num2.dvi

Size: px
Start display at page:

Download "num2.dvi"

Transcription

1

2 h 0 h = ε () 0 ( ) 0 1 IEEE754 (ieee754.c Kerosoft Ltd.!) 1

3 2 : OS! : WindowsXP ( ) : X Window xcalc.. (,.) C double 10,???

4 3 :, ( ) : BASIC, Python, OCaML, CLISP, Dr Scheme, R :,.,. : FORTRAN, Pascal, C :. : Maxima, Risa/Asir, Pari/GP

5 N 1, i2. i=1 N, 10, N = 100. (^^;.,.. s <- 0 for i:=1 to N do begin s <- s + 1/i^2 i end print s 4

6 (implement) 5 Pascal. (gdb ).,..,.

7 1 C C num2-1.c #include<stdio.h> #include<stdlib.h> int main(void) { int i,n; double s; printf("give N : "); scanf("%d",&n); s=(double)0; for (i=1;i<=n;i++) { s=s+(double)1/i/i; } printf("%22.15lf\n",s); return 0; } (double)1/i/i 1/i/i 1 1.0/i/i s (double)1/i/i (double)1/(i*i) i i num2-1.c gcc num2-1.c -o num2-1 num2-1 6

8 2 Pascal Pascal num2-1.p program zeta2; (* num2-1.p *) var i,n: integer; (* *) var s: double; begin (* *) write( Give N : ); readln(n); (* *) s:=0; (* s *) for i:=1 to N do begin (* *) s:=s+1.0/i/i; end; (* i *) writeln( Result :,s:18:15); (* *) end. Pascal, (* *).,, gpc num2-1.p -o num2-1, (executable) num2-1. num2-1. 7

9 3 FORTRAN 8 FORTRAN (F77) num2-1.f PROGRAM SERIES DOUBLE PRECISION S WRITE(*,*) Give N : READ(*,*)N S=0.0D0 DO 100 I=1,N S=S+1.0D0/I/I 100 CONTINUE WRITE(*,200) S 200 FORMAT(1H,F22.15) END FORTRAN 1950 ( ) , 1 I N A H, O Z = num2-1.f g77 num2-1.f -o num2-1 num2-1

10 ,, 9 N N! 1,. 2. Q o 1 Ctrl-C. 2, kterm, ps XXXXX kill XXXXX. 1 cf. i i=1 ( )

11 ( ) 1 N i 2 1 i2 i=1 i=1 1 i 2 1 i(i 1) ( 1 i 1 1 ) = 1 i N i=n+1 i=n+1 i=n+1 1 i 2 1 i(i+1) ( 1 i 1 ) = 1 i+1 N +1 i=n+1 N+1 i=n+1 1 x 2 = 1 N +1 i=n+1 i=n+1 1 i 2 N 1 x 2 = 1 N 10 N N+1 π 2 6 π = C π 20 M_PI math.h

12 11 Taylor e x x i = i! i=0 C num2-2.c #include<stdio.h> #include<stdlib.h> int main(void) { int i,n; double x,s,t; printf("give x : "); scanf("%lf",&x); printf("give N : "); scanf("%d",&n); s=(double)1; /* 0 1 */ t=(double)1; /* */ for (i=1;i<=n;i++) { t=t*x/i; /* */ s=s+t; /* */ } printf("%22.15lf\n",s); return 0; } fac(i) s=s+x^i/fac(i) C ( pow(x,i) ) fac(i) i

13 Taylor e x = s N +R N, N s N = t i, t i = xi i!, R N = xn+1 (N +1)! eθx (0 θ 1). i=1 R N t N+1 e x t N+1 (s N + R N ) R N t N+1 s N 1 t N+1. N t N+1 R N t N+1 s N x, N exp(x) ( ) 12

14 ( 1) 13 Taylor i )x 2i+1 sinx = (2i+1)! i=0 C num2-3.c #include<stdio.h> #include<stdlib.h> #include<math.h> int main(void) { int i,n; double x,s,t; printf("give x : "); scanf("%lf",&x); printf("give N : "); scanf("%d",&n); s=(double)0; t=(double)x; /* */ for (i=0;i<=n;i++) { s=s+t; /* */ } t=-t*x*x/(i+i+2)/(i+i+3); /* */ } printf("calculated value: %22.15lf\n",s); printf("value of library function: %22.15lf\n",sin(x)); return 0; x, N sin(x)

15 14 FORTRAN x**n T= (-1)**(2*I+1)*x**(2*I+1)/FAC(I) C exp, sin #include<math.h> gcc num2-3.c -lm -o num2-3 -lm ( ) libm.a libm.so /usr/lib/libm.a ( ) math.h, libm.a exp, sin ( 1) i 1 a i a i ց 0 i=1 N ( 1) i 1 a i a N+1 i=1

16 15 N O ( 1 ) 1 ( 1) n 1... N n 2, n n=1 n=1 O ( 1 ) (k > 1)... k N k 1 n 3 ( ) n=1 O ( 1 ) (a > 1)... a N 1 n 2n, 2 n n=0 n=1 O ( 1 ) x n (a > 1)... a N logn n!, x 2n+1 (2n+1)! n=0 n=0 O ( 1 ) (a > 1, k > 1)... a Nk O ( 1 ) (a > 1, b > 1)... (Newton a = e, b = 2 ) a bn 18

17 ζ(2) = 1 n2 n=1 1 n(n+1) = 1 n=1 1 (n 1)n(n+1) = 1 ( 1 2 n n+1 2 ) = 1 n 2 n=2 n=2 ( 1 ζ(2) 1 = n 2 1 ) = n(n+1) n=1 ζ(2) = ( n=2 = 1 2 ζ(2) = 7 4 n=2 n=2 n=1 1 n 2 (n+1), 1 n 2 (n+1) 1 (n 1)n(n+1) 1 n 2 (n 2 1), 1 n 2 (n 2 1) O ( 1 N 3 ) ) 16 ( 1 1 ) = 1 2 4

18 (1) Python (UNIX Cygwin ) g $ python (. ) >>> 2+3*4+5**2 (Python >>> ) 39 (**, R.) >>> sin(1) Traceback (most recent call last): File "<stdin>", line 1, in? NameError: name sin is not defined >>> from math import * ( ) >>> sin(1) ( ) >>> sin(pi/4) ( pi ) >>> sqrt(2)/ ( ) >>> s=0 >>> for i in range(1,10000) : s=s+1.0/i/i... ( ) >>> s Ctrl-D ( d ) ( ), ( ) 17

19 (2) Risa/Asir,. 18 export PATH=${PATH}:/home/isstaff/kanenko/Risa/bin,. g $ asir (. ) [0] 1/3; (asir [n]. ;) [1] 1.0/3; (@@.) e-15 (, ) [4] 1/2+1/3; 5/6 [5] 2^32; [6] 2^100; ( ) [7] fac(13); ( ) [8] fac(1000); ( ) [9] sin(@pi/4); ) sin(1/4*@pi) ( ) [10] eval(@@); ) ( ) [11] ctrl("bigfloat",1); ( ) 1 [12] setprec(100); ( 100 ) 105 ( ) [13] 1.0/3; ( ) [14] sin(@pi/4); sin(1/4*@pi) [15] eval(@@); ( ) [16] quit; ( n. C. X.

20 (3) num2-1.c,. 19 (4) num2-1.f,. (5) num2-2.c,.,. (6) num2-3.c,. sinx,., x = 20..

21 C n2 n=1 int main(void){ int i,n=1000; double s=(double)0; for (i=1;i<=n;i++){ s=s+1/i^2; } printf("%ld\n",s); return 0; } (1) (2) n (3)

22 N i 2 N = 10n n i=1 1 i 2 1 N O( 1 ) N 2 i=1 i.e. n 1 2n num2-1.c 2.5 (1) log(1+x) Taylor C. x (2) x = ( 1)N 1 + = log2 N 1 1+x (3) ( ) ( 1 ) f(n) = (g(n)) N c 1,c 2 > 0 c 1 g(n) f(x) c 2 g(n) (4) N 2N O ( 1 ) N 2.

ex01.dvi

ex01.dvi ,. 0. 0.0. C () /******************************* * $Id: ex_0_0.c,v.2 2006-04-0 3:37:00+09 naito Exp $ * * 0. 0.0 *******************************/ #include int main(int argc, char **argv) { double

More information

ex01.dvi

ex01.dvi ,. 0. 0.0. C () /******************************* * $Id: ex_0_0.c,v.2 2006-04-0 3:37:00+09 naito Exp $ * * 0. 0.0 *******************************/ #include int main(int argc, char **argv) double

More information

£Ã¥×¥í¥°¥é¥ß¥ó¥°ÆþÌç (2018) - Â裱£²²ó ¡Ý½ÉÂꣲ¤Î²òÀ⡤±é½¬£²¡Ý

£Ã¥×¥í¥°¥é¥ß¥ó¥°ÆþÌç (2018) - Â裱£²²ó  ¡Ý½ÉÂꣲ¤Î²òÀ⡤±é½¬£²¡Ý (2018) 2018 7 5 f(x) [ 1, 1] 3 3 1 3 f(x) dx c i f(x i ) 1 0 i=1 = 5 ) ( ) 3 ( 9 f + 8 5 9 f(0) + 5 3 9 f 5 1 1 + sin(x) θ ( 1 θ dx = tan 1 + sin x 2 π ) + 1 4 1 3 [a, b] f a, b double G3(double (*f)(),

More information

USB 0.6 https://duet.doshisha.ac.jp/info/index.jsp 2 ID TA DUET 24:00 DUET XXX -YY.c ( ) XXX -YY.txt() XXX ID 3 YY ID 5 () #define StudentID 231

USB 0.6 https://duet.doshisha.ac.jp/info/index.jsp 2 ID TA DUET 24:00 DUET XXX -YY.c ( ) XXX -YY.txt() XXX ID 3 YY ID 5 () #define StudentID 231 0 0.1 ANSI-C 0.2 web http://www1.doshisha.ac.jp/ kibuki/programming/resume p.html 0.3 2012 1 9/28 0 [ 01] 2 10/5 1 C 2 3 10/12 10 1 2 [ 02] 4 10/19 3 5 10/26 3 [ 03] 6 11/2 3 [ 04] 7 11/9 8 11/16 4 9 11/30

More information

¥Ñ¥Ã¥±¡¼¥¸ Rhpc ¤Î¾õ¶·

¥Ñ¥Ã¥±¡¼¥¸ Rhpc ¤Î¾õ¶· Rhpc COM-ONE 2015 R 27 12 5 1 / 29 1 2 Rhpc 3 forign MPI 4 Windows 5 2 / 29 1 2 Rhpc 3 forign MPI 4 Windows 5 3 / 29 Rhpc, R HPC Rhpc, ( ), snow..., Rhpc worker call Rhpc lapply 4 / 29 1 2 Rhpc 3 forign

More information

C 2 / 21 1 y = x 1.1 lagrange.c 1 / Laglange / 2 #include <stdio.h> 3 #include <math.h> 4 int main() 5 { 6 float x[10], y[10]; 7 float xx, pn, p; 8 in

C 2 / 21 1 y = x 1.1 lagrange.c 1 / Laglange / 2 #include <stdio.h> 3 #include <math.h> 4 int main() 5 { 6 float x[10], y[10]; 7 float xx, pn, p; 8 in C 1 / 21 C 2005 A * 1 2 1.1......................................... 2 1.2 *.......................................... 3 2 4 2.1.............................................. 4 2.2..............................................

More information

Python Speed Learning

Python   Speed Learning Python Speed Learning 1 / 76 Python 2 1 $ python 1 >>> 1 + 2 2 3 2 / 76 print : 1 print : ( ) 3 / 76 print : 1 print 1 2 print hello 3 print 1+2 4 print 7/3 5 print abs(-5*4) 4 / 76 print : 1 print 1 2

More information

コンピュータ概論

コンピュータ概論 4.1 For Check Point 1. For 2. 4.1.1 For (For) For = To Step (Next) 4.1.1 Next 4.1.1 4.1.2 1 i 10 For Next Cells(i,1) Cells(1, 1) Cells(2, 1) Cells(10, 1) 4.1.2 50 1. 2 1 10 3. 0 360 10 sin() 4.1.2 For

More information

11042 計算機言語7回目 サポートページ:

11042 計算機言語7回目  サポートページ: 11042 7 :https://goo.gl/678wgm November 27, 2017 10/2 1(print, ) 10/16 2(2, ) 10/23 (3 ) 10/31( ),11/6 (4 ) 11/13,, 1 (5 6 ) 11/20,, 2 (5 6 ) 11/27 (7 12/4 (9 ) 12/11 1 (10 ) 12/18 2 (10 ) 12/25 3 (11

More information

Microsoft Word - 資料 (テイラー級数と数値積分).docx

Microsoft Word - 資料 (テイラー級数と数値積分).docx δx δx n x=0 sin x = x x3 3 + x5 5 x7 7 +... x ak = (-mod(k,2))**(k/2) / fact_k ( ) = a n δ x n f x 0 + δ x a n = f ( n) ( x 0 ) n f ( x) = sin x n=0 58 I = b a ( ) f x dx ΔS = f ( x)h I = f a h h I = h

More information

Fortran90/95 [9]! (1 ) " " 5 "Hello!"! 3. (line) Fortran Fortran 1 2 * (1 ) 132 ( ) * 2 ( Fortran ) Fortran ,6 (continuation line) 1

Fortran90/95 [9]! (1 )   5 Hello!! 3. (line) Fortran Fortran 1 2 * (1 ) 132 ( ) * 2 ( Fortran ) Fortran ,6 (continuation line) 1 Fortran90/95 2.1 Fortran 2-1 Hello! 1 program example2_01! end program 2! first test program ( ) 3 implicit none! 4 5 write(*,*) "Hello!"! write Hello! 6 7 stop! 8 end program example2_01 1 program 1!

More information

2.2 Sage I 11 factor Sage Sage exit quit 1 sage : exit 2 Exiting Sage ( CPU time 0m0.06s, Wall time 2m8.71 s). 2.2 Sage Python Sage 1. Sage.sage 2. sa

2.2 Sage I 11 factor Sage Sage exit quit 1 sage : exit 2 Exiting Sage ( CPU time 0m0.06s, Wall time 2m8.71 s). 2.2 Sage Python Sage 1. Sage.sage 2. sa I 2017 11 1 SageMath SageMath( Sage ) Sage Python Sage Python Sage Maxima Maxima Sage Sage Sage Linux, Mac, Windows *1 2 Sage Sage 4 1. ( sage CUI) 2. Sage ( sage.sage ) 3. Sage ( notebook() ) 4. Sage

More information

listings-ext

listings-ext (6) Python (2) ( ) [email protected] 5 Python (2) 1 5.1 (statement)........................... 1 5.2 (scope)......................... 11 5.3 (subroutine).................... 14 5 Python (2) Python 5.1

More information

Python Speed Learning

Python   Speed Learning Python Speed Learning 1 / 89 1 2 3 4 (import) 5 6 7 (for) (if) 8 9 10 ( ) 11 12 for 13 2 / 89 Contents 1 2 3 4 (import) 5 6 7 (for) (if) 8 9 10 ( ) 11 12 for 13 3 / 89 (def) (for) (if) etc. 1 4 / 89 Jupyter

More information

arctan 1 arctan arctan arctan π = = ( ) π = 4 = π = π = π = =

arctan 1 arctan arctan arctan π = = ( ) π = 4 = π = π = π = = arctan arctan arctan arctan 2 2000 π = 3 + 8 = 3.25 ( ) 2 8 650 π = 4 = 3.6049 9 550 π = 3 3 30 π = 3.622 264 π = 3.459 3 + 0 7 = 3.4085 < π < 3 + 7 = 3.4286 380 π = 3 + 77 250 = 3.46 5 3.45926 < π < 3.45927

More information

untitled

untitled 1 1 1. 2. 3. 2 2 1 (5/6) 4 =0.517... 5/6 (5/6) 4 1 (5/6) 4 1 (35/36) 24 =0.491... 0.5 2.7 3 1 n =rand() 0 1 = rand() () rand 6 0,1,2,3,4,5 1 1 6 6 *6 int() integer 1 6 = int(rand()*6)+1 1 4 3 500 260 52%

More information

Microsoft Word - 03-数値計算の基礎.docx

Microsoft Word - 03-数値計算の基礎.docx δx f x 0 + δ x n=0 a n = f ( n) ( x 0 ) n δx n f x x=0 sin x = x x3 3 + x5 5 x7 7 +... x ( ) = a n δ x n ( ) = sin x ak = (-mod(k,2))**(k/2) / fact_k 10 11 I = f x dx a ΔS = f ( x)h I = f a h I = h b (

More information

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta 009 IA 5 I, 3, 4, 5, 6, 7 6 3. () Arcsin ( (4) Arccos ) 3 () Arcsin( ) (3) Arccos (5) Arctan (6) Arctan ( 3 ) 3. n () tan x (nπ π/, nπ + π/) f n (x) f n (x) fn (x) Arctan x () sin x [nπ π/, nπ +π/] g n

More information

C

C C 1 2 1.1........................... 2 1.2........................ 2 1.3 make................................................ 3 1.4....................................... 5 1.4.1 strip................................................

More information

θ (t) ω cos θ(t) = ( : θ, θ. ( ) ( ) ( 5) l () θ (t) = ω sin θ(t). ω := g l.. () θ (t) θ (t)θ (t) + ω θ (t) sin θ(t) =. [ ] d dt θ (t) ω cos θ(t

θ (t) ω cos θ(t) = ( : θ, θ. ( ) ( ) ( 5) l () θ (t) = ω sin θ(t). ω := g l.. () θ (t) θ (t)θ (t) + ω θ (t) sin θ(t) =. [ ] d dt θ (t) ω cos θ(t 7 8, /3/, 5// http://nalab.mind.meiji.ac.jp/~mk/labo/text/furiko/ l (, simple pendulum) m g mlθ (t) = mg sin θ(t) () θ (t) + ω sin θ(t) =, ω := ( m ) ( θ ) sin θ θ θ (t) + ω θ(t) = ( ) ( ) g l θ(t) = C

More information

1 4 2 EP) (EP) (EP)

1 4 2 EP) (EP) (EP) 2003 2004 2 27 1 1 4 2 EP) 5 3 6 3.1.............................. 6 3.2.............................. 6 3.3 (EP)............... 7 4 8 4.1 (EP).................... 8 4.1.1.................... 18 5 (EP)

More information

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f ,,,,.,,,. R f : R R R a R, f(a + ) f(a) lim 0 (), df dx (a) f (a), f(x) x a, f (a), f(x) x a ( ). y f(a + ) y f(x) f(a+) f(a) f(a + ) f(a) f(a) x a 0 a a + x 0 a a + x y y f(x) 0 : 0, f(a+) f(a)., f(x)

More information

/* do-while */ #include <stdio.h> #include <math.h> int main(void) double val1, val2, arith_mean, geo_mean; printf( \n ); do printf( ); scanf( %lf, &v

/* do-while */ #include <stdio.h> #include <math.h> int main(void) double val1, val2, arith_mean, geo_mean; printf( \n ); do printf( ); scanf( %lf, &v 1 http://www7.bpe.es.osaka-u.ac.jp/~kota/classes/jse.html [email protected] /* do-while */ #include #include int main(void) double val1, val2, arith_mean, geo_mean; printf( \n );

More information

[1] #include<stdio.h> main() { printf("hello, world."); return 0; } (G1) int long int float ± ±

[1] #include<stdio.h> main() { printf(hello, world.); return 0; } (G1) int long int float ± ± [1] #include printf("hello, world."); (G1) int -32768 32767 long int -2147483648 2147483647 float ±3.4 10 38 ±3.4 10 38 double ±1.7 10 308 ±1.7 10 308 char [2] #include int a, b, c, d,

More information

29

29 9 .,,, 3 () C k k C k C + C + C + + C 8 + C 9 + C k C + C + C + C 3 + C 4 + C 5 + + 45 + + + 5 + + 9 + 4 + 4 + 5 4 C k k k ( + ) 4 C k k ( k) 3 n( ) n n n ( ) n ( ) n 3 ( ) 3 3 3 n 4 ( ) 4 4 4 ( ) n n

More information

2 P.S.P.T. P.S.P.T. wiki 26

2 P.S.P.T. P.S.P.T. wiki  26 P.S.P.T. C 2011 4 10 2 P.S.P.T. P.S.P.T. wiki [email protected] http://www23.atwiki.jp/pspt 26 3 2 1 C 8 1.1 C................................................ 8 1.1.1...........................................

More information

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ = 1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

1 1 Gnuplot gnuplot Windows gnuplot gp443win32.zip gnuplot binary, contrib, demo, docs, license 5 BUGS, Chang

1 1 Gnuplot gnuplot   Windows gnuplot gp443win32.zip gnuplot binary, contrib, demo, docs, license 5 BUGS, Chang Gnuplot で微分積分 2011 年度前期 数学解析 I 講義資料 (2011.6.24) 矢崎成俊 ( 宮崎大学 ) 1 1 Gnuplot gnuplot http://www.gnuplot.info/ Windows gnuplot 2011 6 22 4.4.3 gp443win32.zip gnuplot binary, contrib, demo, docs, license 5

More information

n 第1章 章立ての部分は、書式(PC入門大見出し)を使います

n 第1章 章立ての部分は、書式(PC入門大見出し)を使います FORTRAN FORTRAN FORTRAN ) DO DO IF IF FORTRAN FORTRAN(FORmula TRANslator)1956 IBM FORTRAN IV FORTRAN77 Fortran90 FORTRAN77 FORTRAN FORTARN IF, DO C UNIX FORTRAN PASCAL COBOL PL/I BASIC Lisp PROLOG Lisp

More information

01_OpenMP_osx.indd

01_OpenMP_osx.indd OpenMP* / 1 1... 2 2... 3 3... 5 4... 7 5... 9 5.1... 9 5.2 OpenMP* API... 13 6... 17 7... 19 / 4 1 2 C/C++ OpenMP* 3 Fortran OpenMP* 4 PC 1 1 9.0 Linux* Windows* Xeon Itanium OS 1 2 2 WEB OS OS OS 1 OS

More information

compiler-text.dvi

compiler-text.dvi 2018.4 1 2 2.1 1 1 1 1: 1. (source program) 2. (object code) 3. 1 2.2 C if while return C input() output() fun var ( ) main() C (C-Prime) C A B C 2.3 Pascal P 1 C LDC load constant LOD load STR store AOP

More information

Bessel ( 06/11/21) Bessel 1 ( ) 1.1 0, 1,..., n n J 0 (x), J 1 (x),..., J n (x) I 0 (x), I 1 (x),..., I n (x) Miller (Miller algorithm) Bess

Bessel ( 06/11/21) Bessel 1 ( ) 1.1 0, 1,..., n n J 0 (x), J 1 (x),..., J n (x) I 0 (x), I 1 (x),..., I n (x) Miller (Miller algorithm) Bess Bessel 5 3 11 ( 6/11/1) Bessel 1 ( ) 1.1, 1,..., n n J (x), J 1 (x),..., J n (x) I (x), I 1 (x),..., I n (x) Miller (Miller algorithm) Bessel (6 ) ( ) [1] n n d j J n (x), d j I n (x) Deuflhard j= j=.1

More information

資料

資料 PC PC C VMwareをインストールする Tips: VmwareFusion *.vmx vhv.enable = TRUE Tips: Windows Hyper-V -rwxr-xr-x 1 masakazu staff 8552 7 29 13:18 a.out* -rw------- 1 masakazu staff 8552 7 29

More information

GraphicsWithPlotFull.nb Plot[{( 1), ( ),...}, {( ), ( ), ( )}] Plot Plot Cos x Sin x, x, 5 Π, 5 Π, AxesLabel x, y x 1 Plot AxesLabel

GraphicsWithPlotFull.nb Plot[{( 1), ( ),...}, {( ), ( ), ( )}] Plot Plot Cos x Sin x, x, 5 Π, 5 Π, AxesLabel x, y x 1 Plot AxesLabel http://yktlab.cis.k.hosei.ac.jp/wiki/ 1(Plot) f x x x 1 1 x x ( )[( 1)_, ( )_, ( 3)_,...]=( ) Plot Plot f x, x, 5, 3 15 10 5 Plot[( ), {( ), ( ), ( )}] D g x x 3 x 3 Plot f x, g x, x, 10, 8 00 100 10 5

More information

£Ã¥×¥í¥°¥é¥ß¥ó¥°(2018) - Âè11²ó – ½ÉÂꣲ¤Î²òÀ⡤±é½¬£² –

£Ã¥×¥í¥°¥é¥ß¥ó¥°(2018) - Âè11²ó – ½ÉÂꣲ¤Î²òÀ⡤±é½¬£² – (2018) 11 2018 12 13 2 g v dv x dt = bv x, dv y dt = g bv y (1) b v 0 θ x(t) = v 0 cos θ ( 1 e bt) (2) b y(t) = 1 ( v 0 sin θ + g ) ( 1 e bt) g b b b t (3) 11 ( ) p14 2 1 y 4 t m y > 0 y < 0 t m1 h = 0001

More information

untitled

untitled II 4 Yacc Lex 2005 : 0 1 Yacc 20 Lex 1 20 traverse 1 %% 2 [0-9]+ { yylval.val = atoi((char*)yytext); return NUM; 3 "+" { return + ; 4 "*" { return * ; 5 "-" { return - ; 6 "/" { return / ; 7 [ \t] { /*

More information

Appendix A BASIC BASIC Beginner s All-purpose Symbolic Instruction Code FORTRAN COBOL C JAVA PASCAL (NEC N88-BASIC Windows BASIC (1) (2) ( ) BASIC BAS

Appendix A BASIC BASIC Beginner s All-purpose Symbolic Instruction Code FORTRAN COBOL C JAVA PASCAL (NEC N88-BASIC Windows BASIC (1) (2) ( ) BASIC BAS Appendix A BASIC BASIC Beginner s All-purpose Symbolic Instruction Code FORTRAN COBOL C JAVA PASCAL (NEC N88-BASIC Windows BASIC (1 (2 ( BASIC BASIC download TUTORIAL.PDF http://hp.vector.co.jp/authors/va008683/

More information

Windows (L): D:\jyugyou\ D:\jyugyou\ D:\jyugyou\ (N): en2 OK 2

Windows (L): D:\jyugyou\ D:\jyugyou\ D:\jyugyou\ (N): en2 OK 2 Windows C++ Microsoft Visual Studio 2010 C++ Microsoft C++ Microsoft Visual Studio 2010 Microsoft Visual Studio 2010 C++ C C++ Microsoft Visual Studio 2010 Professional Professional 1 Professional Professional

More information

4................................. 4................................. 4 6................................. 6................................. 9.................................................... 3..3..........................

More information

1 28 6 12 7 1 7.1...................................... 2 7.1.1............................... 2 7.1.2........................... 2 7.2...................................... 3 7.3...................................

More information

Pascal Pascal Free Pascal CPad for Pascal Microsoft Windows OS Pascal

Pascal Pascal Free Pascal CPad for Pascal Microsoft Windows OS Pascal Pascal Pascal Pascal Free Pascal CPad for Pascal Microsoft Windows OS 2010 10 1 Pascal 2 1.1.......................... 2 1.2.................. 2 1.3........................ 3 2 4 2.1................................

More information

i

i i 3 4 4 7 5 6 3 ( ).. () 3 () (3) (4) /. 3. 4/3 7. /e 8. a > a, a = /, > a >. () a >, a =, > a > () a > b, a = b, a < b. c c n a n + b n + c n 3c n..... () /3 () + (3) / (4) /4 (5) m > n, a b >, m > n,

More information

2014 3 10 5 1 5 1.1..................................... 5 2 6 2.1.................................... 6 2.2 Z........................................ 6 2.3.................................. 6 2.3.1..................

More information

Excel ではじめる数値解析 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

Excel ではじめる数値解析 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. Excel ではじめる数値解析 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009631 このサンプルページの内容は, 初版 1 刷発行時のものです. Excel URL http://www.morikita.co.jp/books/mid/009631 i Microsoft Windows

More information

A S hara/lectures/lectures-j.html ϵ-n 1 ϵ-n lim n a n = α n a n α 2 lim a n = 0 1 n a k n n k= ϵ

A S hara/lectures/lectures-j.html ϵ-n 1 ϵ-n lim n a n = α n a n α 2 lim a n = 0 1 n a k n n k= ϵ A S1-20 http://www2.mth.kyushu-u.c.jp/ hr/lectures/lectures-j.html 1 1 1.1 ϵ-n 1 ϵ-n lim n n = α n n α 2 lim n = 0 1 n k n n k=1 0 1.1.7 ϵ-n 1.1.1 n α n n α lim n n = α ϵ N(ϵ) n > N(ϵ) n α < ϵ (1.1.1)

More information

3. :, c, ν. 4. Burgers : t + c x = ν 2 u x 2, (3), ν. 5. : t + u x = ν 2 u x 2, (4), c. 2 u t 2 = c2 2 u x 2, (5) (1) (4), (1 Navier Stokes,., ν. t +

3. :, c, ν. 4. Burgers : t + c x = ν 2 u x 2, (3), ν. 5. : t + u x = ν 2 u x 2, (4), c. 2 u t 2 = c2 2 u x 2, (5) (1) (4), (1 Navier Stokes,., ν. t + B: 2016 12 2, 9, 16, 2017 1 6 1,.,,,,.,.,,,., 1,. 1. :, ν. 2. : t = ν 2 u x 2, (1), c. t + c x = 0, (2). e-mail: [email protected],. 1 3. :, c, ν. 4. Burgers : t + c x = ν 2 u x 2, (3), ν. 5. : t +

More information

kiso2-06.key

kiso2-06.key 座席指定があります Linux を起動して下さい 第6回 計算機基礎実習II 計算機基礎実習II 2018 のウェブページか ら 以下の課題に自力で取り組んで下さい 第5回の復習課題(rev05) 第6回の基本課題(base06) 第5回課題の回答例 ex05-2.c 1. キーボードから整数値 a を入力すると a*a*a の値を出力することを繰り返すプログラムを作成しなさい 2. ただし 入力された

More information

OABC OA OC 4, OB, AOB BOC COA 60 OA a OB b OC c () AB AC () ABC D OD ABC OD OA + p AB + q AC p q () OABC 4 f(x) + x ( ), () y f(x) P l 4 () y f(x) l P

OABC OA OC 4, OB, AOB BOC COA 60 OA a OB b OC c () AB AC () ABC D OD ABC OD OA + p AB + q AC p q () OABC 4 f(x) + x ( ), () y f(x) P l 4 () y f(x) l P 4 ( ) ( ) ( ) ( ) 4 5 5 II III A B (0 ) 4, 6, 7 II III A B (0 ) ( ),, 6, 8, 9 II III A B (0 ) ( [ ] ) 5, 0, II A B (90 ) log x x () (a) y x + x (b) y sin (x + ) () (a) (b) (c) (d) 0 e π 0 x x x + dx e

More information

3. :, c, ν. 4. Burgers : u t + c u x = ν 2 u x 2, (3), ν. 5. : u t + u u x = ν 2 u x 2, (4), c. 2 u t 2 = c2 2 u x 2, (5) (1) (4), (1 Navier Stokes,.,

3. :, c, ν. 4. Burgers : u t + c u x = ν 2 u x 2, (3), ν. 5. : u t + u u x = ν 2 u x 2, (4), c. 2 u t 2 = c2 2 u x 2, (5) (1) (4), (1 Navier Stokes,., B:,, 2017 12 1, 8, 15, 22 1,.,,,,.,.,,,., 1,. 1. :, ν. 2. : u t = ν 2 u x 2, (1), c. u t + c u x = 0, (2), ( ). 1 3. :, c, ν. 4. Burgers : u t + c u x = ν 2 u x 2, (3), ν. 5. : u t + u u x = ν 2 u x 2,

More information

36 3 D f(z) D z f(z) z Taylor z D C f(z) z C C f (z) C f(z) f (z) f(z) D C D D z C C 3.: f(z) 3. f (z) f 2 (z) D D D D D f (z) f 2 (z) D D f (z) f 2 (

36 3 D f(z) D z f(z) z Taylor z D C f(z) z C C f (z) C f(z) f (z) f(z) D C D D z C C 3.: f(z) 3. f (z) f 2 (z) D D D D D f (z) f 2 (z) D D f (z) f 2 ( 3 3. D f(z) D D D D D D D D f(z) D f (z) f (z) f(z) D (i) (ii) (iii) f(z) = ( ) n z n = z + z 2 z 3 + n= z < z < z > f (z) = e t(+z) dt Re z> Re z> [ ] f (z) = e t(+z) = (Rez> ) +z +z t= z < f(z) Taylor

More information

1. A0 A B A0 A : A1,...,A5 B : B1,...,B

1. A0 A B A0 A : A1,...,A5 B : B1,...,B 1. A0 A B A0 A : A1,...,A5 B : B1,...,B12 2. 3. 4. 5. A0 A, B Z Z m, n Z m n m, n A m, n B m=n (1) A, B (2) A B = A B = Z/ π : Z Z/ (3) A B Z/ (4) Z/ A, B (5) f : Z Z f(n) = n f = g π g : Z/ Z A, B (6)

More information

Visual Python, Numpy, Matplotlib

Visual Python, Numpy, Matplotlib Visual Python, Numpy, Matplotlib 1 / 38 Contents 1 2 Visual Python 3 Numpy Scipy 4 Scipy 5 Matplotlib 2 / 38 Contents 1 2 Visual Python 3 Numpy Scipy 4 Scipy 5 Matplotlib 3 / 38 3 Visual Python: 3D Numpy,

More information

68 A mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1

68 A mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1 67 A Section A.1 0 1 0 1 Balmer 7 9 1 0.1 0.01 1 9 3 10:09 6 A.1: A.1 1 10 9 68 A 10 9 10 9 1 10 9 10 1 mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1 A.1. 69 5 1 10 15 3 40 0 0 ¾ ¾ É f Á ½ j 30 A.3: A.4: 1/10

More information

1. A0 A B A0 A : A1,...,A5 B : B1,...,B12 2. 5 3. 4. 5. A0 (1) A, B A B f K K A ϕ 1, ϕ 2 f ϕ 1 = f ϕ 2 ϕ 1 = ϕ 2 (2) N A 1, A 2, A 3,... N A n X N n X N, A n N n=1 1 A1 d (d 2) A (, k A k = O), A O. f

More information

tuat1.dvi

tuat1.dvi ( 1 ) http://ist.ksc.kwansei.ac.jp/ tutimura/ 2012 6 23 ( 1 ) 1 / 58 C ( 1 ) 2 / 58 2008 9 2002 2005 T E X ptetex3, ptexlive pt E X UTF-8 xdvi-jp 3 ( 1 ) 3 / 58 ( 1 ) 4 / 58 C,... ( 1 ) 5 / 58 6/23( )

More information

演習1: 演習準備

演習1: 演習準備 演習 1: 演習準備 2013 年 8 月 6 日神戸大学大学院システム情報学研究科森下浩二 1 演習 1 の内容 神戸大 X10(π-omputer) について システム概要 ログイン方法 コンパイルとジョブ実行方法 OpenMP の演習 ( 入門編 ) 1. parallel 構文 実行時ライブラリ関数 2. ループ構文 3. shared 節 private 節 4. reduction 節

More information

#define N1 N+1 double x[n1] =.5, 1., 2.; double hokan[n1] = 1.65, 2.72, 7.39 ; double xx[]=.2,.4,.6,.8,1.2,1.4,1.6,1.8; double lagrng(double xx); main

#define N1 N+1 double x[n1] =.5, 1., 2.; double hokan[n1] = 1.65, 2.72, 7.39 ; double xx[]=.2,.4,.6,.8,1.2,1.4,1.6,1.8; double lagrng(double xx); main =1= (.5, 1.65), (1., 2.72), (2., 7.39).2,.4,.6,.8, 1., 1.2, 1.4, 1.6 1 1: x.2 1.4128.4 1.5372.6 1.796533.8 2.198 1.2 3.384133 1.4 4.1832 1.6 5.1172 8 7 6 5 y 4 3 2 1.5 1 1.5 2 x 1: /* */ #include

More information

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y No1 1 (1) 2 f(x) =1+x + x 2 + + x n, g(x) = 1 (n +1)xn + nx n+1 (1 x) 2 x 6= 1 f 0 (x) =g(x) y = f(x)g(x) y 0 = f 0 (x)g(x)+f(x)g 0 (x) 3 (1) y = x2 x +1 x (2) y = 1 g(x) y0 = g0 (x) {g(x)} 2 (2) y = µ

More information

unix.dvi

unix.dvi 1 UNIX 1999 4 27 1 UNIX? 2 1.1 Windows/Macintosh? : : : : : : : : : : : : : : : : : : : : : : : : 2 1.2 UNIX OS : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2 1.3 : : : : : : : : : : : :

More information

解きながら学ぶC言語

解きながら学ぶC言語 printf 2-5 37 52 537 52 printf("%d\n", 5 + 37); 5370 source program source file.c ex00.c 0 comment %d d 0 decimal -2 -p.6 3-2 5 37 5 37-22 537 537-22 printf("537%d\n", 5-37); function function call ( )argument,

More information

2009 I 2 II III 14, 15, α β α β l 0 l l l l γ (1) γ = αβ (2) α β n n cos 2k n n π sin 2k n π k=1 k=1 3. a 0, a 1,..., a n α a

2009 I 2 II III 14, 15, α β α β l 0 l l l l γ (1) γ = αβ (2) α β n n cos 2k n n π sin 2k n π k=1 k=1 3. a 0, a 1,..., a n α a 009 I II III 4, 5, 6 4 30. 0 α β α β l 0 l l l l γ ) γ αβ ) α β. n n cos k n n π sin k n π k k 3. a 0, a,..., a n α a 0 + a x + a x + + a n x n 0 ᾱ 4. [a, b] f y fx) y x 5. ) Arcsin 4) Arccos ) ) Arcsin

More information

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,, 6,,3,4,, 3 4 8 6 6................................. 6.................................. , 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p,

More information

nakao

nakao Fortran+Python 4 Fortran, 2018 12 12 !2 Python!3 Python 2018 IEEE spectrum https://spectrum.ieee.org/static/interactive-the-top-programming-languages-2018!4 Python print("hello World!") if x == 10: print

More information

2 1 Octave Octave Window M m.m Octave Window 1.2 octave:1> a = 1 a = 1 octave:2> b = 1.23 b = octave:3> c = 3; ; % octave:4> x = pi x =

2 1 Octave Octave Window M m.m Octave Window 1.2 octave:1> a = 1 a = 1 octave:2> b = 1.23 b = octave:3> c = 3; ; % octave:4> x = pi x = 1 1 Octave GNU Octave Matlab John W. Eaton 1992 2.0.16 2.1.35 Octave Matlab gnuplot Matlab Octave MATLAB [1] Octave [1] 2.7 Octave Matlab Octave Octave 2.1.35 2.5 2.0.16 Octave 1.1 Octave octave Octave

More information

‚æ2›ñ C„¾„ê‡Ìš|

‚æ2›ñ C„¾„ê‡Ìš| I 8 10 10 I ( 6 ) 10 10 1 / 23 1 C ( ) getchar(), gets(), scanf() ( ) putchar(), puts(), printf() 1 getchar(), putchar() 1 I ( 6 ) 10 10 2 / 23 1 (getchar 1 1) 1 #include 2 void main(void){ 3 int

More information