橡固有値セミナー2_棚橋改.PDF

Size: px
Start display at page:

Download "橡固有値セミナー2_棚橋改.PDF"

Transcription

1 1 II

2 2... Arnoldi. Lanczos. Jacobi-Davidson

3 . 3

4 4 Ax = x A A Ax = Mx M: M

5 5 Householder ln ln-1 0 l3 0 l2 l1

6 6 Lanczos Lanczos, 1950 Arnoldi Arnoldi, 1951 Hessenberg Jacobi-Davidson Sleijpen & van der Vorst, 1996

7 7. Ritz Ritz

8 8 N Ax = x S m = span {v 1, v 2,, v m } {v i } m << N Ax = x x S m <w, Ax x > = 0 for w S m Ax x S m 0 x S m

9 9 Ritz Ritz V m = [v 1, v 2,, v m ] x = V m s <w, Ax x > = 0 for w S m V mt (AV m s V m s ) = 0 (V mt AV m ) s = s k (V mt AV m ) s = s x Ritz s Ritz

10 10 v 1 V 1 = [v 1 ] DO i = 2, m u u V i 1 v i V i = [V i 1 v i ] END DO (V mt AV m ) s = s s x = V m s A Lanczos Arnoldi JD

11 11 S m (1) v 1 Implicit Restart Arnoldi Thick Restart Lanczos (2) u Jacobi-Davidson

12 12. Arnoldi Arnoldi Arnoldi Implicit Restart Arnoldi

13 13 Arnoldi (1) v 1 S m = K m (A, v 1 ) = span {v 1, Av 1, A 2 v 1,, A m 1 v 1 } Krylov Krylov m

14 Arnoldi (2) 14 j v j A v 1, v 2,, v j v j+1 Arnoldi v j+1 Av j v 1, v 2,, v j+1 V m = [v 1, v 2,, v m ] AV m = V m H m + h m+1, m v m+1 e m t H m m m Hessenberg h m+1, m e m m m A m-step Arnoldi 0 Hessenberg

15 15 v 1 v 1 := v 1 / v 1 2 V 0 = DO j = 1, m V j = [V j 1 v j ] u= Av j A DO i = 1, j h ij = v it u u:= u h ij v i Modified Gram-Schmidt END DO h j+1, j = u 2 v j+1 = u / h j+1, j END DO H m = ( h ij ) m i, j = 1 H m s = s s x = V m s A

16 16 H m s = s x= V m s Ax x = AV m s V m H m s = h m+1, m v m+1 e mt s = h m+1, m e mt s E = h m+1, m (e mt s) v m+1 x t x ( A + E ) x = x A E h m+1, m e mt s

17 17 Arnoldi i v 1, v 2,, v i i i m O(m), O(m 2 )

18 18 m v m v 1 Arnoldi v 1, v 2,, v m 1

19 19 Implicit Restart Arnoldi (1) v m S m k k < m k v 1, v 2,, v m k m

20 Implicit Restart Arnoldi (2) 20 m-step Arnoldi AV m = V m H m + h m+1, m v m+1 e t m 1, 2,, m k H m m k QR V m+ = V m Q H m+ = Q t H m Q AV m+ = V m+ H m+ + h m+1, m v m+1 e mt Q Q = Q 1 Q 2 Q m 1 QR k k-step Arnoldi AV k+ = V k+ H k+ + h k+1, k v k+1+ e t k Arnoldi k

21 Implicit Restart Arnoldi (3) 21 QR h m+1, m v m+1 A V m + = V m + H m + + e m t Q m k+1 k m k H m + h m+1, m v m+1 e mt Q A V m + = V m + + k-step Arnoldi H k + h k+1, k v k+1+ e k t A V k + = V k + + k k

22 Implicit Restart Arnoldi (4) 22 QR 1, 2,, m k QR = (H m+ 1 ) (H m+ 2 ) (H m+ m k ) R = R m k R 2 R 1 R i QR V + m 1 v + 1 v 1 + = V m Q e 1 = V m (H m+ 1 ) (H m+ 2 ) (H m+ m k ) R 1 e 1 = r 11 1 (A 1 ) (A 2 ) (A m k ) v 1 implicit restart v 1 (A 1 ) (A 2 ) (A m k ) v 1

23 23 Implicit Restart Arnoldi (5) v 1

24 24 Arnoldi AV m = V m H m + h m+1, m v m+1 e t m DO l = 1, 2, 3, 1, 2,, m k H m m k QR Q = Q 1 Q 2 Q m 1 V m+ = V m Q H m+ = Q t H m Q k = (H m+ ) k+1, k k = Q m, k v k+1+ = v k+1 k + h m+1, m v m+1 k h k+1, k = v k+1+ 2 v k+1+ := v k+1+ / h k+1, k V + m k V k+ H + m k k H k+ Arnoldi AV k+ = V k+ H k+ + h k+1, k v k+1+ e t k Arnoldi m k END DO

25 (1) 25 Ax = Mx M M I M = LL t Cholesky (L 1 AL t )(L t x) = (L t x) fill-in L M M

26 (2) 26 II Ax = Mx (A M) x = ( ) Mx (A M) 1 M x = x = 1 / ( ) M (A M) 1

27 (3) 27 III M- Arnoldi v t u 2 M- v t Mu M- u t Ax = Mx M- II

28 ( ) Arnoldi 28 SR8000(F1) 2 2 Arnoldi vs. IRAM E( r) + k0εre( r) = log( ε (ARPACK) Ex E( r) = exp( iβz) E y 2µm 12µm [ ) E( r) ] r

29 ( ) Arnoldi 29 Ax x / < N = 13112, NE = 30, 100 IRAM Arnoldi 339G 26.1G IRAM 40.6G G Krylov N=13112 N=51482 NE=30 Arnoldi 242G 382G IRAM 77.0G N=13112 N=51482 NE=100

30 ( ) Arnoldi (1) 30 n=51482 θ 1, θ 30 IRAM 1.0E E E E E E E q 1 Step=100 q 30 Arnoldi IRAM Step=60 (Gflop) 1.0E-14

31 ( ) Arnoldi 31 N=51482 θ 100 IRAM Arnoldi 1.0E E E E E E E q 100 IRAM Step=160 Arnoldi Step=500 (Gflop) 1.0E-14

32 32. Lanczos Lanczos Lanczos Lanczos Thick Restart Lanczos

33 Lanczos (1) 33 Arnoldi S m Krylov S m = K m (A, v 1 ) = span {v 1, Av 1, A 2 v 1,, A m 1 v 1 } j v j A v 1, v 2,, v j v j+1 j < m 1 (Av m ) t v j = v mt (Av j ) = v mt i=1 j+1 c i v i = i=1 j+1 c i v mt v i = 0 Av m v m 1 v m

34 Lanczos (2) 34 Lanczos Lanczos Arnoldi Arnoldi AV m = V m H m + m v m+1 e t m V mt V mt AV m = H m H m Hessenberg T m AV m = V m T m + m v m+1 e m t A m-step Lanczos

35 v 1 0 = 0, v 0 = 0, v 1 := v 1 / v 1 2 V 0 = DO j = 1, m V j = [V j 1 v j ] u= Av j j 1 v i 1 A j = v jt u u:= u j v j j = u 2 v j+1 = u / j END DO 35 T m = m-1 m-1 m T m s = s s x = V m s A

36 36 T m s = s x= V m s Ax x = AV m s V m T m s = m+1 v m+1 e mt s = m+1 e mt s E = m+1 (e mt s) v m+1 x t x ( A + E ) x = x A E i < E 2 A i m+1 e mt s

37 37 A 1 > 2 > > N v 1 {x i } N i=1 v 1 = i=1n c i x i m Lanczos 1 (m) (m) 1 ( 1 N )( i=2n c i 2 ) / c ( (1+ ) + ) 4(m 1) = ( 1 2 ) / ( 1 N )

38 Lanczos I 38 Av j v j 1 v j v j 2 Lanczos

39 39 Selective orthogonalization (Parlett & Scott, 1979) Ritz Av j Ritz Partial orthogonalization (Simon, 1984) ij = v it v j ij

40 Lanczos II 40 Krylov v 1 = i=1n c i x i A j 1 v 1 = i=1n j 1 i c i x i i = i x i x i c i c i m

41 41 Lanczos (Cullum and Donath, 1974) p p Lanczos p p p (Underwood, 1975)

42 Lanczos V 1 0 = 0, V 0 = 0 V 0 = p DO J = 1, M p p V J = [V J 1 V J ] U = AV J V J 1 J 1 A J = V Jt U U := U V J J V J+1 J = U U QR END DO T M = m-1 m-1 m T M s = s s x = V M s A

43 43 Thick Restart Lanczos (1) Lanczos m m m Ritz k k < m Lanczos k m

44 Thick Restart Lanczos (2) 44 m-step Lanczos AV m = V m T m + m v m+1 e t m T m k Y AV m Y = V m T m Y + m v m+1 e mt Y AV m Y = V m Y T k+ + m v m+1 e mt Y AV k+ = V k+ T k+ + m v k+1+ s t --- V m+ = V m Y s= Y t e m T m+ : Y k k k-step Lanczos e mt Lanczos v k+2 v k+3, k

45 45 Thick Restart Lanczos (3) v k+2 Av k+1 v 1, v 2,, v k+1 + k+1 v k+2 = ( I V k+1 V k+1t ) Av k+1 = ( I v k+1 v k+1t V k V kt ) Av k+1 = ( I v k+1 v k+1t ) Av k+1 V k m s V k Av k+1 = m s

46 Thick Restart Lanczos (4) 46 v k+i+1 i 2 Av k+i v 1, v 2,, v k+i k+i v k+i+1 = ( I V k+i V k+it ) Av k+i = ( I v k+i 1 v k+i 1t v k+i v k+it V k+i 2 V k+i 2t ) Av k+i = ( I v k+i 1 v k+i 1t v k+i v k+i t ) Av k+i V k+i 2 (AV k+i 2 ) t v k+i = ( I v k+i 1 v k+i 1t v k+i v k+i t ) Av k+i AV k+i 2 v 1, v 2,, v k+i 1 v k+i Av k+i v k+i 1, v k+i Lanczos

47 47 Thick Restart Lanczos (5) Thick Restart Lanczos j k+1 k+1 AV j = V j T j + j v j+1 e j t k+1 T j j j T j k-step Lanczos m T m

48 ( ) Lanczos 48 EP8000 /690Turbo (Power4 1.3GHz) Matrix Market (Harwell-Boeing) Lanczos vs. TR-Lanczos (bcsstk21,bcsstk39) Matrix n nz bcsstk bcsstk bcsstk bcsstk bcsstk bcsstk bcsstk bcsstk bcsstk bcsstk bcsstk crystk Gap Gap=(λ 1 -λ 100 )/λ 1

49 ( ) Lanczos 49 Ax x / <10-10 NE=30,100 TR: simple TR bcsstk16 bcsstk17 bcsstk18 bcsstk21 bcsstk23 bcsstk24 bcsstk25 bcsstk35 bcsstk36 bcsstk37 bcsstk39 crystk02 bcsstk16 bcsstk17 bcsstk18 bcsstk21 bcsstk23 bcsstk24 bcsstk25 bcsstk35 bcsstk36 bcsstk37 bcsstk39 crystk02 NE=30 NE=100

50 50 ( ) Lanczos NE=30 NE=100 TR (EP8000) bcsstk16 bcsstk17 bcsstk18 bcsstk21 bcsstk23 bcsstk24 bcsstk25 bcsstk35 bcsstk36 bcsstk37 bcsstk39 crystk02 [Mflop] [sec] simple TR simple TR bcsstk16 bcsstk17 bcsstk18 bcsstk21 bcsstk23 bcsstk24 bcsstk25 bcsstk35 bcsstk36 bcsstk37 bcsstk39 crystk02 [Mflop] [sec] simple TR simple TR

51 ( ) Lanczos (1) bcsstk39 28,29, E E E E E E E E E E Conv. check Simple: 100 TR : 90 TR simple θ 30 θ 29 θ 28

52 1.0E E E E E E E E E-16 ( ) Lanczos (2) bcsstk21 TR-Lanczos Conv. check Simple: 20 TR : 70 TR simple θ 30 θ 29 θ 28 52

53 53. Jacobi-Davidson Jacobi-Davidson Jacobi-Davidson

54 Jacobi-Davidson 54 Lanczos Arnoldi (A M) 1

55 Jacobi-Davidson (1) 55 S m {v 1, v 2,, v m } V m = [v 1, v 2,, v m ] S m A Ritz Ritz ( j, u j = V m s j ) ( j = 1,, m) u j u j t A ( u j + t ) = ( u j + t ) (A I ) t = (A I ) u j Jacobi-Davidson u j t S m

56 Jacobi-Davidson (2) 56 (A I ) u j ( I u j u jt )(A I )( I u j u jt ) t ( I u j u jt )(A I )( I u j u jt ) t = (A I ) u j j ( I u j u jt )(A j I )( I u j u jt ) t = (A j I ) u j JD t {v 1, v 2,, v m } v m+1

57 57 Jacobi-Davidson (3) u j u j t 0 = 0 GMRES CGS Krylov u j GMRES K u j

58 58 t = v 0 DO m = 1, 2, DO i = 1, 2,, m 1 t:= t (t t v i ) v i Modified Gram-Schmidt END DO v m = t / t 2, v ma = Av m DO i = 1, 2,, m M i,m = v it v A m END DO m m M s u= Vs V = [v 1, v 2,, v m ] u A = V A s V A = A[v 1, v 2,, v m ] r= u A u r 2 = x= u ( I u u t )(A I )( I u u t ) t = r t END DO

59 59 JD JD S m Krylov Ritz Ritz

60 60 x 1,, x l A I ( I X l X lt )(A I )( I X l X lt ) X l = [x 1,, x l ] X l

61 JD N=1000, A ii =i, A i-1,i =0.5, A 1000,1 =0.5 Ax x < Arnoldi JD with GMRES(5) Residual norm Residual norm Iteration number Iteration number cf) Sleijpen, Jacobi-Davidson algorithms for various eigenproblems(1999),p.15 Fig.4-1

62 62 /5 Z. Bai, J. Demmel, J. Dongarra, A.Ruhe and H. Van der Vorst (eds.): Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide, SIAM, Philadelphia, F. Chatlin: Valeurs Propres de Matrices, Masson, Paris, W. Ledermann Eigenvalues of Matrices, John-Wiley and Sons, Chichester, J. W. Demmel: Numerical Linear Algebra, SIAM, Philadelphia, G. H. Golub and C. F. van Loan: Matrix Computations, 3rd edition, The Johns Hopkins University Press, B. N. Parlett: The Symmetric Eigenvalue Problem, Prentice-Hall, Englewood Cliffs, Y. Saad: Numerical Methods for Large Eigenvalue Problems, Halsted Press, New York, J. H. Wilkinson: The Algebraic Eigenvalue Problem, Claredon Press, Oxford, 1965.

63 Lanczos (1) (2/5) J. Cullum and W. E. Donath: A Block Lanczos Algorithm for Computing the q Algebraically Largest Eigenvalues and a Corresponding Eigenspace of Large Sparse Real Symmetric Matrices, Proc. of the 1974 IEEE Conference on Decision and Control, Phoenix, Arizona, pp (1974). J. Cullum and R. A. Willoughby: Lanczos Algorithms for Large Symmetric Eigenvalue Computations, Volume 1, Theory, Birkhauser, Boston, R. G. Grimes, J. G. Lewis and H. D. Simon: A Shifted Block Lanczos Algorithm for Solving Sparse Symmetric Generalized Eigenproblems, SIAM Journal on Matrix Analysis and Applications, Vol. 15, No. 1, pp (1994). C. Lanczos: An Iteration Method for the Solution of the Eigenvalue Problem of Linear Differential and Integral Operators, J. Research of the National Bureau of Standards, Vol. 45, No. 4, pp (1950).,, :,,

64 Lanczos (2) (3/5) B. N. Parlett and D. Scott: The Lanczos Algorithm with Selective Orthogonalization, Mathematics of Computation, Vol. 33, pp (1979). H. D. Simon: The Lanczos Algorithm with Partial Reorthogonalization, Mathematics of Computation, Vol. 42, pp (1984). R. Underwood: An Iterative Block Lanczos Method for the Solution of Large Sparse Symmetric Eigenproblems, Report STAN-CS , Department of Computer Science, Stanford University, Stanford, California (1975). K. Wu and H. Simon: Thick-Restart Lanczos Method for Large Symmetric Eigenvalue Problems, SIAM Journal on Matrix Analysis and Applications, Vol. 22, No. 2, pp (2000). 64

65 65 Arnoldi (4/5) W. E. Arnoldi: The Principle of Minimized Iterations in the Solution of the Matrix Eigenvalue Problem, Quart. J. Applied Mathematics, Vol. 9, pp (1951). R. B. Lehoucq and D. C. Sorensen: Deflation Techniques for an Implicitly Restarted Arnoldi Iteration, SIAM Journal on Matrix Analysis and Applications, Vol. 17, No. 4, pp (1996). R. B. Lehoucq, K.J. Maschhoff.: implementation of an implicitly restarted block Arnoldi method, Preprint MCS-P , Argonne National Laboratory,IL,1997. R. B. Lehoucq, D. C. Sorensen and C. Yang: ARPACK User s Guide, SIAM, Philadelphia, D. C. Sorensen: Implicit Application of Polynomial Filters in a k-step Arnoldi Method, SIAM Journal on Matrix Analysis and Applications, Vol. 13, No. 1, pp (1992).

66 66 Jacobi-Davidson (5/5) D. R. Fokkema, G. L. G. Sleijpen and H. A. van der Vorst: Jacobi-Davidson Style QR and QZ Algorithms for the Reduction of Matrix Pencils, SIAM Journal on Scientific Computing, Vol. 20, pp (1999). M.Genseberger, G. L. G. Sleijpen: Alternative correction equations in the Jacobi- Davidson method, Preprint No. 1073,1999. M. Nool and A. van der Ploeg: A Parallel Jacobi-Davidson-Type Method for Solving Large Generalized Eigenvalue Problems in Magnetohydrodynamics, SIAM Journal on Scientific Computing, Vol. 22, No. 1, pp (2000). Y. Saad and M. H. Schultz: GMRES: A Generalized Minimum Residual Algorithm for Solving Nonsymmetric Linear Systems, SIAM Journal on Scientific and Statistical Computing, Vol. 7, pp (1986). G. L. G. Sleijpen and H. A. van der Vorst: A Jacobi-Davidson Iteration Method for Linear Eigenvalue Problems, SIAM Journal on Matrix Analysis and Applications, Vol. 17, pp (1996). G. L.G. Sleijpen, H. A. Van der Vorst, Z. Bai : Jacobi-Davidson algorithms for various Eigenproblems A working document-, Preprint nr.1114,1999.

untitled

untitled 1 1 Ax = b A R m m A b R m x R m A shift-and invert Lanczos - LU CG A = LU LU Ly = b Ux = y A LU A A = LL T 1 LU b,, Vol. 11, No. 4, pp. 14 18 (2006). x * x (0), x (1), x (2), A Ap A # x (n+1) = Cx (n)

More information

IDRstab(s, L) GBiCGSTAB(s, L) 2. AC-GBiCGSTAB(s, L) Ax = b (1) A R n n x R n b R n 2.1 IDR s L r k+1 r k+1 = b Ax k+1 IDR(s) r k+1 = (I ω k A)(r k dr

IDRstab(s, L) GBiCGSTAB(s, L) 2. AC-GBiCGSTAB(s, L) Ax = b (1) A R n n x R n b R n 2.1 IDR s L r k+1 r k+1 = b Ax k+1 IDR(s) r k+1 = (I ω k A)(r k dr 1 2 IDR(s) GBiCGSTAB(s, L) IDR(s) IDRstab(s, L) GBiCGSTAB(s, L) Verification of effectiveness of Auto-Correction technique applied to preconditioned iterative methods Keiichi Murakami 1 Seiji Fujino 2

More information

( ) 5 Reduction ( ) A M n (C) Av = λv (v 0) (11.1) λ C A (eigenvalue) v C n A λ (eigenvector) M n (R) A λ(a) A M n (R) n A λ

( ) 5 Reduction ( ) A M n (C) Av = λv (v 0) (11.1) λ C A (eigenvalue) v C n A λ (eigenvector) M n (R) A λ(a) A M n (R) n A λ 125 11 ( ) 5 Reduction 11.1 11.1.1 ( ) A M n (C) Av = λv (v 0) (11.1) λ C A (eigenvalue) v C n A λ (eigenvector) M n (R) A λ(a) 11.1.2 A M n (R) n A λi = 0 A C n 5 126 11 A n λ 1 (A) λ 2 (A) λ n (A) A

More information

,.,. NP,., ,.,,.,.,,, (PCA)...,,. Tipping and Bishop (1999) PCA. (PPCA)., (Ilin and Raiko, 2010). PPCA EM., , tatsukaw

,.,. NP,., ,.,,.,.,,, (PCA)...,,. Tipping and Bishop (1999) PCA. (PPCA)., (Ilin and Raiko, 2010). PPCA EM., , tatsukaw ,.,. NP,.,. 1 1.1.,.,,.,.,,,. 2. 1.1.1 (PCA)...,,. Tipping and Bishop (1999) PCA. (PPCA)., (Ilin and Raiko, 2010). PPCA EM., 152-8552 2-12-1, tatsukawa.m.aa@m.titech.ac.jp, 190-8562 10-3, mirai@ism.ac.jp

More information

IV (2)

IV (2) COMPUTATIONAL FLUID DYNAMICS (CFD) IV (2) The Analysis of Numerical Schemes (2) 11. Iterative methods for algebraic systems Reima Iwatsu, e-mail : iwatsu@cck.dendai.ac.jp Winter Semester 2007, Graduate

More information

Trapezoidal Rule θ = 1/ x n x n 1 t = 1 [f(t n 1, x n 1 ) + f(t n, x n )] (6) 1. dx dt = f(t, x), x(t 0) = x 0 (7) t [t 0, t 1 ] f t [t 0, t 1 ], x x

Trapezoidal Rule θ = 1/ x n x n 1 t = 1 [f(t n 1, x n 1 ) + f(t n, x n )] (6) 1. dx dt = f(t, x), x(t 0) = x 0 (7) t [t 0, t 1 ] f t [t 0, t 1 ], x x University of Hyogo 8 8 1 d x(t) =f(t, x(t)), dt (1) x(t 0 ) =x 0 () t n = t 0 + n t x x n n x n x 0 x i i = 0,..., n 1 x n x(t) 1 1.1 1 1 1 0 θ 1 θ x n x n 1 t = θf(t n 1, x n 1 ) + (1 θ)f(t n, x n )

More information

自動残差修正機能付き GBiCGSTAB$(s,L)$法 (科学技術計算アルゴリズムの数理的基盤と展開)

自動残差修正機能付き GBiCGSTAB$(s,L)$法 (科学技術計算アルゴリズムの数理的基盤と展開) 1733 2011 149-159 149 GBiCGSTAB $(s,l)$ GBiCGSTAB(s,L) with Auto-Correction of Residuals (Takeshi TSUKADA) NS Solutions Corporation (Kouki FUKAHORI) Graduate School of Information Science and Technology

More information

. a, b, c, d b a ± d bc ± ad = c ac b a d c = bd ac b a d c = bc ad n m nm [2][3] BASIC [4] B BASIC [5] BASIC Intel x * IEEE a e d

. a, b, c, d b a ± d bc ± ad = c ac b a d c = bd ac b a d c = bc ad n m nm [2][3] BASIC [4] B BASIC [5] BASIC Intel x * IEEE a e d 3 3 BASIC C++ 8 Tflop/s 8TB [] High precision symmetric eigenvalue computation through exact tridiagonalization by using rational number arithmetic Hikaru Samukawa Abstract: Since rational number arithmetic,

More information

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2 7 1995, 2017 7 21 1 2 2 3 3 4 4 6 (1).................................... 6 (2)..................................... 6 (3) t................. 9 5 11 (1)......................................... 11 (2)

More information

(1970) 17) V. Kucera: A Contribution to Matrix Ouadratic Equations, IEEE Trans. on Automatic Control, AC- 17-3, 344/347 (1972) 18) V. Kucera: On Nonnegative Definite Solutions to Matrix Ouadratic Equations,

More information

Krylov A04 October 8, 2010 T. Sakurai (Univ. Tsukuba) Krylov October 8, / 48

Krylov A04 October 8, 2010 T. Sakurai (Univ. Tsukuba) Krylov October 8, / 48 Krylov A04 October 8, 2010 T. Sakurai (Univ. Tsukuba) Krylov October 8, 2010 1 / 48 Krylov QCD, RSDFT, Shell model Block Krylov MATLAB Scilab T. Sakurai (Univ. Tsukuba) Krylov October 8, 2010 2 / 48 Krylov

More information

三石貴志.indd

三石貴志.indd 流通科学大学論集 - 経済 情報 政策編 - 第 21 巻第 1 号,23-33(2012) SIRMs SIRMs Fuzzy fuzzyapproximate approximatereasoning reasoningusing using Lukasiewicz Łukasiewicz logical Logical operations Operations Takashi Mitsuishi

More information

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18 2013 8 29y, 2016 10 29 1 2 2 Jordan 3 21 3 3 Jordan (1) 3 31 Jordan 4 32 Jordan 4 33 Jordan 6 34 Jordan 8 35 9 4 Jordan (2) 10 41 x 11 42 x 12 43 16 44 19 441 19 442 20 443 25 45 25 5 Jordan 26 A 26 A1

More information

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,.

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,. R-space ( ) Version 1.1 (2012/02/29) i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,. ii 1 Lie 1 1.1 Killing................................

More information

( ) a C n ( R n ) R a R C n. a C n (or R n ) a 0 2. α C( R ) a C n αa = α a 3. a, b C n a + b a + b ( ) p 8..2 (p ) a = [a a n ] T C n p n a

( ) a C n ( R n ) R a R C n. a C n (or R n ) a 0 2. α C( R ) a C n αa = α a 3. a, b C n a + b a + b ( ) p 8..2 (p ) a = [a a n ] T C n p n a 9 8 m n mn N.J.Nigham, Accuracy and Stability of Numerical Algorithms 2nd ed., (SIAM) x x = x2 + y 2 = x + y = max( x, y ) x y x () (norm) (condition number) 8. R C a, b C a b 0 a, b a = a 0 0 0 n C n

More information

,,, 2 ( ), $[2, 4]$, $[21, 25]$, $V$,, 31, 2, $V$, $V$ $V$, 2, (b) $-$,,, (1) : (2) : (3) : $r$ $R$ $r/r$, (4) : 3

,,, 2 ( ), $[2, 4]$, $[21, 25]$, $V$,, 31, 2, $V$, $V$ $V$, 2, (b) $-$,,, (1) : (2) : (3) : $r$ $R$ $r/r$, (4) : 3 1084 1999 124-134 124 3 1 (SUGIHARA Kokichi),,,,, 1, [5, 11, 12, 13], (2, 3 ), -,,,, 2 [5], 3,, 3, 2 2, -, 3,, 1,, 3 2,,, 3 $R$ ( ), $R$ $R$ $V$, $V$ $R$,,,, 3 2 125 1 3,,, 2 ( ), $[2, 4]$, $[21, 25]$,

More information

第5章 偏微分方程式の境界値問題

第5章 偏微分方程式の境界値問題 October 5, 2018 1 / 113 4 ( ) 2 / 113 Poisson 5.1 Poisson ( A.7.1) Poisson Poisson 1 (A.6 ) Γ p p N u D Γ D b 5.1.1: = Γ D Γ N 3 / 113 Poisson 5.1.1 d {2, 3} Lipschitz (A.5 ) Γ D Γ N = \ Γ D Γ p Γ N Γ

More information

A Feasibility Study of Direct-Mapping-Type Parallel Processing Method to Solve Linear Equations in Load Flow Calculations Hiroaki Inayoshi, Non-member

A Feasibility Study of Direct-Mapping-Type Parallel Processing Method to Solve Linear Equations in Load Flow Calculations Hiroaki Inayoshi, Non-member A Feasibility Study of Direct-Mapping-Type Parallel Processing Method to Solve Linear Equations in Load Flow Calculations Hiroaki Inayoshi, Non-member (University of Tsukuba), Yasuharu Ohsawa, Member (Kobe

More information

(a) (b) (c) Canny (d) 1 ( x α, y α ) 3 (x α, y α ) (a) A 2 + B 2 + C 2 + D 2 + E 2 + F 2 = 1 (3) u ξ α u (A, B, C, D, E, F ) (4) ξ α (x 2 α, 2x α y α,

(a) (b) (c) Canny (d) 1 ( x α, y α ) 3 (x α, y α ) (a) A 2 + B 2 + C 2 + D 2 + E 2 + F 2 = 1 (3) u ξ α u (A, B, C, D, E, F ) (4) ξ α (x 2 α, 2x α y α, [II] Optimization Computation for 3-D Understanding of Images [II]: Ellipse Fitting 1. (1) 2. (2) (edge detection) (edge) (zero-crossing) Canny (Canny operator) (3) 1(a) [I] [II] [III] [IV ] E-mail sugaya@iim.ics.tut.ac.jp

More information

2012年度HPCサマーセミナー_多田野.pptx

2012年度HPCサマーセミナー_多田野.pptx ! CCS HPC! I " tadano@cs.tsukuba.ac.jp" " 1 " " " " " " " 2 3 " " Ax = b" " " 4 Ax = b" A = a 11 a 12... a 1n a 21 a 22... a 2n...... a n1 a n2... a nn, x = x 1 x 2. x n, b = b 1 b 2. b n " " 5 Gauss LU

More information

CPU Levels in the memory hierarchy Level 1 Level 2... Increasing distance from the CPU in access time Level n Size of the memory at each level 1: 2.2

CPU Levels in the memory hierarchy Level 1 Level 2... Increasing distance from the CPU in access time Level n Size of the memory at each level 1: 2.2 FFT 1 Fourier fast Fourier transform FFT FFT FFT 1 FFT FFT 2 Fourier 2.1 Fourier FFT Fourier discrete Fourier transform DFT DFT n 1 y k = j=0 x j ω jk n, 0 k n 1 (1) x j y k ω n = e 2πi/n i = 1 (1) n DFT

More information

わが国企業による資金調達方法の選択問題

わが国企業による資金調達方法の選択問題 * takeshi.shimatani@boj.or.jp ** kawai@ml.me.titech.ac.jp *** naohiko.baba@boj.or.jp No.05-J-3 2005 3 103-8660 30 No.05-J-3 2005 3 1990 * E-mailtakeshi.shimatani@boj.or.jp ** E-mailkawai@ml.me.titech.ac.jp

More information

( ) (, ) arxiv: hgm OpenXM search. d n A = (a ij ). A i a i Z d, Z d. i a ij > 0. β N 0 A = N 0 a N 0 a n Z A (β; p) = Au=β,u N n 0 A

( ) (, ) arxiv: hgm OpenXM search. d n A = (a ij ). A i a i Z d, Z d. i a ij > 0. β N 0 A = N 0 a N 0 a n Z A (β; p) = Au=β,u N n 0 A ( ) (, ) arxiv: 1510.02269 hgm OpenXM search. d n A = (a ij ). A i a i Z d, Z d. i a ij > 0. β N 0 A = N 0 a 1 + + N 0 a n Z A (β; p) = Au=β,u N n 0 A-. u! = n i=1 u i!, p u = n i=1 pu i i. Z = Z A Au

More information

II

II II 2016 7 21 computer-assisted proof 1 / 64 1. 2. 3. Siegfried M. Rump : [1] I,, 14:3 (2004), pp. 214 223. [2] II,, 14:4 (2004), pp. 346 359. 2 / 64 Risch 18 3 / 64 M n = 2 n 1 (n = 1, 2,... ) 2 2 1 1

More information

JAPAN MARKETING JOURNAL 116 Vol.29 No.42010

JAPAN MARKETING JOURNAL 116 Vol.29 No.42010 JAPAN MARKETING JOURNAL 116 Vol.29 No.42010 JAPAN MARKETING JOURNAL 116 Vol.29 No.42010 JAPAN MARKETING JOURNAL 116 Vol.29 No.42010 JAPAN MARKETING JOURNAL 116 Vol.29 No.42010 JAPAN MARKETING JOURNAL 116

More information

1 (1997) (1997) 1974:Q3 1994:Q3 (i) (ii) ( ) ( ) 1 (iii) ( ( 1999 ) ( ) ( ) 1 ( ) ( 1995,pp ) 1

1 (1997) (1997) 1974:Q3 1994:Q3 (i) (ii) ( ) ( ) 1 (iii) ( ( 1999 ) ( ) ( ) 1 ( ) ( 1995,pp ) 1 1 (1997) (1997) 1974:Q3 1994:Q3 (i) (ii) ( ) ( ) 1 (iii) ( ( 1999 ) ( ) ( ) 1 ( ) ( 1995,pp.218 223 ) 1 2 ) (i) (ii) / (iii) ( ) (i ii) 1 2 1 ( ) 3 ( ) 2, 3 Dunning(1979) ( ) 1 2 ( ) ( ) ( ) (,p.218) (

More information

THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE. TV A310

THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE. TV A310 THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE. TV 367 0035 1011 A310 E-mail kawamura@suou.waseda.jp Total Variation Total Variation Total Variation Abstract

More information

NP 1 ( ) Ehrgott [3] ( ) (Ehrgott [3] ) Ulungu & Teghem [8] Zitzler, Laumanns & Bleuler [11] Papadimitriou & Yannakakis [7] Zaroliagis [10] 2 1

NP 1 ( ) Ehrgott [3] ( ) (Ehrgott [3] ) Ulungu & Teghem [8] Zitzler, Laumanns & Bleuler [11] Papadimitriou & Yannakakis [7] Zaroliagis [10] 2 1 NP 1 ( ) Ehrgott [3] 2 1 1 ( ) (Ehrgott [3] ) Ulungu & Teghem [8] Zitzler, Laumanns & Bleuler [11] Papadimitriou & Yannakakis [7] Zaroliagis [10] 2 1 1 1 Avis & Fukuda [1] 2 NP (Ehrgott [3] ) ( ) 3 NP

More information

情報処理学会研究報告 IPSJ SIG Technical Report Vol.2014-HPC-144 No /5/ CRS 2 CRS Performance evaluation of exclusive version of preconditioned ite

情報処理学会研究報告 IPSJ SIG Technical Report Vol.2014-HPC-144 No /5/ CRS 2 CRS Performance evaluation of exclusive version of preconditioned ite 1 2 3 CRS 2 CRS Performance evaluation of exclusive version of preconditioned iterative method for dense matrix Abstract: As well known, only nonzero entries of a sparse matrix are stored in memory in

More information

3. ( 1 ) Linear Congruential Generator:LCG 6) (Mersenne Twister:MT ), L 1 ( 2 ) 4 4 G (i,j) < G > < G 2 > < G > 2 g (ij) i= L j= N

3. ( 1 ) Linear Congruential Generator:LCG 6) (Mersenne Twister:MT ), L 1 ( 2 ) 4 4 G (i,j) < G > < G 2 > < G > 2 g (ij) i= L j= N RMT 1 1 1 N L Q=L/N (RMT), RMT,,,., Box-Muller, 3.,. Testing Randomness by Means of RMT Formula Xin Yang, 1 Ryota Itoi 1 and Mieko Tanaka-Yamawaki 1 Random matrix theory derives, at the limit of both dimension

More information

Meas- urement Angoff, W. H. 19654 Equating non-parallel tests. Journal of Educational Measurement, 1, 11-14. Angoff, W. H. 1971a Scales, norms and equivalent scores. In R. L. Thorndike (Ed.) Educational

More information

IPSJ SIG Technical Report Taubin Ellipse Fitting by Hyperaccurate Least Squares Yuuki Iwamoto, 1 Prasanna Rangarajan 2 and Kenichi Kanatani

IPSJ SIG Technical Report Taubin Ellipse Fitting by Hyperaccurate Least Squares Yuuki Iwamoto, 1 Prasanna Rangarajan 2 and Kenichi Kanatani 1 2 1 2 Taubin Ellipse Fitting by Hyperaccurate Least Squares Yuuki Iwamoto, 1 Prasanna Rangarajan 2 and Kenichi Kanatani 1 This paper presents a new method for fitting an ellipse to a point sequence extracted

More information

main.dvi

main.dvi 3 4 2 3 4 2 3 ( ) ( ) 1 1.1 R n R n n Euclid R n R n f =(f 1 ;f 2 ;:::;f n ) T : f(x) =0 (1) x = (x 1 ;x 2 ;:::;x n ) T 2 R n 1 \T " f i (1 i n) R n R (1) f i (x) =0 (1 i n) n 2 n x =cosx f(x) :=x 0 cos

More information

149 (Newell [5]) Newell [5], [1], [1], [11] Li,Ryu, and Song [2], [11] Li,Ryu, and Song [2], [1] 1) 2) ( ) ( ) 3) T : 2 a : 3 a 1 :

149 (Newell [5]) Newell [5], [1], [1], [11] Li,Ryu, and Song [2], [11] Li,Ryu, and Song [2], [1] 1) 2) ( ) ( ) 3) T : 2 a : 3 a 1 : Transactions of the Operations Research Society of Japan Vol. 58, 215, pp. 148 165 c ( 215 1 2 ; 215 9 3 ) 1) 2) :,,,,, 1. [9] 3 12 Darroch,Newell, and Morris [1] Mcneil [3] Miller [4] Newell [5, 6], [1]

More information

IS1-09 第 回画像センシングシンポジウム, 横浜,14 年 6 月 2 Hough Forest Hough Forest[6] Random Forest( [5]) Random Forest Hough Forest Hough Forest 2.1 Hough Forest 1 2.2

IS1-09 第 回画像センシングシンポジウム, 横浜,14 年 6 月 2 Hough Forest Hough Forest[6] Random Forest( [5]) Random Forest Hough Forest Hough Forest 2.1 Hough Forest 1 2.2 IS1-09 第 回画像センシングシンポジウム, 横浜,14 年 6 月 MI-Hough Forest () E-mail: ym@vision.cs.chubu.ac.jphf@cs.chubu.ac.jp Abstract Hough Forest Random Forest MI-Hough Forest Multiple Instance Learning Bag Hough Forest

More information

kokyuroku.dvi

kokyuroku.dvi On Applications of Rigorous Computing to Dynamical Systems (Zin ARAI) Department of Mathematics, Kyoto University email: arai@math.kyoto-u.ac.jp 1 [12, 13] Lorenz 2 Lorenz 3 4 2 Lorenz 2.1 Lorenz E. Lorenz

More information

IPSJ SIG Technical Report Vol.2011-HPC-131 No /10/6 1 1 Parareal-in-Time Applicability of Time-domain Parallelism to Iterative Linear Calculus T

IPSJ SIG Technical Report Vol.2011-HPC-131 No /10/6 1 1 Parareal-in-Time Applicability of Time-domain Parallelism to Iterative Linear Calculus T 1 1 Parareal-in-Time Applicability of Time-domain Parallelism to Iterative Linear Calculus Toshiya Taami 1 and Aira Nishida 1 The time-domain parallelism, nown as Parareal-in-Time algorithm, has been applied

More information

I , : ~/math/functional-analysis/functional-analysis-1.tex

I , : ~/math/functional-analysis/functional-analysis-1.tex I 1 2004 8 16, 2017 4 30 1 : ~/math/functional-analysis/functional-analysis-1.tex 1 3 1.1................................... 3 1.2................................... 3 1.3.....................................

More information

1 n 1 1 2 2 3 3 3.1............................ 3 3.2............................. 6 3.2.1.............. 6 3.2.2................. 7 3.2.3........................... 10 4 11 4.1..........................

More information

2. Eades 1) Kamada-Kawai 7) Fruchterman 2) 6) ACE 8) HDE 9) Kruskal MDS 13) 11) Kruskal AGI Active Graph Interface 3) Kruskal 5) Kruskal 4) 3. Kruskal

2. Eades 1) Kamada-Kawai 7) Fruchterman 2) 6) ACE 8) HDE 9) Kruskal MDS 13) 11) Kruskal AGI Active Graph Interface 3) Kruskal 5) Kruskal 4) 3. Kruskal 1 2 3 A projection-based method for interactive 3D visualization of complex graphs Masanori Takami, 1 Hiroshi Hosobe 2 and Ken Wakita 3 Proposed is a new interaction technique to manipulate graph layouts

More information

Vol.1( ) No JASCOME Trefftz ( ) SIMULATION OF SLOSHING PHENOMENON BY INDIRECT TREFFTZ METHOD (EXTENSION OF SIMULATION SCHEME) 1), 2),

Vol.1( ) No JASCOME Trefftz ( ) SIMULATION OF SLOSHING PHENOMENON BY INDIRECT TREFFTZ METHOD (EXTENSION OF SIMULATION SCHEME) 1), 2), Vol.1( 2001 7 ) No.01-070611 JASCOME Trefftz ( ) SIMULATION OF SLOSHING PHENOMENON BY INDIRECT TREFFTZ METHOD (EXTENSION OF SIMULATION SCHEME) 1), 2), 3) 4), Yoichi IKEDA, Jun ichi KATSURAGAWA, Eisuke

More information

IPSJ SIG Technical Report 1, Instrument Separation in Reverberant Environments Using Crystal Microphone Arrays Nobutaka ITO, 1, 2 Yu KITANO, 1

IPSJ SIG Technical Report 1, Instrument Separation in Reverberant Environments Using Crystal Microphone Arrays Nobutaka ITO, 1, 2 Yu KITANO, 1 1, 2 1 1 1 Instrument Separation in Reverberant Environments Using Crystal Microphone Arrays Nobutaka ITO, 1, 2 Yu KITANO, 1 Nobutaka ONO 1 and Shigeki SAGAYAMA 1 This paper deals with instrument separation

More information

Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, P

Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, P Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, PC ( 4 5 )., 5, Milnor Milnor., ( 6 )., (I) Z modulo

More information

2 Recovery Theorem Spears [2013]Audrino et al. [2015]Backwell [2015] Spears [2013] Ross [2015] Audrino et al. [2015] Recovery Theorem Tikhonov (Tikhon

2 Recovery Theorem Spears [2013]Audrino et al. [2015]Backwell [2015] Spears [2013] Ross [2015] Audrino et al. [2015] Recovery Theorem Tikhonov (Tikhon Recovery Theorem Forward Looking Recovery Theorem Ross [2015] forward looking Audrino et al. [2015] Tikhonov Tikhonov 1. Tikhonov 2. Tikhonov 3. 3 1 forward looking *1 Recovery Theorem Ross [2015] forward

More information

I 9 1 11 1.1..................................... 11 1.1.1 (linear transformation) (matrix) (vector)................................. 11 1.1.2 (column

I 9 1 11 1.1..................................... 11 1.1.1 (linear transformation) (matrix) (vector)................................. 11 1.1.2 (column I 9 1 11 1.1..................................... 11 1.1.1 (linear transformation) (matrix) (vector)................................. 11 1.1.2 (column vector) (row vector)....... 12 1.1.3..............................

More information

ver.1 / c /(13)

ver.1 / c /(13) 1 -- 11 1 c 2010 1/(13) 1 -- 11 -- 1 1--1 1--1--1 2009 3 t R x R n 1 ẋ = f(t, x) f = ( f 1,, f n ) f x(t) = ϕ(x 0, t) x(0) = x 0 n f f t 1--1--2 2009 3 q = (q 1,..., q m ), p = (p 1,..., p m ) x = (q,

More information

通信容量制約を考慮したフィードバック制御 - 電子情報通信学会 情報理論研究会(IT) 若手研究者のための講演会

通信容量制約を考慮したフィードバック制御 -  電子情報通信学会 情報理論研究会(IT)  若手研究者のための講演会 IT 1 2 1 2 27 11 24 15:20 16:05 ( ) 27 11 24 1 / 49 1 1940 Witsenhausen 2 3 ( ) 27 11 24 2 / 49 1940 2 gun director Warren Weaver, NDRC (National Defence Research Committee) Final report D-2 project #2,

More information

untitled

untitled ,, 2 2.,, A, PC/AT, MB, 5GB,,,, ( ) MB, GB 2,5,, 8MB, A, MB, GB 2 A,,,? x MB, y GB, A (), x + 2y () 4 (,, ) (hanba@eee.u-ryukyu.ac.jp), A, x + 2y() x y, A, MB ( ) 8 MB ( ) 5GB ( ) ( ), x x x 8 (2) y y

More information

離散最適化基礎論 第 11回 組合せ最適化と半正定値計画法

離散最適化基礎論 第 11回  組合せ最適化と半正定値計画法 11 okamotoy@uec.ac.jp 2019 1 25 2019 1 25 10:59 ( ) (11) 2019 1 25 1 / 38 1 (10/5) 2 (1) (10/12) 3 (2) (10/19) 4 (3) (10/26) (11/2) 5 (1) (11/9) 6 (11/16) 7 (11/23) (11/30) (12/7) ( ) (11) 2019 1 25 2

More information

2 1,2, , 2 ( ) (1) (2) (3) (4) Cameron and Trivedi(1998) , (1987) (1982) Agresti(2003)

2 1,2, , 2 ( ) (1) (2) (3) (4) Cameron and Trivedi(1998) , (1987) (1982) Agresti(2003) 3 1 1 1 2 1 2 1,2,3 1 0 50 3000, 2 ( ) 1 3 1 0 4 3 (1) (2) (3) (4) 1 1 1 2 3 Cameron and Trivedi(1998) 4 1974, (1987) (1982) Agresti(2003) 3 (1)-(4) AAA, AA+,A (1) (2) (3) (4) (5) (1)-(5) 1 2 5 3 5 (DI)

More information

untitled

untitled 18 1 2,000,000 2,000,000 2007 2 2 2008 3 31 (1) 6 JCOSSAR 2007pp.57-642007.6. LCC (1) (2) 2 10mm 1020 14 12 10 8 6 4 40,50,60 2 0 1998 27.5 1995 1960 40 1) 2) 3) LCC LCC LCC 1 1) Vol.42No.5pp.29-322004.5.

More information

Bulletin of JSSAC(2014) Vol. 20, No. 2, pp (Received 2013/11/27 Revised 2014/3/27 Accepted 2014/5/26) It is known that some of number puzzles ca

Bulletin of JSSAC(2014) Vol. 20, No. 2, pp (Received 2013/11/27 Revised 2014/3/27 Accepted 2014/5/26) It is known that some of number puzzles ca Bulletin of JSSAC(2014) Vol. 20, No. 2, pp. 3-22 (Received 2013/11/27 Revised 2014/3/27 Accepted 2014/5/26) It is known that some of number puzzles can be solved by using Gröbner bases. In this paper,

More information

index calculus

index calculus index calculus 2008 3 8 1 generalized Weil descent p :, E/F p 3 : Y 2 = f(x), where f(x) = X 3 + AX + B, A F p, B F p 3 E(F p 3) 3 : Generalized Weil descent E(F p 4) 2 Index calculus Plain version Double-large-prime

More information

Real AdaBoost HOG 2009 3 A Graduation Thesis of College of Engineering, Chubu University Efficient Reducing Method of HOG Features for Human Detection based on Real AdaBoost Chika Matsushima ITS Graphics

More information

Vol.8 No (July 2015) 2/ [3] stratification / *1 2 J-REIT *2 *1 *2 J-REIT % J-REIT J-REIT 6 J-REIT J-REIT 10 J-REIT *3 J-

Vol.8 No (July 2015) 2/ [3] stratification / *1 2 J-REIT *2 *1 *2 J-REIT % J-REIT J-REIT 6 J-REIT J-REIT 10 J-REIT *3 J- Vol.8 No.2 1 9 (July 2015) 1,a) 2 3 2012 1 5 2012 3 24, 2013 12 12 2 1 2 A Factor Model for Measuring Market Risk in Real Estate Investment Hiroshi Ishijima 1,a) Akira Maeda 2 Tomohiko Taniyama 3 Received:

More information

pla85900.tsp.eps

pla85900.tsp.eps ( ) 338 8570 255 Tel: 048 858 3577, Fax: 048 858 3716 Email: tohru@nls.ics.saitama-u.ac.jp URL: http://www.nls.ics.saitama-u.ac.jp/ tohru/ 2006.11.29 @ p.1/38 1. 1 2006.11.29 @ p.2/38 1. 1 2. (a) H16 (b)

More information

Autumn II III Zon and Muysken 2005 Zon and Muysken 2005 IV II 障害者への所得移転の経済効果 分析に用いるデータ

Autumn II III Zon and Muysken 2005 Zon and Muysken 2005 IV II 障害者への所得移転の経済効果 分析に用いるデータ 212 Vol. 44 No. 2 I はじめに 2008 1 2 Autumn 08 213 II III Zon and Muysken 2005 Zon and Muysken 2005 IV II 障害者への所得移転の経済効果 17 18 1 分析に用いるデータ 1 2005 10 12 200 2 2006 9 12 1 1 2 129 35 113 3 1 2 6 1 2 3 4 4 1

More information

25 11M15133 0.40 0.44 n O(n 2 ) O(n) 0.33 0.52 O(n) 0.36 0.52 O(n) 2 0.48 0.52

25 11M15133 0.40 0.44 n O(n 2 ) O(n) 0.33 0.52 O(n) 0.36 0.52 O(n) 2 0.48 0.52 26 1 11M15133 25 11M15133 0.40 0.44 n O(n 2 ) O(n) 0.33 0.52 O(n) 0.36 0.52 O(n) 2 0.48 0.52 1 2 2 4 2.1.............................. 4 2.2.................................. 5 2.2.1...........................

More information

nm (T = K, p = kP a (1atm( )), 1bar = 10 5 P a = atm) 1 ( ) m / m

nm (T = K, p = kP a (1atm( )), 1bar = 10 5 P a = atm) 1 ( ) m / m .1 1nm (T = 73.15K, p = 101.35kP a (1atm( )), 1bar = 10 5 P a = 0.9863atm) 1 ( ).413968 10 3 m 3 1 37. 1/3 3.34.414 10 3 m 3 6.0 10 3 = 3.7 (109 ) 3 (nm) 3 10 6 = 3.7 10 1 (nm) 3 = (3.34nm) 3 ( P = nrt,

More information

5 Armitage x 1,, x n y i = 10x i + 3 y i = log x i {x i } {y i } 1.2 n i i x ij i j y ij, z ij i j 2 1 y = a x + b ( cm) x ij (i j )

5 Armitage x 1,, x n y i = 10x i + 3 y i = log x i {x i } {y i } 1.2 n i i x ij i j y ij, z ij i j 2 1 y = a x + b ( cm) x ij (i j ) 5 Armitage. x,, x n y i = 0x i + 3 y i = log x i x i y i.2 n i i x ij i j y ij, z ij i j 2 y = a x + b 2 2. ( cm) x ij (i j ) (i) x, x 2 σ 2 x,, σ 2 x,2 σ x,, σ x,2 t t x * (ii) (i) m y ij = x ij /00 y

More information

Mantel-Haenszelの方法

Mantel-Haenszelの方法 Mantel-Haenszel 2008 6 12 ) 2008 6 12 1 / 39 Mantel & Haenzel 1959) Mantel N, Haenszel W. Statistical aspects of the analysis of data from retrospective studies of disease. J. Nat. Cancer Inst. 1959; 224):

More information

I = [a, b] R γ : I C γ(a) = γ(b) z C \ γ(i) 1(4) γ z winding number index Ind γ (z) = φ(b, z) φ(a, z) φ 1(1) (i)(ii) 1 1 c C \ {0} B(c; c ) L c z B(c;

I = [a, b] R γ : I C γ(a) = γ(b) z C \ γ(i) 1(4) γ z winding number index Ind γ (z) = φ(b, z) φ(a, z) φ 1(1) (i)(ii) 1 1 c C \ {0} B(c; c ) L c z B(c; 21 1 http://www.ozawa.phys.waseda.ac.jp/index2.html ( ) 1. I = [a, b] R γ : I C γ γ(i) z 0 C \ γ(i) (1) ε > 0 φ : I B(z 0 ; ε) C (i) B(z 0 ; ε) γ(i) = (ii) (t, z) I B(z 0 ; ε) exp(φ(t, z)) = γ(t) z (2)

More information

Stress Singularity Analysis at an Interfacial Corner Between Anisotropic Bimaterials Under Thermal Stress Yoshiaki NOMURA, Toru IKEDA*4 and Noriyuki M

Stress Singularity Analysis at an Interfacial Corner Between Anisotropic Bimaterials Under Thermal Stress Yoshiaki NOMURA, Toru IKEDA*4 and Noriyuki M Stress Singularity Analysis at an Interfacial Corner Between Anisotropic Bimaterials Under Thermal Stress Yoshiaki NOMURA, Toru IKEDA*4 and Noriyuki MIYAZAKI Department of Mechanical Engineering and Science,

More information

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i 1. A. M. Turing [18] 60 Turing A. Gierer H. Meinhardt [1] : (GM) ) a t = D a a xx µa + ρ (c a2 h + ρ 0 (0 < x < l, t > 0) h t = D h h xx νh + c ρ a 2 (0 < x < l, t > 0) a x = h x = 0 (x = 0, l) a = a(x,

More information

18 2 20 W/C W/C W/C 4-4-1 0.05 1.0 1000 1. 1 1.1 1 1.2 3 2. 4 2.1 4 (1) 4 (2) 4 2.2 5 (1) 5 (2) 5 2.3 7 3. 8 3.1 8 3.2 ( ) 11 3.3 11 (1) 12 (2) 12 4. 14 4.1 14 4.2 14 (1) 15 (2) 16 (3) 17 4.3 17 5. 19

More information

K 2 X = 4 MWG(f), X P 2 F, υ 0 : X P 2 2,, {f λ : X λ P 1 } λ Λ NS(X λ ), (υ 0 ) λ : X λ P 2 ( 1) X 6, f λ K X + F, f ( 1), n, n 1 (cf [10]) X, f : X

K 2 X = 4 MWG(f), X P 2 F, υ 0 : X P 2 2,, {f λ : X λ P 1 } λ Λ NS(X λ ), (υ 0 ) λ : X λ P 2 ( 1) X 6, f λ K X + F, f ( 1), n, n 1 (cf [10]) X, f : X 2 E 8 1, E 8, [6], II II, E 8, 2, E 8,,, 2 [14],, X/C, f : X P 1 2 3, f, (O), f X NS(X), (O) T ( 1), NS(X), T [15] : MWG(f) NS(X)/T, MWL(f) 0 (T ) NS(X), MWL(f) MWL(f) 0, : {f λ : X λ P 1 } λ Λ NS(X λ

More information

main.dvi

main.dvi 3 Signicant discrepancies (between the computed and the true result) are very rare, too rare to worry about all the time, yet not rare enough to ignore. by W.M.Kahan supercomputer 1 supercomputer supercomputer

More information

2005 1

2005 1 2005 1 1 1 2 2 2.1....................................... 2 2.2................................... 5 2.3 VSWR................................. 6 2.4 VSWR 2............................ 7 2.5.......................................

More information

, CH n. CH n, CP n,,,., CH n,,. RH n ( Cartan )., CH n., RH n CH n,,., RH n, CH n., RH n ( ), CH n ( 1.1 (v), (vi) )., RH n,, CH n,., CH n,. 1.2, CH n

, CH n. CH n, CP n,,,., CH n,,. RH n ( Cartan )., CH n., RH n CH n,,., RH n, CH n., RH n ( ), CH n ( 1.1 (v), (vi) )., RH n,, CH n,., CH n,. 1.2, CH n ( ), Jürgen Berndt,.,. 1, CH n.,,. 1.1 ([6]). CH n (n 2), : (i) CH k (k = 0,..., n 1) tube. (ii) RH n tube. (iii). (iv) ruled minimal, equidistant. (v) normally homogeneous submanifold F k tube. (vi) normally

More information

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K II. () 7 F 7 = { 0,, 2, 3, 4, 5, 6 }., F 7 a, b F 7, a b, F 7,. (a) a, b,,. (b) 7., 4 5 = 20 = 2 7 + 6, 4 5 = 6 F 7., F 7,., 0 a F 7, ab = F 7 b F 7. (2) 7, 6 F 6 = { 0,, 2, 3, 4, 5 },,., F 6., 0 0 a F

More information

x T = (x 1,, x M ) x T x M K C 1,, C K 22 x w y 1: 2 2

x T = (x 1,, x M ) x T x M K C 1,, C K 22 x w y 1: 2 2 Takio Kurita Neurosceince Research Institute, National Institute of Advanced Indastrial Science and Technology takio-kurita@aistgojp (Support Vector Machine, SVM) 1 (Support Vector Machine, SVM) ( ) 2

More information

Isogai, T., Building a dynamic correlation network for fat-tailed financial asset returns, Applied Network Science (7):-24, 206,

Isogai, T., Building a dynamic correlation network for fat-tailed financial asset returns, Applied Network Science (7):-24, 206, H28. (TMU) 206 8 29 / 34 2 3 4 5 6 Isogai, T., Building a dynamic correlation network for fat-tailed financial asset returns, Applied Network Science (7):-24, 206, http://link.springer.com/article/0.007/s409-06-0008-x

More information

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2 filename=mathformula58.tex ax + bx + c =, x = b ± b 4ac, (.) a x + x = b a, x x = c a, (.) ax + b x + c =, x = b ± b ac. a (.3). sin(a ± B) = sin A cos B ± cos A sin B, (.) cos(a ± B) = cos A cos B sin

More information

ohgane

ohgane Signal Detection Based on Belief Propagation in a Massive MIMO System Takeo Ohgane Hokkaido University, Japan 28 October 2013 Background (1) 2 Massive MIMO An order of 100 antenna elements channel capacity

More information

(a) (b) (c) (d) 1: (a) (b) (c) (d) (a) (b) (c) 2: (a) (b) (c) 1(b) [1 10] 1 degree k n(k) walk path 4

(a) (b) (c) (d) 1: (a) (b) (c) (d) (a) (b) (c) 2: (a) (b) (c) 1(b) [1 10] 1 degree k n(k) walk path 4 1 vertex edge 1(a) 1(b) 1(c) 1(d) 2 (a) (b) (c) (d) 1: (a) (b) (c) (d) 1 2 6 1 2 6 1 2 6 3 5 3 5 3 5 4 4 (a) (b) (c) 2: (a) (b) (c) 1(b) [1 10] 1 degree k n(k) walk path 4 1: Zachary [11] [12] [13] World-Wide

More information

研究シリーズ第40号

研究シリーズ第40号 165 PEN WPI CPI WAGE IIP Feige and Pearce 166 167 168 169 Vector Autoregression n (z) z z p p p zt = φ1zt 1 + φ2zt 2 + + φ pzt p + t Cov( 0 ε t, ε t j )= Σ for for j 0 j = 0 Cov( ε t, zt j ) = 0 j = >

More information

2007/8 Vol. J90 D No. 8 Stauffer [7] 2 2 I 1 I 2 2 (I 1(x),I 2(x)) 2 [13] I 2 = CI 1 (C >0) (I 1,I 2) (I 1,I 2) Field Monitoring Server

2007/8 Vol. J90 D No. 8 Stauffer [7] 2 2 I 1 I 2 2 (I 1(x),I 2(x)) 2 [13] I 2 = CI 1 (C >0) (I 1,I 2) (I 1,I 2) Field Monitoring Server a) Change Detection Using Joint Intensity Histogram Yasuyo KITA a) 2 (0 255) (I 1 (x),i 2 (x)) I 2 = CI 1 (C>0) (I 1,I 2 ) (I 1,I 2 ) 2 1. [1] 2 [2] [3] [5] [6] [8] Intelligent Systems Research Institute,

More information

yasi10.dvi

yasi10.dvi 2002 50 2 259 278 c 2002 1 2 2002 2 14 2002 6 17 73 PML 1. 1997 1998 Swiss Re 2001 Canabarro et al. 1998 2001 1 : 651 0073 1 5 1 IHD 3 2 110 0015 3 3 3 260 50 2 2002, 2. 1 1 2 10 1 1. 261 1. 3. 3.1 2 1

More information

Abstract This paper concerns with a method of dynamic image cognition. Our image cognition method has two distinguished features. One is that the imag

Abstract This paper concerns with a method of dynamic image cognition. Our image cognition method has two distinguished features. One is that the imag 2004 RGB A STUDY OF RGB COLOR INFORMATION AND ITS APPLICATION 03R3237 Abstract This paper concerns with a method of dynamic image cognition. Our image cognition method has two distinguished features. One

More information

289号/2‐林

289号/2‐林 NAOSITE: Nagasaki University's Ac Title 費用収益の非対応 : 不動産所得の経費をめぐって Author(s) 林, 徹 Citation 経営と経済, 96(3), pp.57-91; 2016 Issue Date 2016-12-25 URL http://hdl.handle.net/10069/36957 Right This document is

More information

ばらつき抑制のための確率最適制御

ばらつき抑制のための確率最適制御 ( ) http://wwwhayanuemnagoya-uacjp/ fujimoto/ 2011 3 9 11 ( ) 2011/03/09-11 1 / 46 Outline 1 2 3 4 5 ( ) 2011/03/09-11 2 / 46 Outline 1 2 3 4 5 ( ) 2011/03/09-11 3 / 46 (1/2) r + Controller - u Plant y

More information

橡表紙参照.PDF

橡表紙参照.PDF CIRJE-J-58 X-12-ARIMA 2000 : 2001 6 How to use X-12-ARIMA2000 when you must: A Case Study of Hojinkigyo-Tokei Naoto Kunitomo Faculty of Economics, The University of Tokyo Abstract: We illustrate how to

More information

EQUIVALENT TRANSFORMATION TECHNIQUE FOR ISLANDING DETECTION METHODS OF SYNCHRONOUS GENERATOR -REACTIVE POWER PERTURBATION METHODS USING AVR OR SVC- Ju

EQUIVALENT TRANSFORMATION TECHNIQUE FOR ISLANDING DETECTION METHODS OF SYNCHRONOUS GENERATOR -REACTIVE POWER PERTURBATION METHODS USING AVR OR SVC- Ju EQUIVALENT TRANSFORMATION TECHNIQUE FOR ISLANDING DETECTION METHODS OF SYNCHRONOUS GENERATOR -REACTIVE POWER PERTURBATION METHODS USING AVR OR SVC- Jun Motohashi, Member, Takashi Ichinose, Member (Tokyo

More information

kato-kuriki-2012-jjas-41-1.pdf

kato-kuriki-2012-jjas-41-1.pdf Vol. 41, No. 1 (2012), 1 14 2 / JST CREST T 2 T 2 2 K K K K 2,,,,,. 1. t i y i 2 2 y i = f (t i ; c) + ε i, f (t; c) = c h t h = c ψ(t), i = 1,...,N (1) h=0 c = (c 0, c 1, c 2 ), ψ(t) = (1, t, t 2 ) 3

More information

n 2 n (Dynamic Programming : DP) (Genetic Algorithm : GA) 2 i

n 2 n (Dynamic Programming : DP) (Genetic Algorithm : GA) 2 i 15 Comparison and Evaluation of Dynamic Programming and Genetic Algorithm for a Knapsack Problem 1040277 2004 2 25 n 2 n (Dynamic Programming : DP) (Genetic Algorithm : GA) 2 i Abstract Comparison and

More information

4. C i k = 2 k-means C 1 i, C 2 i 5. C i x i p [ f(θ i ; x) = (2π) p 2 Vi 1 2 exp (x µ ] i) t V 1 i (x µ i ) 2 BIC BIC = 2 log L( ˆθ i ; x i C i ) + q

4. C i k = 2 k-means C 1 i, C 2 i 5. C i x i p [ f(θ i ; x) = (2π) p 2 Vi 1 2 exp (x µ ] i) t V 1 i (x µ i ) 2 BIC BIC = 2 log L( ˆθ i ; x i C i ) + q x-means 1 2 2 x-means, x-means k-means Bayesian Information Criterion BIC Watershed x-means Moving Object Extraction Using the Number of Clusters Determined by X-means Clustering Naoki Kubo, 1 Kousuke

More information

SEJulyMs更新V7

SEJulyMs更新V7 1 2 ( ) Quantitative Characteristics of Software Process (Is There any Myth, Mystery or Anomaly? No Silver Bullet?) Zenya Koono and Hui Chen A process creates a product. This paper reviews various samples

More information

untitled

untitled Discussion Paper Series No. J73 2006 4 ... 2... 3... 6... 9...12...15 1 2 Christensen and Raynor,2003,2002 ;,2005 2 POS POS 2003 2005 36 POS 32 2003 8 2005 12 29 32 42 3 DVD 42 32 DVD 3 1.20 1.00 0.80

More information

xia2.dvi

xia2.dvi Journal of Differential Equations 96 (992), 70-84 Melnikov method and transversal homoclinic points in the restricted three-body problem Zhihong Xia Department of Mathematics, Harvard University Cambridge,

More information

( 9 1 ) 1 2 1.1................................... 2 1.2................................................. 3 1.3............................................... 4 1.4...........................................

More information

JFE.dvi

JFE.dvi ,, Department of Civil Engineering, Chuo University Kasuga 1-13-27, Bunkyo-ku, Tokyo 112 8551, JAPAN E-mail : atsu1005@kc.chuo-u.ac.jp E-mail : kawa@civil.chuo-u.ac.jp SATO KOGYO CO., LTD. 12-20, Nihonbashi-Honcho

More information

2 (S, C, R, p, q, S, C, ML ) S = {s 1, s 2,..., s n } C = {c 1, c 2,..., c m } n = S m = C R = {r 1, r 2,...} r r 2 C \ p = (p r ) r R q = (q r ) r R

2 (S, C, R, p, q, S, C, ML ) S = {s 1, s 2,..., s n } C = {c 1, c 2,..., c m } n = S m = C R = {r 1, r 2,...} r r 2 C \ p = (p r ) r R q = (q r ) r R RF-004 Hashimoto Naoyuki Suguru Ueda Atsushi Iwasaki Yosuke Yasuda Makoto Yokoo 1 [10] ( ). ( ) 1 ( ) 3 4 3 4 = 12 deferred acceptance (DA) [3, 7] [5] ( ) NP serial dictatorship with regional quotas (SDRQ)

More information

T rank A max{rank Q[R Q, J] t-rank T [R T, C \ J] J C} 2 ([1, p.138, Theorem 4.2.5]) A = ( ) Q rank A = min{ρ(j) γ(j) J J C} C, (5) ρ(j) = rank Q[R Q,

T rank A max{rank Q[R Q, J] t-rank T [R T, C \ J] J C} 2 ([1, p.138, Theorem 4.2.5]) A = ( ) Q rank A = min{ρ(j) γ(j) J J C} C, (5) ρ(j) = rank Q[R Q, (ver. 4:. 2005-07-27) 1 1.1 (mixed matrix) (layered mixed matrix, LM-matrix) m n A = Q T (2m) (m n) ( ) ( ) Q I m Q à = = (1) T diag [t 1,, t m ] T rank à = m rank A (2) 1.2 [ ] B rank [B C] rank B rank

More information

L Y L( ) Y0.15Y 0.03L 0.01L 6% L=(10.15)Y 108.5Y 6%1 Y y p L ( 19 ) [1990] [1988] 1

L Y L( ) Y0.15Y 0.03L 0.01L 6% L=(10.15)Y 108.5Y 6%1 Y y p L ( 19 ) [1990] [1988] 1 1. 1-1 00 001 9 J-REIT 1- MM CAPM 1-3 [001] [1997] [003] [001] [1999] [003] 1-4 0 . -1 18 1-1873 6 1896 L Y L( ) Y0.15Y 0.03L 0.01L 6% L=(10.15)Y 108.5Y 6%1 Y y p L 6 1986 ( 19 ) -3 17 3 18 44 1 [1990]

More information

数学の基礎訓練I

数学の基礎訓練I I 9 6 13 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 3 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

(2004 ) 2 (A) (B) (C) 3 (1987) (1988) Shimono and Tachibanaki(1985) (2008) , % 2 (1999) (2005) 3 (2005) (2006) (2008)

(2004 ) 2 (A) (B) (C) 3 (1987) (1988) Shimono and Tachibanaki(1985) (2008) , % 2 (1999) (2005) 3 (2005) (2006) (2008) ,, 23 4 30 (i) (ii) (i) (ii) Negishi (1960) 2010 (2010) ( ) ( ) (2010) E-mail:fujii@econ.kobe-u.ac.jp E-mail:082e527e@stu.kobe-u.ac.jp E-mail:iritani@econ.kobe-u.ac.jp 1 1 16 (2004 ) 2 (A) (B) (C) 3 (1987)

More information

: : : : ) ) 1. d ij f i e i x i v j m a ij m f ij n x i =

: : : : ) ) 1. d ij f i e i x i v j m a ij m f ij n x i = 1 1980 1) 1 2 3 19721960 1965 2) 1999 1 69 1980 1972: 55 1999: 179 2041999: 210 211 1999: 211 3 2003 1987 92 97 3) 1960 1965 1970 1985 1990 1995 4) 1. d ij f i e i x i v j m a ij m f ij n x i = n d ij

More information

年ハイパフォーマンスコンピューティングと計算科学シンポジウム Computing Symposium HPCS // v i R n λ i [], [], [], [] 3 BI [6] MRRR (Multiple Relatively Robust Representation

年ハイパフォーマンスコンピューティングと計算科学シンポジウム Computing Symposium HPCS // v i R n λ i [], [], [], [] 3 BI [6] MRRR (Multiple Relatively Robust Representation 年ハイパフォーマンスコンピューティングと計算科学シンポジウム Computing Symposium HPCS //,,a),b),c) 3 - Multiple Relatively Robust Representation MRRR MRRR Reorthogonalized Bloc Inverse Iteration Algorithm for Parallel Computation of

More information

emarketer SNS / SNS 2009 SNS 15 64

emarketer SNS / SNS 2009 SNS 15 64 Relationship of Creative Thinking and Feeling Shared Communication by Social media MORISAWA Yukihiro Social media has been shared content that is created by the CGM (consumer generated media) via the Internet.

More information

I

I I 6 4 10 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information