example 3.2.2, P. 8) ( ( 0 e =, e 0) 2 = ) ( ( x =, x ) 2 = ) ( ( y =, y 0) 2 = ) ( ) 2 x = 3 x = 2e + 3e 2 = 5 2 x 2 x 2 = y + 3y 2 (Example , P. 8) ( ) Random Walk & Google Page Rank Agora on Aug / 67

43 (Section 3.2) R N x x x R N, x 2 x R N, k R, kx = k x 3 x, y R N, x + y x + y 4 x = 0 x = 0 (Definition , P. 9),, x 2 + y 2 ( ) Random Walk & Google Page Rank Agora on Aug / 67

44 (Section 3.2) (Example , P. 9) x = x + + x N, x 2 = x x N 2, x = max i=,...,n x i x = x 2 = x = ( ) Random Walk & Google Page Rank Agora on Aug / 67

45 (Section 3.3, Definition 3.3.) N N N a a 2 a N a 2 a 22 a 2N A = = ( a ) a... a N =. a a N a n2 a N NN a ij A (i,j) k a k =. k a k a Nk l a l = ( ) a l a Nl l A = (a ij ) ( ) Random Walk & Google Page Rank Agora on Aug / 67

46 (Section 3.3, Definition 3.3.3) A = (a ij ) a ii 0 E = O = ( ) Random Walk & Google Page Rank Agora on Aug / 67

47 (Section 3.3, Definition 3.3.4) N N A = (a ij ), B = (b ij ), A + B A + B = (a ij + b ij ) k R, N N A = (a ij ), ka ka = (ka ij ) ( ) ( ) 2 3 A =, B = ( ) ( ) A + B =, 3A = ( ) Random Walk & Google Page Rank Agora on Aug / 67

48 (Section 3.3) x = (x i ) R N N N A = (a ij ) Ax ( N ) Ax = a ik x k k= R N (Definition 3.3.5, P. 2) ( ) ( ) ( ) A =, x = Ax = ( ) ( ) ( ) a b x ax + by A =, x = Ax = c d y cx + dy ( ) Random Walk & Google Page Rank Agora on Aug / 67

49 (Section 3.3) N N A = (a ij ), B = (b ij ) AB ( N ) AB = a ik b kj k= N N (Definition 3.3.6, P. 2) ( ) ( ) a b x y A =, B = c d w z ( ) ( ) ax + bw ay + bz ax + cy bx + dy AB =, BA = cx + dw cy + dz aw + cz bw + dz ( ) ( ) A =, B = ( ) ( ) AB = BA = ( ) Random Walk & Google Page Rank Agora on Aug / 67

50 (Section 3.3) N N A = (a ij ), B = (b ij ) AB B = ( b b N ) AB = ( Ab Ab N ) N (Remark 3.3.2, P. 22) N N A = (a ij ) A T A T = (a ji ) (Definition 3.3.7, P. 2) ( ) a b A = c d A T = ( ) a c b d ( ) Random Walk & Google Page Rank Agora on Aug / 67

51 (Section 3.3, Example 3.3.3) { ax + by = x, cx + dy = y, (3.) A = ( ) a b, x = c d Ax = b ( ) x, b = y ( x y ) ( ) Random Walk & Google Page Rank Agora on Aug / 67

52 (Section 3.4) N N A = (a ij ) R N x Ax R N (Definition 3.4., P. 23). A0 = 0. 2 x, y R N, λ, µ R,. (Proposition 3.4.2, P. 23) A(λx + µy) = λax + µay ( ) Random Walk & Google Page Rank Agora on Aug / 67

53 (Section 3.4, Example 3.4.4) ( ) 2 A = 3 4 ( )( ) ( ) 2 Ae = =, Ae = ( )( ) ( ) 2 2 8, Ax = = {x i }, ( )( ) 0 = ( ) 2 4 A, {Ax i } (Remark 3.4.5, P. 25) E Ex = x O Ox = 0 ( ) Random Walk & Google Page Rank Agora on Aug / 67

54 (Section 3.4, Example 3.4.7) ( ) 0 A = 0, x x, y y, ( ) 0 A = x 0 x Ax Ax x ( ) Random Walk & Google Page Rank Agora on Aug / 67

55 (Section 3.4, Example 3.4.8) θ ( ) cos θ sin θ A = sin θ cos θ Ax x θ ( ) Random Walk & Google Page Rank Agora on Aug / 67

56 (Section 3.4) N N A, AA = A A = E N N A A A (Definition 3.4.9, P. 26) A, ( ) Random Walk & Google Page Rank Agora on Aug / 67

57 (Section 3.4) ( ) a b A =, A c d = AA = ( ) x y z w ( ) ax + bz ay + bw = cx + dz cy + dw ( ) 0 0 ad bc 0 ( ) ( ) A x y a b = = z w ad bc c d ad bc = 0 (Example 3.4.0, P. 26) ( ) Random Walk & Google Page Rank Agora on Aug / 67

58 (Section 3.4) A N N A Ax = b x = A b (Theorem 3.4.4, P. 27) ( ) Random Walk & Google Page Rank Agora on Aug / 67

59 (Section 3.4, Example 3.4.5) { x + 2y = 3, 3x + 4y = 4 ( )( ) ( ) 2 x 3 = 3 4 y 4 ( ) ( ) ( )( )( ) x 2 2 x = 3 y y ( 2 = )( ) 3 = 4 ( ) ( ) Random Walk & Google Page Rank Agora on Aug / 67

60 (Section 3.4) r(v i ) = r(v j ) v j v j B vi (2.) Ax = x,, ( ) Random Walk & Google Page Rank Agora on Aug / 67

61 (Section 3.5) ( ) a b 2 2 A = c d A. A A. 2 ad bc 0 ( ( a b 3 A a =, a c) 2 = d) A = (a a 2 ), {a, a 2 }. 4 A a = ( a b ), a 2 = ( c d ) ( ) a A =, {a a, a 2 }. 2 (Theorem 3.5., P. 28) ( ) Random Walk & Google Page Rank Agora on Aug / 67

62 (Section 3.5) 2 2 A = ( ) a b c d, det A det A = ad bc (Definition 3.5.2, P. 28) N N 3 3 deta = a a 22 a 33 + a 2 a 23 a 3 + a 3 a 2 a 32 a 3 a 22 a 3 a 2 a 2 a 33 a a 23 a 32 N N, aij N N! (Remark 3.5.3, P. 28) ( ) Random Walk & Google Page Rank Agora on Aug / 67

63 (Section 3.5) N N A = (a ij ), A. A A. 2 deta 0 3 A N a i =.. a i a Ni A = (a...a N ), {a,..., a N } 4 A N a j = ( ) a j a jn a A =.., {a,...,a N } a N (Theorem 3.5.4, P. 29) ( ) Random Walk & Google Page Rank Agora on Aug / 67

64 (Section 3.5). dete = 2 (deta)(det B) = (det AB) 3 deta T = deta (Theorem 3.5.6, P. 29) ( ) Random Walk & Google Page Rank Agora on Aug / 67

65 (Section 3.5) N N A N {a k } N k= A = ( ) a a N, {a k } N k= A (Definition 3.5.7, P. 29) N N A, A. A A. 2 ranka = N. (Theorem 3.5.8, P. 29) ( ) Random Walk & Google Page Rank Agora on Aug / 67

66 (Section 3.5) N N A f A : R N R N, x Ax ranka = N (det A 0 ) f A (R N ) = R N ranka < N (det A = 0 ) f A (R N ) R N deta = 0 Ax = b b f A (R N ) or b f A (R N ) ( ) Random Walk & Google Page Rank Agora on Aug / 67

67 (Section 3.5) N N A fa f A (R N ) f A Im f A Im A {x R N : f A (x) = 0} = {x R N : A(x) = 0} f A, kerf A kera (Definition 3.5.9, P. 30) N N A,. dimim A = ranka, 2 N dimkera = dimima. 3 deta 0 dim Im A = N, dimkera = 0. (Theorem 3.5., P. 30) ( ) Random Walk & Google Page Rank Agora on Aug / 67

68 (Section 3.5) Ax = b A, b R N, x = A b. 2 A. 2. b ImA,. 2.2 b ImA,. x 0, y ker A, x = x 0 + y, kera. (Theorem 3.5.3, P. 3) ( ) Random Walk & Google Page Rank Agora on Aug / 67

69 2 2 (Section 3.5) ( )( ) a b x c d y ( x = y ) ad bc 0, b R 2, x = A b. 2 ad bc = 0 ««a x 2. c y ««a x 2.2 c y.. x 0 «, x b x = x 0 + k. a (Corollary 3.5.4, P. 3) ( ) ( ) a b Im A, ker A c a ( ) Random Walk & Google Page Rank Agora on Aug / 67

70 2 2 (Section 3.5) (x,y ) ker A Im A ker A Im A (x,y ) ker A ker A ImA Im A a + d a + d = (cf. Example 3.5.5) (cf. Example 3.5.6) ( ) Random Walk & Google Page Rank Agora on Aug / 67

71 2 2 (Section 3.5, Example 3.5.5) ( )( ) ( ) 2 x a = 2 y b deta = 0 {( )} {( kera = span, Im A = span 2 )} ( ) a b = Im A a = b b ( ) ( ) a x = + t a 2 kera 2x + y = 0, (a, a) a = b = 0 Ax = 0 0 = dim ker A ( ) Random Walk & Google Page Rank Agora on Aug / 67

72 ( ) Random Walk & Google Page Rank Agora on Aug / 67

73 (Section 3.6) (2.) Ax = x N N A, λ R x R N (x 0), λ A, Ax = λx (3.2) x, λ (Definition 3.6., P. 35) x A ( ) Random Walk & Google Page Rank Agora on Aug / 67

74 (Section 3.6) x λ = A(kx) = kax = k(λx) = λ(kx) for all k R kx (Remark 3.6.2, P. 35) ( ) Random Walk & Google Page Rank Agora on Aug / 67

75 (Section 3.6) Ax = tx t, x Ax tex = 0 2 (A te)x = 0 3 det(a te) 0 x = (A te) 0 = 0 det(a te) = 0 λ N N A, λ t N det(a te) = 0 (Theorem 3.6.4, P. 36) ( ) Random Walk & Google Page Rank Agora on Aug / 67

76 (Section 3.6) N t N + a n t n + + a t + a 0 = 0, N (Theorem 3.6.5, P. 36) N N A,, N. (Remark 3.6.6, P. 36), t N det(a te) = 0, N ( ) Random Walk & Google Page Rank Agora on Aug / 67

77 (Section 3.6, Example 3.6.7) ( ) 2 A =, 2 ( ) t 2 det(a te) = det = t 2 2t 3 = (t+)(t 3) 2 t, A, 3. ( ) 2 A =, 2 ( ) t 2 det(a te) = det = t 2 2t t, A + 2i, 2i. ( ) Random Walk & Google Page Rank Agora on Aug / 67

78 (Section 3.6, Example 3.6.7) 3 A = 3, 3 det(a te) = t 3 + 9t 2 24t + 6 = (t )(t 4) 2, A 4, 4,. ( ) Random Walk & Google Page Rank Agora on Aug / 67

79 (Section 3.6) det(a te) A A λ k, λ k, λ,...,λ j A, det(a te) = (t λ ) k (t λ j ) k j t λ i λ i (Definition 3.6.8, P. 37) ( ) Random Walk & Google Page Rank Agora on Aug / 67

80 (Section 3.6) λ R det(a λe) = 0, dim ker(a λe) > 0, ker(a λe) x dim ker(a λe), λ k dim ker(a λe) k = ( ) Random Walk & Google Page Rank Agora on Aug / 67

81 (Section 3.6, Example 3.6.0) ( ) 2 A =. {, 3} 2 ( ) ( 2 2 x A + E = x =, 2 2 y) 2x + 2y = 0. λ = ( ) x = ( ) λ = 3 x = ( ) Random Walk & Google Page Rank Agora on Aug / 67

82 (Section 3.6, Example 3.6.0) ( ) 2 A =. { + 2i, 2i} 2 ( ) 2i 2 A ( + 2i)E = λ = + 2i ( 2 2i i x = ) ( ) i λ = 2i x = ( ) Random Walk & Google Page Rank Agora on Aug / 67

83 (Section 3.6) N N A,. A A T. 2 T, A T AT. (Theorem 3.6.2, P. 39) ( ) Random Walk & Google Page Rank Agora on Aug / 67

84 (Section 3.6) Ax = x (2.),. A, A 2 A x 3 (Problem 3.6.4, P. 40) ( ) Random Walk & Google Page Rank Agora on Aug / 67

85 n (Section 3.7, Example 3.7.) ( ) ( ) 3 A =, T =, B = T AT, A n. ( ) ( ) 0 0 B =, B 0 2 n = 0 2 n A n = (TBT ) n = TBT TB BT = TB n T B, 2 A T A T 2 A 2 T T AT, ( ) Random Walk & Google Page Rank Agora on Aug / 67

86 (Section 3.7) N N A,. λ i x i.,, T AT =. (Corollary 3.7.3, P. 4) T = ( x x N ) λ... λ N ( ) Random Walk & Google Page Rank Agora on Aug / 67

87 (Section 3.7) ( ) λ 0 L = 0 λ 2 λ λ 2 Ae = λ e, Ae 2 = λ 2 e 2, 2 2 A λ, λ 2 λ i a i Aa = λ a, Aa 2 = λ 2 a 2, (3.5) ( ) Random Walk & Google Page Rank Agora on Aug / 67

88 (Section 3.7) T = ( a b ) (3.5) AT = TL, T AT = L {a,a 2 }, A 3a a a2 2a2 ( ) Random Walk & Google Page Rank Agora on Aug / 67

89 (Section 3.7) ( ) cos θ sin θ A = cos θ ± isin θ = e sin θ cos θ ±iθ 2 2 e ±iθ : θ ( ) Random Walk & Google Page Rank Agora on Aug / 67

90 (Section 3.8) A.. A. 0.. A = ( ) Random Walk & Google Page Rank Agora on Aug / 67

91 (Section 3.8, Theorem 3.8.) A {λ i } N i= λ > λ 2 λ N. x 0 y k+ = Ax k, x k+ = y k+ y k+ x 0, x N λ. ( ) Random Walk & Google Page Rank Agora on Aug / 67

92 (Section 3.8) (Theorem 3.8.3, P. 44) N N A = (a ij ), B i = {z C : z a ii N j=,j i a ij }., A λ, N B i. ( ) Random Walk & Google Page Rank Agora on Aug / 67

93 (Section 3.8) N N A = (a ij ) (a ij 0), A λ C λ max i=,...,n. (Theorem 3.8.4, P. 45) N j= a ij ( ) Random Walk & Google Page Rank Agora on Aug / 67

94 ( ) Random Walk & Google Page Rank Agora on Aug / 67

95 (Section 4.) V, E : E e E, V o(e), t(e) V G = (V,E) V E o(e) e t(e) e (Definition 4.., P. 47) ( ) Random Walk & Google Page Rank Agora on Aug / 67

96 (Section 4.) ( ) Random Walk & Google Page Rank Agora on Aug / 67

97 (Section 4.) G = (V,E), A G G. V,,...,N.., N V. 2 N N A G, e E, o(e) = i, t(e) = j a ji =, a ji = 0 (Definition 4..4, P. 48) ( ) Random Walk & Google Page Rank Agora on Aug / 67

98 (Section 4.) 2 (Example 4..5, P. 48) A G = ( ) Random Walk & Google Page Rank Agora on Aug / 67

99 (Section 4., Example 4..6) A G = , A G 2 = ( ) Random Walk & Google Page Rank Agora on Aug / 67

100 (Section 4., Example 4..6) D,2 = D,2 A G2 D,2 = A G D,2 D,2 = E D,2 A G 2 D,2 = A G T A G2 T = A G ( ) Random Walk & Google Page Rank Agora on Aug / 67

101 (Section 4., Example 4..6) 0 N N A A G N aji =, j i G A G A = A G ( ) Random Walk & Google Page Rank Agora on Aug / 67

102 (Section 4.2, Definition 4.2.) G = (V,E) x, y x y G = (V,E) x, y x y ( ) Random Walk & Google Page Rank Agora on Aug / 67

103 (Section 4.2, Definition 4.2.3) G = (V,E) G x, y V G = (V,E) G x, y V G = (V,E) (Proposition 4.2.4, P. 50) ( ) Random Walk & Google Page Rank Agora on Aug / 67

104 (Section 4.2, Example 4.2.6) A G = , A2 G = A 3 G = A G + A 2 G + A 3 G = ( ) Random Walk & Google Page Rank Agora on Aug / 67

105 (Section 4.2, Example 4.2.6) A G2 = , A2 G 2 = A 3 G 2 = A G2 + A 2 G 2 + A 3 G 2 = ( ) Random Walk & Google Page Rank Agora on Aug / 67

106 (Section 4.2, Example 4.2.6) A G3 = , A2 G 3 = A 3 G 3 = A G3 + A 2 G 3 + A 3 G 3 = ( ) Random Walk & Google Page Rank Agora on Aug / 67

107 (Section 4.2) G A G A G + A 2 G + + AN G G N G (Theorem 4.2.7, P. 52) ( ) A O N N X B C X X (Definition 4.2.8, P. 52) ( ) Random Walk & Google Page Rank Agora on Aug / 67

108 (Section 4.2) G G, G A G (Theorem 4.2.0, P. 53) 0 N N A A ( ) Random Walk & Google Page Rank Agora on Aug / 67

109 (Section 4.2, Example 4.2.9) A G = , A G 2 = A G3 = G G 2 G 3 ( ) Random Walk & Google Page Rank Agora on Aug / 67

110 ( ) Random Walk & Google Page Rank Agora on Aug / 67

111 (Section 4.3) G G = (V,E) (Example 4.3., P. 53) v v3 v2 t = n G t = n +, G i,, ( ) Random Walk & Google Page Rank Agora on Aug. 20 / 67

112 (Section 4.3) t = n v i p(n,i) p(n +,) 0 /2 /2 p(n, ) p(n +,2) = /2 0 /2 p(n, 2) (4.) p(n +,3) /2 /2 0 p(n, 3) π(n + ) = P G π(n) (4.2) ( ) Random Walk & Google Page Rank Agora on Aug / 67

113 (Section 4.3) π = (p i ) R N p + + p N =, 0 p i π (Definition 4.3.2, P. 54) N N P = (p ij ) P 0 pij N i= p ij = (Definition 4.3.4, P. 54) P G π, P P π (Proposition 4.3.5, P. 55) ( ) Random Walk & Google Page Rank Agora on Aug / 67

114 (Section 4.3) π(n + ) = P G π(n) π(0), n π(n), π(n), (Definition 4.3.3, P. 54) ( ) Random Walk & Google Page Rank Agora on Aug / 67

115 (Section 4.3, Definition 4.3.7) G = (V,E) P G i j p ji = /K K i i j p ji = 0 P G G P G π(n + ) = P G π(n) (4.4) G ( ) Random Walk & Google Page Rank Agora on Aug / 67

116 (Section 4.3) v v2 G P G A G v3 0 /2 /2 /2 0 /2 /2 / v v2 v3 0 /2 /2 0 0 /2 / v v2 v3 0 /2 /3 /2 0 /3 /2 /2 /3 0 0 ( ) Random Walk & Google Page Rank Agora on Aug / 67

117 (Section 4.3) N N P π(n + ) = P π(n) (Definition 4.3.3, P. 57) P 0 A 2 A G G G AG A G = A ( ) Random Walk & Google Page Rank Agora on Aug / 67

118 (Section 4.3) 0 3/4 /5 P = /3 0 4/5 2/3 /4 0 0 A = 0 0 v /3 3/4 v 2 2/3 /4 /5 v 3 4/5 ( ) Random Walk & Google Page Rank Agora on Aug / 67

119 (Section 4.3, Definition 4.3.5) P π(n + ) = P π(n) t = 0 π(0) t = n π(n) = P n π(0) π = P π π ( ) Random Walk & Google Page Rank Agora on Aug / 67

120 (Section 4.3) G π(n + ) = P G π(n), π = lim n π(n) π = PG π π P π = P π π P ( ) Random Walk & Google Page Rank Agora on Aug / 67

121 (Section 4.3) π(0), π = lim t π(t) (Problem 4.3.7, P. 58) ( ) Random Walk & Google Page Rank Agora on Aug / 67

122 (Section 4.3) P, π(0), (Problem 4.3.8, P. 58) (cf. Theorem 3.8., P. 44) π = lim n P n π(0) ( ) Random Walk & Google Page Rank Agora on Aug / 67

123 (Section 4.4) N N A a ij 0 A (Definition 4.4., P. 59) P A λ(a) λ(a), > 0. 2 A µ, µ λ(a). 3 λ(a). 4 λ(a) x,. 5 λ(a),. ( Theorem 4.4.2, P. 59) ( ) Random Walk & Google Page Rank Agora on Aug / 67

124 (Section 4.4) P,. P,. 2 P µ µ. 3 P. (Theorem 4.4.3, P. 59), λ(p ) = ( ) Random Walk & Google Page Rank Agora on Aug / 67

125 (Section 4.4), λ(p ) λ(p ) > 0. 2 λ(p ) x,, λ(p ). 3 P, e = (,...,) T P T e = e. P T ( ) Random Walk & Google Page Rank Agora on Aug / 67

126 (Section 4.4) 4 µ µ n p ji = j= P T 5 P T P, P λ(p ) = 6, P x,, π =, π ( ) Random Walk & Google Page Rank Agora on Aug / 67

127 (Section 4.4) P, ( ) Random Walk & Google Page Rank Agora on Aug / 67

128 (Section 4.4) ( ) 0 P G = 0 ( ) π(0) = 0 = {, } π(2n) = ( ) π(2n + ) = 0 ( ) 0, (Example 4.4.4, P. 60) 2 {,e 2πi/3,e 2πi/3 } (Example 4.4.5, P. 6) ( ) Random Walk & Google Page Rank Agora on Aug / 67

129 (Section 4.4) µ = µ Theorem 3.8. (P. 44) λ > λ 2 λ N, π = lim n P n π(0) µ µ < ( ) Random Walk & Google Page Rank Agora on Aug / 67

130 (Section 4.5),. P k i = gcd{k N : p (k) ii > 0} P k = p (k) ij, k i i i, (Definition 4.5., P. 62) P k i = k j (Proposition 4.5.2, P. 62) ( ) Random Walk & Google Page Rank Agora on Aug / 67

131 (Section 4.5) k i 2 P, k i = (Definition 4.5.4, P. 63) = 3 4 (Example 4.5.8, P. 63) (Example 4.5.0, P. 64) ( ) Random Walk & Google Page Rank Agora on Aug / 67

132 (Section 4.5) P, P {p ii },. (Theorem 4.5.5, P. 63) P, P λ λ = λ =., π(0), t, π. (Theorem 4.5.6, P. 63) ( ) Random Walk & Google Page Rank Agora on Aug / 67

133 (Section 4.5) P k, e 2πi/k. e 2πi/k = cos(2π/k) + isin(2π/k) k = 5 (Example 3.7.4, P. 43) ( ) Random Walk & Google Page Rank Agora on Aug / 67

134 (Section 4.6) P, π 2 π(0) lim P n π(0) n. (Theorem 4.6., P. 65) π = lim n P n π(0) ( ) Random Walk & Google Page Rank Agora on Aug / 67

135 (Section 4.6), Theorem 4.6., π. (Theorem 4.6.2, P. 66) ( ) Random Walk & Google Page Rank Agora on Aug / 67

136 (Section 4.6) ( ) Random Walk & Google Page Rank Agora on Aug / 67

137 Google Google ( ) Random Walk & Google Page Rank Agora on Aug / 67

138 Google Goolge (Section 5.) ( ) Random Walk & Google Page Rank Agora on Aug / 67

139 Google Goolge (Section 5.), G G H, (Definition 5.., P. 67) H (Remark 5..2, P. 67), (Example 5..3, P. 67) ( ) Random Walk & Google Page Rank Agora on Aug / 67

140 Google Goolge (Section 5.) G = (V,E) v, v v. (Example 5..3, P. 67) / H = / , π = ( ) Random Walk & Google Page Rank Agora on Aug / 67

141 Google Goolge (Section 5.) S d = (di ) R N d i = { i, 0 i, S = N det, e =.. R N S = ( s s N ) s i = N e i, 0 i, ( ) Random Walk & Google Page Rank Agora on Aug / 67

142 Google Goolge (Section 5.) P P = H + S P Example 5..4 P / / / /2 0 /6 0 S = / /6 0,P = / /2 0 / / / / /6 0 ( ) Random Walk & Google Page Rank Agora on Aug / 67

143 Google Goolge (Section 5.), P H S P = H + S P P ( ) Random Walk & Google Page Rank Agora on Aug / 67

144 Google Goolge (Section 5.) T T = /N /N N eet =..... /N /N (Definition 5..5, P. 70) T ( ) Random Walk & Google Page Rank Agora on Aug / 67

145 Google Goolge Google (Section 5.) Google G(α) G(α) = αp + ( α)t 0 < α < (Definition 5..6, P. 70) α : ( ) Random Walk & Google Page Rank Agora on Aug / 67

146 Google Goolge Google (Section 5.) Example 5..4 (α = 9/0) / /2 0 /6 0 P = / /2 0 /6 0, T = / /6 0 G = 9 0 P + 0 T = ( ) Random Walk & Google Page Rank Agora on Aug / 67

147 Google Goolge Google (Section 5.) 0 < α < G(α) G(α) G(α) G(α) π π = lim n G n π(0) (Theorem 5..8, P. 70) Google G(α) (Definition 5..0, P. 7) ( ) Random Walk & Google Page Rank Agora on Aug / 67

148 Google Goolge (Section 5.) G( 9 0 ) = , π = ( ) Random Walk & Google Page Rank Agora on Aug / 67

149 Google Goolge α (Section 5.) G(α) = αp + ( α)t α α d dα π (α), α 0 d dα π (α) (Remark 5.., P. 7) Google α = 0.85 ( ) Random Walk & Google Page Rank Agora on Aug / 67

150 Google (Section 5.2) G(α) /N 2 π(0) =.. /N R N 3 G n π(0) π n+ = G(α)π n (Theorem 3.8., P. 44) ( ) Random Walk & Google Page Rank Agora on Aug / 67

151 Google (Section 5.2) Theorem 3.8. π k π k π 0 λ 2 k. (Theorem 5.2.6, P. 74) λ G(α) λ = π k π O ( λ 2 k) ( ) Random Walk & Google Page Rank Agora on Aug / 67

152 Google (Section 5.2) ǫ > 0 ǫ N N n > N n a n a < ǫ {a n } n= a (Definition 5.2.2, P. 72) r < r n 0 ǫ > 0 n > log r ǫ = r n < ǫ (Example 5.2.3, P. 73) ( ) Random Walk & Google Page Rank Agora on Aug / 67

153 Google (Section 5.2, Example 5.2.4) ǫ = /000 = 0 3 n log r ǫ = 3log 0/log r r n r = 0.7 r = 0.8 r = 0.9 e-50 e-00 e-50 e-200 e ( ) Random Walk & Google Page Rank Agora on Aug / 67

154 Google (Section 5.2) G(α) P {,λ 2,λ 3,...,λ N } G(α) = αp + ( α)t {,αλ 2,αλ 3,...,αλ N } G(α) α (Theorem 5.2.8, P. 75) λ 2 = 0.999, (0.999) k k k = 9899 α = 0.85 (0.85) k k k = 6 ( ) Random Walk & Google Page Rank Agora on Aug / 67

155 Google (Section 5.2) N N G π R N Gπ, O(N 2 ) (Proposition 5.2.9, P. 75) Intel Core i7 50Gflops ( 500 ) N = 55.5 (Remark 5.2.0, P. 75) (Remark 5.2.6, P. 77) N = : 800 (Proposition 5.2., P. 76) ( ) Random Walk & Google Page Rank Agora on Aug / 67

156 Google (Section 5.2) N N 0 O(N),, 0 (Definition 5.2.2, P. 76) H Google G G π ( α Gπ = αhπ + (e T π) N d + α ) N e O(N) (Proposition 5.2.4, P. 76), (Proposition 5.2.5, P. 76) ( ) Random Walk & Google Page Rank Agora on Aug / 67

157 Google (Section 5.2) G(α) π(n + ) = Gπ(n), α π(k) π = O(α k ) π(k + ) π(k) ( α)ǫ π(k) π ǫ (Remark 5.2.8, P. 78) ( ) Random Walk & Google Page Rank Agora on Aug / 67

158 Google (Section 5.3, Example 5.3.) / /2 0 / H = / /3 0 0 /2, d = /2 0 / / ( ) Random Walk & Google Page Rank Agora on Aug / 67

159 Google (Section 5.3, Example 5.3.) 0 /6 / P = H + /2 /6 / dt e = /2 / /6 /3 0 0 /2 0 /6 0 /2 0 /2 0 /6 0 /2 0 α = π = ( ) Random Walk & Google Page Rank Agora on Aug / 67

160 Google (Section 5.3, Example 5.3.) Page rank v v2 v3 v4 v5 v ( ) Random Walk & Google Page Rank Agora on Aug / 67

161 Google (Section 5.3, Example 5.3.) Iteration count - Error e-06 e-08 e-0 e-2 e ( ) Random Walk & Google Page Rank Agora on Aug / 67

162 Google (Section 5.3, Example 5.3.2) N = 5757, = 2445, = 4.25 ( ) Random Walk & Google Page Rank Agora on Aug / 67

163 Google (Section 5.3, Example 5.3.2) Iteration count - Error e-05 e-06 e-07 e-08 e-09 e ( ) Random Walk & Google Page Rank Agora on Aug / 67

164 Google (Section 5.3, Example 5.3.2) 000 Elasped time ( ) Random Walk & Google Page Rank Agora on Aug / 67

165 Goolge Google 0 0 ( ) Random Walk & Google Page Rank Agora on Aug / 67

166 Google, Google (?) ( ) Random Walk & Google Page Rank Agora on Aug / 67

167 ( ) Random Walk & Google Page Rank Agora on Aug / 67

1 1 1 1 1 1 2 f z 2 C 1, C 2 f 2 C 1, C 2 f(c 2 ) C 2 f(c 1 ) z C 1 f f(z) xy uv ( u v ) = ( a b c d ) ( x y ) + ( p q ) (p + b, q + d) 1 (p + a, q + c) 1 (p, q) 1 1 (b, d) (a, c) 2 3 2 3 a = d, c = b

More information

Microsoft Word - 触ってみよう、Maximaに2.doc

Microsoft Word - 触ってみよう、Maximaに2.doc i i e! ( x +1) 2 3 ( 2x + 3)! ( x + 1) 3 ( a + b) 5 2 2 2 2! 3! 5! 7 2 x! 3x! 1 = 0 ",! " >!!! # 2x + 4y = 30 "! x + y = 12 sin x lim x!0 x x n! # $ & 1 lim 1 + ('% " n 1 1 lim lim x!+0 x x"!0 x log x

More information

24.15章.微分方程式

24.15章.微分方程式 m d y dt = F m d y = mg dt V y = dy dt d y dt = d dy dt dt = dv y dt dv y dt = g dv y dt = g dt dt dv y = g dt V y ( t) = gt + C V y ( ) = V y ( ) = C = V y t ( ) = gt V y ( t) = dy dt = gt dy = g t dt

More information

0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9

0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9 1-1. 1, 2, 3, 4, 5, 6, 7,, 100,, 1000, n, m m m n n 0 n, m m n 1-2. 0 m n m n 0 2 = 1.41421356 π = 3.141516 1-3. 1 0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c),

More information

1.1 ft t 2 ft = t 2 ft+ t = t+ t 2 1.1 d t 2 t + t 2 t 2 = lim t 0 t = lim t 0 = lim t 0 t 2 + 2t t + t 2 t 2 t + t 2 t 2t t + t 2 t 2t + t = lim t 0

1.1 ft t 2 ft = t 2 ft+ t = t+ t 2 1.1 d t 2 t + t 2 t 2 = lim t 0 t = lim t 0 = lim t 0 t 2 + 2t t + t 2 t 2 t + t 2 t 2t t + t 2 t 2t + t = lim t 0 A c 2008 by Kuniaki Nakamitsu 1 1.1 t 2 sin t, cos t t ft t t vt t xt t + t xt + t xt + t xt t vt = xt + t xt t t t vt xt + t xt vt = lim t 0 t lim t 0 t 0 vt = dxt ft dft dft ft + t ft = lim t 0 t 1.1

More information

5 36 5................................................... 36 5................................................... 36 5.3..............................

5 36 5................................................... 36 5................................................... 36 5.3.............................. 9 8 3............................................. 3.......................................... 4.3............................................ 4 5 3 6 3..................................................

More information

34 2 2 h = h/2π 3 V (x) E 4 2 1 ψ = sin kxk = 2π/λ λ = h/p p = h/λ = kh/2π = k h 5 2 ψ = e ax2 ガウス 型 関 数 1.2 1 関 数 値 0.8 0.6 0.4 0.2 0 15 10 5 0 5 10

34 2 2 h = h/2π 3 V (x) E 4 2 1 ψ = sin kxk = 2π/λ λ = h/p p = h/λ = kh/2π = k h 5 2 ψ = e ax2 ガウス 型 関 数 1.2 1 関 数 値 0.8 0.6 0.4 0.2 0 15 10 5 0 5 10 33 2 2.1 2.1.1 x 1 T x T 0 F = ma T ψ) 1 x ψ(x) 2.1.2 1 1 h2 d 2 ψ(x) + V (x)ψ(x) = Eψ(x) (2.1) 2m dx 2 1 34 2 2 h = h/2π 3 V (x) E 4 2 1 ψ = sin kxk = 2π/λ λ = h/p p = h/λ = kh/2π = k h 5 2 ψ = e ax2

More information

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C 0 9 (1990 1999 ) 10 (2000 ) 1900 1994 1995 1999 2 SAT ACT 1 1990 IMO 1990/1/15 1:00-4:00 1 N 1990 9 N N 1, N 1 N 2, N 2 N 3 N 3 2 x 2 + 25x + 52 = 3 x 2 + 25x + 80 3 2, 3 0 4 A, B, C 3,, A B, C 2,,,, 7,

More information

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,,

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,, 2012 10 13 1,,,.,,.,.,,. 2?.,,. 1,, 1. (θ, φ), θ, φ (0, π),, (0, 2π). 1 0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ).

More information

II 2014 2 (1) log(1 + r/100) n = log 2 n log(1 + r/100) = log 2 n = log 2 log(1 + r/100) (2) y = f(x) = log(1 + x) x = 0 1 f (x) = 1/(1 + x) f (0) = 1

II 2014 2 (1) log(1 + r/100) n = log 2 n log(1 + r/100) = log 2 n = log 2 log(1 + r/100) (2) y = f(x) = log(1 + x) x = 0 1 f (x) = 1/(1 + x) f (0) = 1 II 2014 1 1 I 1.1 72 r 2 72 8 72/8 = 9 9 2 a 0 1 a 1 a 1 = a 0 (1+r/100) 2 a 2 a 2 = a 1 (1 + r/100) = a 0 (1 + r/100) 2 n a n = a 0 (1 + r/100) n a n a 0 2 n a 0 (1 + r/100) n = 2a 0 (1 + r/100) n = 2

More information

7 27 7.1........................................ 27 7.2.......................................... 28 1 ( a 3 = 3 = 3 a a > 0(a a a a < 0(a a a -1 1 6

7 27 7.1........................................ 27 7.2.......................................... 28 1 ( a 3 = 3 = 3 a a > 0(a a a a < 0(a a a -1 1 6 26 11 5 1 ( 2 2 2 3 5 3.1...................................... 5 3.2....................................... 5 3.3....................................... 6 3.4....................................... 7

More information

Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3. 39. 4.. 4.. 43. 46.. 46..

Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3. 39. 4.. 4.. 43. 46.. 46.. Cotets 6 6 : 6 6 6 6 6 6 7 7 7 Part. 8. 8.. 8.. 9..... 3. 3 3.. 3 3.. 7 3.3. 8 Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3.

More information

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)............................................

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)............................................ 5 partial differentiation (total) differentiation 5. z = f(x, y) (a, b) A = lim h f(a + h, b) f(a, b) h........................................................... ( ) f(x, y) (a, b) x A (a, b) x (a, b)

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

2 1 17 1.1 1.1.1 1650

2 1 17 1.1 1.1.1 1650 1 3 5 1 1 2 0 0 1 2 I II III J. 2 1 17 1.1 1.1.1 1650 1.1 3 3 6 10 3 5 1 3/5 1 2 + 1 10 ( = 6 ) 10 1/10 2000 19 17 60 2 1 1 3 10 25 33221 73 13111 0. 31 11 11 60 11/60 2 111111 3 60 + 3 332221 27 x y xy

More information

1 180m g 10m/s 2 2 6 1 3 v 0 (t=0) z max t max t z = z max 1 2 g(t t max) 2 (6) 1.3 2 3 3 r = (x, y, z) e x, e y, e z r = xe x + ye y + ze z. (7) v =

1 180m g 10m/s 2 2 6 1 3 v 0 (t=0) z max t max t z = z max 1 2 g(t t max) 2 (6) 1.3 2 3 3 r = (x, y, z) e x, e y, e z r = xe x + ye y + ze z. (7) v = 1. 2. 3 3. 4. 5. 6. 7. 8. 9. I http://risu.lowtem.hokudai.ac.jp/ hidekazu/class.html 1 1.1 1 a = g, (1) v = g t + v 0, (2) z = 1 2 g t2 + v 0 t + z 0. (3) 1.2 v-t. z-t. z 1 z 0 = dz = v, t1 dv v(t), v

More information

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1)

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1) D d dx 1 1.1 n d n y a 0 dx n + a d n 1 y 1 dx n 1 +... + a dy n 1 dx + a ny = f(x)...(1) dk y dx k = y (k) a 0 y (n) + a 1 y (n 1) +... + a n 1 y + a n y = f(x)...(2) (2) (2) f(x) 0 a 0 y (n) + a 1 y

More information

A B 5 C 9 3.4 7 mm, 89 mm 7/89 = 3.4. π 3 6 π 6 6 = 6 π > 6, π > 3 : π > 3

A B 5 C 9 3.4 7 mm, 89 mm 7/89 = 3.4. π 3 6 π 6 6 = 6 π > 6, π > 3 : π > 3 π 9 3 7 4. π 3................................................. 3.3........................ 3.4 π.................... 4.5..................... 4 7...................... 7..................... 9 3 3. p

More information

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y No1 1 (1) 2 f(x) =1+x + x 2 + + x n, g(x) = 1 (n +1)xn + nx n+1 (1 x) 2 x 6= 1 f 0 (x) =g(x) y = f(x)g(x) y 0 = f 0 (x)g(x)+f(x)g 0 (x) 3 (1) y = x2 x +1 x (2) y = 1 g(x) y0 = g0 (x) {g(x)} 2 (2) y = µ

More information

2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a

More information

13 0 1 1 4 11 4 12 5 13 6 2 10 21 10 22 14 3 20 31 20 32 25 33 28 4 31 41 32 42 34 43 38 5 41 51 41 52 43 53 54 6 57 61 57 62 60 70 0 Gauss a, b, c x, y f(x, y) = ax 2 + bxy + cy 2 = x y a b/2 b/2 c x

More information

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory 10.3 Fubini 1 Introduction [1],, [2],, [3],, [4],, [5],, [6],, [7],, [8],, [1, 2, 3] 1980

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory 10.3 Fubini 1 Introduction [1],, [2],, [3],, [4],, [5],, [6],, [7],, [8],, [1, 2, 3] 1980 % 100% 1 Introduction 2 (100%) 2.1 2.2 2.3 3 (100%) 3.1 3.2 σ- 4 (100%) 4.1 4.2 5 (100%) 5.1 5.2 5.3 6 (100%) 7 (40%) 8 Fubini (90%) 2006.11.20 1 8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory

More information

t14.dvi

t14.dvi version 1 1 (Nested Logit IIA(Independence from Irrelevant Alternatives [2004] ( [2004] 2 2 Spence and Owen[1977] X,Y,Z X Y U 2 U(X, Y, Z X Y X Y Spence and Owen Spence and Owen p X, p Y X Y X Y p Y p

More information

f (x) f (x) f (x) f (x) f (x) 2 f (x) f (x) f (x) f (x) 2 n f (x) n f (n) (x) dn f f (x) dx n dn dx n D n f (x) n C n C f (x) x = a 1 f (x) x = a x >

f (x) f (x) f (x) f (x) f (x) 2 f (x) f (x) f (x) f (x) 2 n f (x) n f (n) (x) dn f f (x) dx n dn dx n D n f (x) n C n C f (x) x = a 1 f (x) x = a x > 5.1 1. x = a f (x) a x h f (a + h) f (a) h (5.1) h 0 f (x) x = a f +(a) f (a + h) f (a) = lim h +0 h (5.2) x h h 0 f (a) f (a + h) f (a) f (a h) f (a) = lim = lim h 0 h h 0 h (5.3) f (x) x = a f (a) =

More information

I.2 z x, y i z = x + iy. x, y z (real part), (imaginary part), x = Re(z), y = Im(z). () i. (2) 2 z = x + iy, z 2 = x 2 + iy 2,, z ± z 2 = (x ± x 2 ) +

I.2 z x, y i z = x + iy. x, y z (real part), (imaginary part), x = Re(z), y = Im(z). () i. (2) 2 z = x + iy, z 2 = x 2 + iy 2,, z ± z 2 = (x ± x 2 ) + I..... z 2 x, y z = x + iy (i ). 2 (x, y). 2.,,.,,. (), ( 2 ),,. II ( ).. z, w = f(z). z f(z), w. z = x + iy, f(z) 2 x, y. f(z) u(x, y), v(x, y), w = f(x + iy) = u(x, y) + iv(x, y).,. 2. z z, w w. D, D.

More information

3 3 i

3 3 i 00D8102021I 2004 3 3 3 i 1 ------------------------------------------------------------------------------------------------1 2 ---------------------------------------------------------------------------------------2

More information

α = 2 2 α 2 = ( 2) 2 = 2 x = α, y = 2 x, y X 0, X 1.X 2,... x 0 X 0, x 1 X 1, x 2 X 2.. Zorn A, B A B A B A B A B B A A B N 2

α = 2 2 α 2 = ( 2) 2 = 2 x = α, y = 2 x, y X 0, X 1.X 2,... x 0 X 0, x 1 X 1, x 2 X 2.. Zorn A, B A B A B A B A B B A A B N 2 1. 2. 3. 4. 5. 6. 7. 8. N Z 9. Z Q 10. Q R 2 1. 2. 3. 4. Zorn 5. 6. 7. 8. 9. x x x y x, y α = 2 2 α x = y = 2 1 α = 2 2 α 2 = ( 2) 2 = 2 x = α, y = 2 x, y X 0, X 1.X 2,... x 0 X 0, x 1 X 1, x 2 X 2.. Zorn

More information

2 p T, Q

2 p T, Q 270 C, 6000 C, 2 p T, Q p: : p = N/ m 2 N/ m 2 Pa : pdv p S F Q 1 g 1 1 g 1 14.5 C 15.5 1 1 cal = 4.1855 J du = Q pdv U ( ) Q pdv 2 : z = f(x, y). z = f(x, y) (x 0, y 0 ) y y = y 0 z = f(x, y 0 ) x x =

More information

http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n

http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 1 1 1.1 ɛ-n 1 ɛ-n lim n a n = α n a n α 2 lim a n = 1 n a k n n k=1 1.1.7 ɛ-n 1.1.1 a n α a n n α lim n a n = α ɛ N(ɛ) n > N(ɛ) a n α < ɛ

More information

z z x = y = /x lim y = + x + lim y = x (x a ) a (x a+) lim z z f(z) = A, lim z z g(z) = B () lim z z {f(z) ± g(z)} = A ± B (2) lim {f(z) g(z)} = AB z

z z x = y = /x lim y = + x + lim y = x (x a ) a (x a+) lim z z f(z) = A, lim z z g(z) = B () lim z z {f(z) ± g(z)} = A ± B (2) lim {f(z) g(z)} = AB z Tips KENZOU 28 6 29 sin 2 x + cos 2 x = cos 2 z + sin 2 z = OK... z < z z < R w = f(z) z z w w f(z) w lim z z f(z) = w x x 2 2 f(x) x = a lim f(x) = lim f(x) x a+ x a z z x = y = /x lim y = + x + lim y

More information

TIJ日本語教育研究会通信40号

TIJ日本語教育研究会通信40号 XYZ AX B X Y Z A A ) AA B A D ) AD B D E AE B E A B ) A B A B A B A B A ( ) B A B A B C ( ) A B ( ) A B ( ) A B A ( ) B A B A B B A B 21 21 A B ( ) ( ) ( ) ( ) ( ) ) 300 A B BBQ vs vs A B 4 4 RPG 10 A

More information

繖 7 縺6ァ80キ3 ッ0キ3 ェ ュ ョ07 縺00 06 ュ0503 ュ ッ 70キ ァ805 ョ0705 ョ ッ0キ3 x 罍陦ァ ァ 0 04 縺 ァ タ0903 タ05 ァ. 7

繖 7 縺6ァ80キ3 ッ0キ3 ェ ュ ョ07 縺00 06 ュ0503 ュ ッ 70キ ァ805 ョ0705 ョ ッ0キ3 x 罍陦ァ ァ 0 04 縺 ァ タ0903 タ05 ァ. 7 30キ36ヲ0 7 7 ュ6 70キ3 ョ6ァ8056 50キ300 縺6 5 ッ05 7 07 ッ 7 ュ ッ04 ュ03 ー 0キ36ヲ06 7 繖 70キ306 6 5 0 タ0503070060 08 ョ0303 縺0 ァ090609 0403 閨0303 003 ァ 0060503 陦ァ 06 タ09 ァ タ04 縺06 閨06-0006003 ァ ァ 04 罍ァ006 縺03 0403

More information

untitled

untitled 1 1 1. 2. 3. 2 2 1 (5/6) 4 =0.517... 5/6 (5/6) 4 1 (5/6) 4 1 (35/36) 24 =0.491... 0.5 2.7 3 1 n =rand() 0 1 = rand() () rand 6 0,1,2,3,4,5 1 1 6 6 *6 int() integer 1 6 = int(rand()*6)+1 1 4 3 500 260 52%

More information

04年度LS民法Ⅰ教材改訂版.PDF

04年度LS民法Ⅰ教材改訂版.PDF ?? A AB A B C AB A B A B A B A A B A 98 A B A B A B A B B A A B AB AB A B A BB A B A B A B A B A B A AB A B B A B AB A A C AB A C A A B A B B A B A B B A B A B B A B A B A B A B A B A B A B

More information

(I) GotoBALS, http://www-is.amp.i.kyoto-u.ac.jp/ kkimur/charpoly.html 2

(I) GotoBALS, http://www-is.amp.i.kyoto-u.ac.jp/ kkimur/charpoly.html 2 sdmp Maple - (Ver.2) ( ) September 27, 2011 1 (I) GotoBALS, http://www-is.amp.i.kyoto-u.ac.jp/ kkimur/charpoly.html 2 (II) Nehalem CPU GotoBLAS Intel CPU Nehalem CPU, GotoBLAS, Hyper-Thread technology

More information

4.6: 3 sin 5 sin θ θ t θ 2t θ 4t : sin ωt ω sin θ θ ωt sin ωt 1 ω ω [rad/sec] 1 [sec] ω[rad] [rad/sec] 5.3 ω [rad/sec] 5.7: 2t 4t sin 2t sin 4t

4.6: 3 sin 5 sin θ θ t θ 2t θ 4t : sin ωt ω sin θ θ ωt sin ωt 1 ω ω [rad/sec] 1 [sec] ω[rad] [rad/sec] 5.3 ω [rad/sec] 5.7: 2t 4t sin 2t sin 4t 1 1.1 sin 2π [rad] 3 ft 3 sin 2t π 4 3.1 2 1.1: sin θ 2.2 sin θ ft t t [sec] t sin 2t π 4 [rad] sin 3.1 3 sin θ θ t θ 2t π 4 3.2 3.1 3.4 3.4: 2.2: sin θ θ θ [rad] 2.3 0 [rad] 4 sin θ sin 2t π 4 sin 1 1

More information

1 2 3

1 2 3 BL01604-103 JA DIGITAL CAMERA X-S1 http://fujifilm.jp/personal/digitalcamera/index.html 1 2 3 y y y y y c a b P S A M C1/C2/C3 E E E B Adv. SP F N h I P O W X Y d ISO Fn1 Fn2 b S I A b X F a K A E A Adv.

More information

IV.dvi

IV.dvi IV 1 IV ] shib@mth.hiroshim-u.c.jp [] 1. z 0 ε δ := ε z 0 z

More information

i 0 1 0.1 I................................................ 1 0.2.................................................. 2 0.2.1...........................

i 0 1 0.1 I................................................ 1 0.2.................................................. 2 0.2.1........................... 2008 II 21 1 31 i 0 1 0.1 I................................................ 1 0.2.................................................. 2 0.2.1............................................. 2 0.2.2.............................................

More information

Test IV, March 22, 2016 6. Suppose that 2 n a n converges. Prove or disprove that a n converges. Proof. Method I: Let a n x n be a power series, which converges at x = 2 by the assumption. Applying Theorem

More information

ver 0.3 Chapter 0 0.1 () 0( ) 0.2 3 4 CHAPTER 0. http://www.jaist.ac.jp/~t-yama/k116 0.3 50% ( Wikipedia ) ( ) 0.4! 2006 0.4. 5 MIT OCW ( ) MIT Open Courseware MIT (Massachusetts Institute of Technology)

More information

(Basic of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Weak Law

(Basic of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Weak Law I (Radom Walks ad Percolatios) 3 4 7 ( -2 ) (Preface),.,,,...,,.,,,,.,.,,.,,. (,.) (Basic of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios, Meas).............................

More information

BL01479-100 JA DIGITAL CAMERA FINEPIX F600EXR http://fujifilm.jp/personal/digitalcamera/index.html y a y y b 6 y DISP/BACK 1 2 3 P y P y P y P y P y P Q R P R E O E E Adv. SP M A S P d F N h b R I P O

More information

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi II (Basics of Probability Theory ad Radom Walks) (Preface),.,,,.,,,...,,.,.,,.,,. (Basics of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios, Meas).............................

More information

R

R R ) R NTN NTN NTN NTN NTN @ 1. 2. 3. CONTENTS 4. 5. 6. NTN NTN NTN 1. NTN NTN NTN NTN NTN NTN NTN NTN NTN NTN NTN NTN NTN 2. L1 4 -M8 230 4 -M10 8-11 175 260 250 150 210 230 Bpx 150 250 210 Bx Bpx

More information

3 - { } / f ( ) e nπ + f( ) = Cne n= nπ / Eucld r e (= N) j = j e e = δj, δj = 0 j r e ( =, < N) r r r { } ε ε = r r r = Ce = r r r e ε = = C = r C r e + CC e j e j e = = ε = r ( r e ) + r e C C 0 r e =

More information

Tabulation of the clasp number of prime knots with up to 10 crossings

Tabulation of the clasp number of prime knots  with up to 10 crossings . Tabulation of the clasp number of prime knots with up to 10 crossings... Kengo Kawamura (Osaka City University) joint work with Teruhisa Kadokami (East China Normal University).. VI December 20, 2013

More information

BL01622-100 JA DIGITAL CAMERA FINEPIX F770EXR http://fujifilm.jp/personal/digitalcamera/index.html y a y y b e y DISP/BACK 1 2 P 3 y P y P y P y P y P Q R P R E d F N h Fn b R I P O X Y n E E E I Adv.

More information

AHPを用いた大相撲の新しい番付編成

AHPを用いた大相撲の新しい番付編成 5304050 2008/2/15 1 2008/2/15 2 42 2008/2/15 3 2008/2/15 4 195 2008/2/15 5 2008/2/15 6 i j ij >1 ij ij1/>1 i j i 1 ji 1/ j ij 2008/2/15 7 1 =2.01/=0.5 =1.51/=0.67 2008/2/15 8 1 2008/2/15 9 () u ) i i i

More information

168 13 Maxwell ( H ds = C S rot H = j + D j + D ) ds (13.5) (13.6) Maxwell Ampère-Maxwell (3) Gauss S B 0 B ds = 0 (13.7) S div B = 0 (13.8) (4) Farad

168 13 Maxwell ( H ds = C S rot H = j + D j + D ) ds (13.5) (13.6) Maxwell Ampère-Maxwell (3) Gauss S B 0 B ds = 0 (13.7) S div B = 0 (13.8) (4) Farad 13 Maxwell Maxwell Ampère Maxwell 13.1 Maxwell Maxwell E D H B ε 0 µ 0 (1) Gauss D = ε 0 E (13.1) B = µ 0 H. (13.2) S D = εe S S D ds = ρ(r)dr (13.3) S V div D = ρ (13.4) ρ S V Coulomb (2) Ampère C H =

More information

,..,,.,,.,.,..,,.,,..,,,. 2

,..,,.,,.,.,..,,.,,..,,,. 2 A.A. (1906) (1907). 2008.7.4 1.,.,.,,.,,,.,..,,,.,,.,, R.J.,.,.,,,..,.,. 1 ,..,,.,,.,.,..,,.,,..,,,. 2 1, 2, 2., 1,,,.,, 2, n, n 2 (, n 2 0 ).,,.,, n ( 2, ), 2 n.,,,,.,,,,..,,. 3 x 1, x 2,..., x n,...,,

More information

y a y y b e

y a y y b e DIGITAL CAMERA FINEPIX F1000EXR BL01893-100 JA http://fujifilm.jp/personal/digitalcamera/index.html y a y y b e 1 2 P 3 y P y P y P y P y P Q R P R E E E E Adv. SP P S A M d F N h Fn R I P O X Y b I A

More information

( ) a, b c a 2 + b 2 = c 2. 2 1 2 2 : 2 2 = p q, p, q 2q 2 = p 2. p 2 p 2 2 2 q 2 p, q (QED)

( ) a, b c a 2 + b 2 = c 2. 2 1 2 2 : 2 2 = p q, p, q 2q 2 = p 2. p 2 p 2 2 2 q 2 p, q (QED) rational number p, p, (q ) q ratio 3.14 = 3 + 1 10 + 4 100 ( ) a, b c a 2 + b 2 = c 2. 2 1 2 2 : 2 2 = p q, p, q 2q 2 = p 2. p 2 p 2 2 2 q 2 p, q (QED) ( a) ( b) a > b > 0 a < nb n A A B B A A, B B A =

More information

学習内容と日常生活との関連性の研究-第2部-第6章

学習内容と日常生活との関連性の研究-第2部-第6章 378 379 10% 10%10% 10% 100% 380 381 2000 BSE CJD 5700 18 1996 2001 100 CJD 1 310-7 10-12 10-6 CJD 100 1 10 100 100 1 1 100 1 10-6 1 1 10-6 382 2002 14 5 1014 10 10.4 1014 100 110-6 1 383 384 385 2002 4

More information

新たな基礎年金制度の構築に向けて

新たな基礎年金制度の構築に向けて [ ] 1 1 4 60 1 ( 1 ) 1 1 1 4 1 1 1 1 1 4 1 2 1 1 1 ( ) 2 1 1 1 1 1 1 1996 1 3 4.3(2) 1997 1 65 1 1 2 1/3 ( )2/3 1 1/3 ( ) 1 1 2 3 2 4 6 2.1 1 2 1 ( ) 13 1 1 1 1 2 2 ( ) ( ) 1 ( ) 60 1 1 2.2 (1) (3) ( 9

More information

3 3.3. I 3.3.2. [ ] N(µ, σ 2 ) σ 2 (X 1,..., X n ) X := 1 n (X 1 + + X n ): µ X N(µ, σ 2 /n) 1.8.4 Z = X µ σ/ n N(, 1) 1.8.2 < α < 1/2 Φ(z) =.5 α z α

3 3.3. I 3.3.2. [ ] N(µ, σ 2 ) σ 2 (X 1,..., X n ) X := 1 n (X 1 + + X n ): µ X N(µ, σ 2 /n) 1.8.4 Z = X µ σ/ n N(, 1) 1.8.2 < α < 1/2 Φ(z) =.5 α z α 2 2.1. : : 2 : ( ): : ( ): : : : ( ) ( ) ( ) : ( pp.53 6 2.3 2.4 ) : 2.2. ( ). i X i (i = 1, 2,..., n) X 1, X 2,..., X n X i (X 1, X 2,..., X n ) ( ) n (x 1, x 2,..., x n ) (X 1, X 2,..., X n ) : X 1,

More information

( ) 24 1 ( 26 8 19 ) i 0.1 1 (2012 05 30 ) 1 (), 2 () 1,,, III, C III, C, 1, 2,,, ( III, C ),, 1,,, http://ryuiki.agbi.tsukuba.ac.jp/lec/12-physics/ E104),,,,,, 75 3,,,, 0.2, 1,,,,,,,,,,, 2,,, 1000 ii,

More information

dvipsj.4131.dvi

dvipsj.4131.dvi 7 1 7 : 7.1 3.5 (b) 7 2 7.1 7.2 7.3 7 3 7.2 7.4 7 4 x M = Pw (7.3) ρ M (EI : ) M = EI ρ = w EId2 (7.4) dx 2 ( (7.3) (7.4) ) EI d2 w + Pw =0 (7.5) dx2 P/EI = α 2 (7.5) w = A sin αx + B cos αx 7.5 7.6 :

More information

1 -- 9 -- 3 3--1 LMS NLMS 2009 2 LMS Least Mean Square LMS Normalized LMS NLMS 3--1--1 3 1 AD 3 1 h(n) y(n) d(n) FIR w(n) n = 0, 1,, N 1 N N = 2 3--1-

1 -- 9 -- 3 3--1 LMS NLMS 2009 2 LMS Least Mean Square LMS Normalized LMS NLMS 3--1--1 3 1 AD 3 1 h(n) y(n) d(n) FIR w(n) n = 0, 1,, N 1 N N = 2 3--1- 1 -- 9 3 2009 2 LMS NLMS RLS FIR IIR 3-1 3-2 3-3 3-4 c 2011 1/(13) 1 -- 9 -- 3 3--1 LMS NLMS 2009 2 LMS Least Mean Square LMS Normalized LMS NLMS 3--1--1 3 1 AD 3 1 h(n) y(n) d(n) FIR w(n) n = 0, 1,, N

More information

untitled

untitled 10 log 10 W W 10 L W = 10 log 10 W 10 12 10 log 10 I I 0 I 0 =10 12 I = P2 ρc = ρcv2 L p = 10 log 10 p 2 p 0 2 = 20 log 10 p p = 20 log p 10 0 2 10 5 L 3 = 10 log 10 10 L 1 /10 +10 L 2 ( /10 ) L 1 =10

More information

O E ( ) A a A A(a) O ( ) (1) O O () 467

O E ( ) A a A A(a) O ( ) (1) O O () 467 1 1.0 16 1 ( 1 1 ) 1 466 1.1 1.1.1 4 O E ( ) A a A A(a) O ( ) (1) O O () 467 ( ) A(a) O A 0 a x ( ) A(3), B( ), C 1, D( 5) DB C A x 5 4 3 1 0 1 3 4 5 16 A(1), B( 3) A(a) B(b) d ( ) A(a) B(b) d AB d = d(a,

More information

7 9 7..................................... 9 7................................ 3 7.3...................................... 3 A A. ω ν = ω/π E = hω. E

7 9 7..................................... 9 7................................ 3 7.3...................................... 3 A A. ω ν = ω/π E = hω. E B 8.9.4, : : MIT I,II A.P. E.F.,, 993 I,,, 999, 7 I,II, 95 A A........................... A........................... 3.3 A.............................. 4.4....................................... 5 6..............................

More information

1

1 005 11 http://www.hyuki.com/girl/ http://www.hyuki.com/story/tetora.html http://www.hyuki.com/ Hiroshi Yuki c 005, All rights reserved. 1 1 3 (a + b)(a b) = a b (x + y)(x y) = x y a b x y a b x y 4 5 6

More information

140 120 100 80 60 40 20 0 115 107 102 99 95 97 95 97 98 100 64 72 37 60 50 53 50 36 32 18 H18 H19 H20 H21 H22 H23 H24 H25 H26 H27 1 100 () 80 60 40 20 0 1 19 16 10 11 6 8 9 5 10 35 76 83 73 68 46 44 H11

More information

! & # # w w w w w w w w l & w_ # w_ w # w w w # w w # w w # w w w w bw w bw w bw w w bw w b w w_ l !!!!!! 6!!!! 6 ' ' ' ' ' ' ' ' ' ' ' '! ' ' ' ' ' ' ' ' ' ' ' ' ' '! ' ' ' ' ' ' ' ' ' ' '

More information

チュートリアル:ノンパラメトリックベイズ

チュートリアル:ノンパラメトリックベイズ { x,x, L, xn} 2 p( θ, θ, θ, θ, θ, } { 2 3 4 5 θ6 p( p( { x,x, L, N} 2 x { θ, θ2, θ3, θ4, θ5, θ6} K n p( θ θ n N n θ x N + { x,x, L, N} 2 x { θ, θ2, θ3, θ4, θ5, θ6} log p( 6 n logθ F 6 log p( + λ θ F θ

More information

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi I (Basics of Probability Theory ad Radom Walks) 25 4 5 ( 4 ) (Preface),.,,,.,,,...,,.,.,,.,,. (,.) (Basics of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios,

More information

…K…E…X„^…x…C…W…A…fi…l…b…g…‘†[…N‡Ì“‚¢−w‘K‡Ì‹ê™v’«‡É‡Â‡¢‡Ä

…K…E…X„^…x…C…W…A…fi…l…b…g…‘†[…N‡Ì“‚¢−w‘K‡Ì‹ê™v’«‡É‡Â‡¢‡Ä 2009 8 26 1 2 3 ARMA 4 BN 5 BN 6 (Ω, F, µ) Ω: F Ω σ 1 Ω, ϕ F 2 A, B F = A B, A B, A\B F F µ F 1 µ(ϕ) = 0 2 A F = µ(a) 0 3 A, B F, A B = ϕ = µ(a B) = µ(a) + µ(b) µ(ω) = 1 X : µ X : X x 1,, x n X (Ω) x 1,,

More information

1 1 ( ) ( 1.1 1.1.1 60% mm 100 100 60 60% 1.1.2 A B A B A 1

1 1 ( ) ( 1.1 1.1.1 60% mm 100 100 60 60% 1.1.2 A B A B A 1 1 21 10 5 1 E-mail: qliu@res.otaru-uc.ac.jp 1 1 ( ) ( 1.1 1.1.1 60% mm 100 100 60 60% 1.1.2 A B A B A 1 B 1.1.3 boy W ID 1 2 3 DI DII DIII OL OL 1.1.4 2 1.1.5 1.1.6 1.1.7 1.1.8 1.2 1.2.1 1. 2. 3 1.2.2

More information

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e 7 -a 7 -a February 4, 2007 1. 2. 3. 4. 1. 2. 3. 1 Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e z

More information

main.dvi

main.dvi Nim naito@math.nagoya-u.ac.jp,.,.,,,.,,,,,,, Nim,.,,,,. Nim Nim,.,.,.,,.,.,. [1, 3],,, Nim,,., Nim. Date:. August 10-11, 1999 2 1 Nim.. Pile., Pile.,. normal case.,. reverse case.,.. Pile. N 1, N 2, N

More information

lim lim lim lim 0 0 d lim 5. d 0 d d d d d d 0 0 lim lim 0 d

lim lim lim lim 0 0 d lim 5. d 0 d d d d d d 0 0 lim lim 0 d lim 5. 0 A B 5-5- A B lim 0 A B A 5. 5- 0 5-5- 0 0 lim lim 0 0 0 lim lim 0 0 d lim 5. d 0 d d d d d d 0 0 lim lim 0 d 0 0 5- 5-3 0 5-3 5-3b 5-3c lim lim d 0 0 5-3b 5-3c lim lim lim d 0 0 0 3 3 3 3 3 3

More information

Fourier (a) C, (b) C, (c) f 2 (a), (b) (c) (L 2 ) (a) C x : f(x) = a 0 2 + (a n cos nx + b n sin nx). ( N ) a 0 f(x) = lim N 2 + (a n cos nx + b n sin

Fourier (a) C, (b) C, (c) f 2 (a), (b) (c) (L 2 ) (a) C x : f(x) = a 0 2 + (a n cos nx + b n sin nx). ( N ) a 0 f(x) = lim N 2 + (a n cos nx + b n sin ( ) 205 6 Fourier f : R C () (2) f(x) = a 0 2 + (a n cos nx + b n sin nx), n= a n = f(x) cos nx dx, b n = π π f(x) sin nx dx a n, b n f Fourier, (3) f Fourier or No. ) 5, Fourier (3) (4) f(x) = c n = n=

More information

1 P2 P P3P4 P5P8 P9P10 P11 P12

1 P2 P P3P4 P5P8 P9P10 P11 P12 1 P2 P14 2 3 4 5 1 P3P4 P5P8 P9P10 P11 P12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 & 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1! 3 2 3! 4 4 3 5 6 I 7 8 P7 P7I P5 9 P5! 10 4!! 11 5 03-5220-8520

More information

1 1 3 1.1 (Frequecy Tabulatios)................................ 3 1........................................ 8 1.3.....................................

1 1 3 1.1 (Frequecy Tabulatios)................................ 3 1........................................ 8 1.3..................................... 1 1 3 1.1 (Frequecy Tabulatios)................................ 3 1........................................ 8 1.3........................................... 1 17.1................................................

More information

a (a + ), a + a > (a + ), a + 4 a < a 4 a,,, y y = + a y = + a, y = a y = ( + a) ( x) + ( a) x, x y,y a y y y ( + a : a ) ( a : a > ) y = (a + ) y = a

a (a + ), a + a > (a + ), a + 4 a < a 4 a,,, y y = + a y = + a, y = a y = ( + a) ( x) + ( a) x, x y,y a y y y ( + a : a ) ( a : a > ) y = (a + ) y = a [] a x f(x) = ( + a)( x) + ( a)x f(x) = ( a + ) x + a + () x f(x) a a + a > a + () x f(x) a (a + ) a x 4 f (x) = ( + a) ( x) + ( a) x = ( a + a) x + a + = ( a + ) x + a +, () a + a f(x) f(x) = f() = a

More information

untitled

untitled Y = Y () x i c C = i + c = ( x ) x π (x) π ( x ) = Y ( ){1 + ( x )}( 1 x ) Y ( )(1 + C ) ( 1 x) x π ( x) = 0 = ( x ) R R R R Y = (Y ) CS () CS ( ) = Y ( ) 0 ( Y ) dy Y ( ) A() * S( π ), S( CS) S( π ) =

More information

21 1 1 1 2 2 5 7 9 11 13 13 14 18 18 20 28 28 29 31 31 34 35 35 36 37 37 38 39 40 56 66 74 89 99 - ------ ------ -------------- ---------------- 1 10 2-2 8 5 26 ( ) 15 3 4 19 62 2,000 26 26 5 3 30 1 13

More information

1 (1) vs. (2) (2) (a)(c) (a) (b) (c) 31 2 (a) (b) (c) LENCHAR

1 (1) vs. (2) (2) (a)(c) (a) (b) (c) 31 2 (a) (b) (c) LENCHAR () 601 1 () 265 OK 36.11.16 20 604 266 601 30.4.5 (1) 91621 3037 (2) 20-12.2 20-13 (3) ex. 2540-64 - LENCHAR 1 (1) vs. (2) (2) 605 50.2.13 41.4.27 10 10 40.3.17 (a)(c) 2 1 10 (a) (b) (c) 31 2 (a) (b) (c)

More information

道路施設基本データ作成入力書式マニュアル(中国地方整備局版)平成20年10月

道路施設基本データ作成入力書式マニュアル(中国地方整備局版)平成20年10月 道 路 BOX 等 に 関 する 調 査 表 記 入 マニュアル D080 D080 道 路 B O X 基 本 この 調 査 表 は 道 路 BOX 等 に 関 する 基 本 的 データを 登 録 するためのものであ る なお ここで 取 扱 う 道 路 BOX 等 とは 管 理 する 道 路 に 対 し 平 行 ( 縦 断 方 向 ) しているアンダーパス 等 の 箇 所 などに 設 けられたボックスカルバート

More information

54 144 144 144 144 144 80 152 84 122 HTML

54 144 144 144 144 144 80 152 84 122 HTML 54 144 144 144 144 144 80 152 84 122 HTML P20 P24 P28 P40 P54 P84 P122 P138 P144 P152 P220 P234 P240 P242 1 1-1 1-2 1-3 1-4 1-5 1 1-6 1 2 2-1 2-2 A C D E F 2 G H I 2-3 2-4 C D E E A 2

More information

( ) 2002 1 1 1 1.1....................................... 1 1.1.1................................. 1 1.1.2................................. 1 1.1.3................... 3 1.1.4......................................

More information

June 2016 i (statistics) F Excel Numbers, OpenOffice/LibreOffice Calc ii *1 VAR STDEV 1 SPSS SAS R *2 R R R R *1 Excel, Numbers, Microsoft Office, Apple iwork, *2 R GNU GNU R iii URL http://ruby.kyoto-wu.ac.jp/statistics/training/

More information

「産業上利用することができる発明」の審査の運用指針(案)

「産業上利用することができる発明」の審査の運用指針(案) 1 1.... 2 1.1... 2 2.... 4 2.1... 4 3.... 6 4.... 6 1 1 29 1 29 1 1 1. 2 1 1.1 (1) (2) (3) 1 (4) 2 4 1 2 2 3 4 31 12 5 7 2.2 (5) ( a ) ( b ) 1 3 2 ( c ) (6) 2. 2.1 2.1 (1) 4 ( i ) ( ii ) ( iii ) ( iv)

More information

semi4.dvi

semi4.dvi 1 2 1.1................................................. 2 1.2................................................ 3 1.3...................................................... 3 1.3.1.............................................

More information

1: *2 W, L 2 1 (WWL) 4 5 (WWL) W (WWL) L W (WWL) L L 1 2, 1 4, , 1 4 (cf. [4]) 2: 2 3 * , , = , 1

1: *2 W, L 2 1 (WWL) 4 5 (WWL) W (WWL) L W (WWL) L L 1 2, 1 4, , 1 4 (cf. [4]) 2: 2 3 * , , = , 1 I, A 25 8 24 1 1.1 ( 3 ) 3 9 10 3 9 : (1,2,6), (1,3,5), (1,4,4), (2,2,5), (2,3,4), (3,3,3) 10 : (1,3,6), (1,4,5), (2,2,6), (2,3,5), (2,4,4), (3,3,4) 6 3 9 10 3 9 : 6 3 + 3 2 + 1 = 25 25 10 : 6 3 + 3 3

More information

1 2 1.1............................................ 3 1.2.................................... 7 1.3........................................... 9 1.4..

1 2 1.1............................................ 3 1.2.................................... 7 1.3........................................... 9 1.4.. 2010 8 3 ( ) 1 2 1.1............................................ 3 1.2.................................... 7 1.3........................................... 9 1.4........................................

More information

閨75, 縺5 [ ィ チ573, 縺 ィ ィ

閨75, 縺5 [ ィ チ573, 縺 ィ ィ 39ィ 8 998 3. 753 68, 7 86 タ7 9 9989769 438 縺48 縺55 3783645 タ5 縺473 タ7996495 ィ 59754 8554473 9 8984473 3553 7. 95457357, 4.3. 639745 5883597547 6755887 67996499 ィ 597545 4953473 9 857473 3553, 536583, 89573,

More information

I No. sin cos sine, cosine : trigonometric function π : π =.4 : n =, ±, ±, sin + nπ = sin cos + nπ = cos sin = sin : cos = cos :. sin. sin. sin + π si

I No. sin cos sine, cosine : trigonometric function π : π =.4 : n =, ±, ±, sin + nπ = sin cos + nπ = cos sin = sin : cos = cos :. sin. sin. sin + π si I 8 No. : No. : No. : No.4 : No.5 : No.6 : No.7 : No.8 : No.9 : No. : I No. sin cos sine, cosine : trigonometric function π : π =.4 : n =, ±, ±, sin + nπ = sin cos + nπ = cos sin = sin : cos = cos :. sin.

More information

小川/小川

小川/小川 p TB T T T T TT TT TT M p pp p p M p M p T M p M p p Mp T p Tp M p p Mp M p M p M p M p p T p p T p p T p M p M p M p M p T ptp p M p p p M p p M p Tp Tp p p pp p T T Tp Tp p T p T p T p T p T p T p Mp

More information

福岡大学人文論叢47-3

福岡大学人文論叢47-3 679 pp. 1 680 2 681 pp. 3 682 4 683 5 684 pp. 6 685 7 686 8 687 9 688 pp. b 10 689 11 690 12 691 13 692 pp. 14 693 15 694 a b 16 695 a b 17 696 a 18 697 B 19 698 A B B B A B B A A 20 699 pp. 21 700 pp.

More information

ISTC 3

ISTC 3 B- I n t e r n a t i o n a l S t a n d a r s f o r Tu b e r c u l o s i s C a r (ÏS r c ) E d is i k e - 3 ) a =1 / < ' 3 I n t e r n a t i o n a l s t a n d a r d s f o r T B C a r e e «l i s i k e 3

More information

[Oc, Proposition 2.1, Theorem 2.4] K X (a) l (b) l (a) (b) X [M3] Huber adic 1 Huber ([Hu1], [Hu2], [Hu3]) adic 1.1 adic A I I A {I n } 0 adic 2

[Oc, Proposition 2.1, Theorem 2.4] K X (a) l (b) l (a) (b) X [M3] Huber adic 1 Huber ([Hu1], [Hu2], [Hu3]) adic 1.1 adic A I I A {I n } 0 adic 2 On the action of the Weil group on the l-adic cohomology of rigid spaces over local fields (Yoichi Mieda) Graduate School of Mathematical Sciences, The University of Tokyo 0 l Galois K F F q l q K, F K,

More information

Note5.dvi

Note5.dvi 12 2011 7 4 2.2.2 Feynman ( ) S M N S M + N S Ai Ao t ij (i Ai, j Ao) N M G = 2e2 t ij 2 (8.28) h i μ 1 μ 2 J 12 J 12 / μ 2 μ 1 (8.28) S S (8.28) (8.28) 2 ( ) (collapse) j 12-1 2.3 2.3.1 Onsager S B S(B)

More information