num2.dvi
|
|
|
- たけなり とみもと
- 7 years ago
- Views:
Transcription
1
2 h 0 h = ε () 0 ( ) 0 1 IEEE754 (ieee754.c Kerosoft Ltd.!) 1
3 2 : OS! : WindowsXP ( ) : X Window xcalc.. (,.) C double 10,???
4 3 :, ( ) : BASIC, Python, OCaML, CLISP, Dr Scheme, R :,.,. : FORTRAN, Pascal, C :. : Maxima, Risa/Asir, Pari/GP
5 N 1, i2. i=1 N, 10, N = 100. (^^;.,.. s <- 0 for i:=1 to N do begin s <- s + 1/i^2 i end print s 4
6 (implement) 5 Pascal. (gdb ).,..,.
7 1 C C num2-1.c #include<stdio.h> #include<stdlib.h> int main(void) { int i,n; double s; printf("give N : "); scanf("%d",&n); s=(double)0; for (i=1;i<=n;i++) { s=s+(double)1/i/i; } printf("%22.15lf\n",s); return 0; } (double)1/i/i 1/i/i 1 1.0/i/i s (double)1/i/i (double)1/(i*i) i i num2-1.c gcc num2-1.c -o num2-1 num2-1 6
8 2 Pascal Pascal num2-1.p program zeta2; (* num2-1.p *) var i,n: integer; (* *) var s: double; begin (* *) write( Give N : ); readln(n); (* *) s:=0; (* s *) for i:=1 to N do begin (* *) s:=s+1.0/i/i; end; (* i *) writeln( Result :,s:18:15); (* *) end. Pascal, (* *).,, gpc num2-1.p -o num2-1, (executable) num2-1. num2-1. 7
9 3 FORTRAN 8 FORTRAN (F77) num2-1.f PROGRAM SERIES DOUBLE PRECISION S WRITE(*,*) Give N : READ(*,*)N S=0.0D0 DO 100 I=1,N S=S+1.0D0/I/I 100 CONTINUE WRITE(*,200) S 200 FORMAT(1H,F22.15) END FORTRAN 1950 ( ) , 1 I N A H, O Z = num2-1.f g77 num2-1.f -o num2-1 num2-1
10 ,, 9 N N! 1,. 2. Q o 1 Ctrl-C. 2, kterm, ps XXXXX kill XXXXX. 1 cf. i i=1 ( )
11 ( ) 1 N i 2 1 i2 i=1 i=1 1 i 2 1 i(i 1) ( 1 i 1 1 ) = 1 i N i=n+1 i=n+1 i=n+1 1 i 2 1 i(i+1) ( 1 i 1 ) = 1 i+1 N +1 i=n+1 N+1 i=n+1 1 x 2 = 1 N +1 i=n+1 i=n+1 1 i 2 N 1 x 2 = 1 N 10 N N+1 π 2 6 π = C π 20 M_PI math.h
12 11 Taylor e x x i = i! i=0 C num2-2.c #include<stdio.h> #include<stdlib.h> int main(void) { int i,n; double x,s,t; printf("give x : "); scanf("%lf",&x); printf("give N : "); scanf("%d",&n); s=(double)1; /* 0 1 */ t=(double)1; /* */ for (i=1;i<=n;i++) { t=t*x/i; /* */ s=s+t; /* */ } printf("%22.15lf\n",s); return 0; } fac(i) s=s+x^i/fac(i) C ( pow(x,i) ) fac(i) i
13 Taylor e x = s N +R N, N s N = t i, t i = xi i!, R N = xn+1 (N +1)! eθx (0 θ 1). i=1 R N t N+1 e x t N+1 (s N + R N ) R N t N+1 s N 1 t N+1. N t N+1 R N t N+1 s N x, N exp(x) ( ) 12
14 ( 1) 13 Taylor i )x 2i+1 sinx = (2i+1)! i=0 C num2-3.c #include<stdio.h> #include<stdlib.h> #include<math.h> int main(void) { int i,n; double x,s,t; printf("give x : "); scanf("%lf",&x); printf("give N : "); scanf("%d",&n); s=(double)0; t=(double)x; /* */ for (i=0;i<=n;i++) { s=s+t; /* */ } t=-t*x*x/(i+i+2)/(i+i+3); /* */ } printf("calculated value: %22.15lf\n",s); printf("value of library function: %22.15lf\n",sin(x)); return 0; x, N sin(x)
15 14 FORTRAN x**n T= (-1)**(2*I+1)*x**(2*I+1)/FAC(I) C exp, sin #include<math.h> gcc num2-3.c -lm -o num2-3 -lm ( ) libm.a libm.so /usr/lib/libm.a ( ) math.h, libm.a exp, sin ( 1) i 1 a i a i ց 0 i=1 N ( 1) i 1 a i a N+1 i=1
16 15 N O ( 1 ) 1 ( 1) n 1... N n 2, n n=1 n=1 O ( 1 ) (k > 1)... k N k 1 n 3 ( ) n=1 O ( 1 ) (a > 1)... a N 1 n 2n, 2 n n=0 n=1 O ( 1 ) x n (a > 1)... a N logn n!, x 2n+1 (2n+1)! n=0 n=0 O ( 1 ) (a > 1, k > 1)... a Nk O ( 1 ) (a > 1, b > 1)... (Newton a = e, b = 2 ) a bn 18
17 ζ(2) = 1 n2 n=1 1 n(n+1) = 1 n=1 1 (n 1)n(n+1) = 1 ( 1 2 n n+1 2 ) = 1 n 2 n=2 n=2 ( 1 ζ(2) 1 = n 2 1 ) = n(n+1) n=1 ζ(2) = ( n=2 = 1 2 ζ(2) = 7 4 n=2 n=2 n=1 1 n 2 (n+1), 1 n 2 (n+1) 1 (n 1)n(n+1) 1 n 2 (n 2 1), 1 n 2 (n 2 1) O ( 1 N 3 ) ) 16 ( 1 1 ) = 1 2 4
18 (1) Python (UNIX Cygwin ) g $ python (. ) >>> 2+3*4+5**2 (Python >>> ) 39 (**, R.) >>> sin(1) Traceback (most recent call last): File "<stdin>", line 1, in? NameError: name sin is not defined >>> from math import * ( ) >>> sin(1) ( ) >>> sin(pi/4) ( pi ) >>> sqrt(2)/ ( ) >>> s=0 >>> for i in range(1,10000) : s=s+1.0/i/i... ( ) >>> s Ctrl-D ( d ) ( ), ( ) 17
19 (2) Risa/Asir,. 18 export PATH=${PATH}:/home/isstaff/kanenko/Risa/bin,. g $ asir (. ) [0] 1/3; (asir [n]. ;) [1] 1.0/3; (@@.) e-15 (, ) [4] 1/2+1/3; 5/6 [5] 2^32; [6] 2^100; ( ) [7] fac(13); ( ) [8] fac(1000); ( ) [9] sin(@pi/4); ) sin(1/4*@pi) ( ) [10] eval(@@); ) ( ) [11] ctrl("bigfloat",1); ( ) 1 [12] setprec(100); ( 100 ) 105 ( ) [13] 1.0/3; ( ) [14] sin(@pi/4); sin(1/4*@pi) [15] eval(@@); ( ) [16] quit; ( n. C. X.
20 (3) num2-1.c,. 19 (4) num2-1.f,. (5) num2-2.c,.,. (6) num2-3.c,. sinx,., x = 20..
21 C n2 n=1 int main(void){ int i,n=1000; double s=(double)0; for (i=1;i<=n;i++){ s=s+1/i^2; } printf("%ld\n",s); return 0; } (1) (2) n (3)
22 N i 2 N = 10n n i=1 1 i 2 1 N O( 1 ) N 2 i=1 i.e. n 1 2n num2-1.c 2.5 (1) log(1+x) Taylor C. x (2) x = ( 1)N 1 + = log2 N 1 1+x (3) ( ) ( 1 ) f(n) = (g(n)) N c 1,c 2 > 0 c 1 g(n) f(x) c 2 g(n) (4) N 2N O ( 1 ) N 2.
ex01.dvi
,. 0. 0.0. C () /******************************* * $Id: ex_0_0.c,v.2 2006-04-0 3:37:00+09 naito Exp $ * * 0. 0.0 *******************************/ #include int main(int argc, char **argv) { double
ex01.dvi
,. 0. 0.0. C () /******************************* * $Id: ex_0_0.c,v.2 2006-04-0 3:37:00+09 naito Exp $ * * 0. 0.0 *******************************/ #include int main(int argc, char **argv) double
£Ã¥×¥í¥°¥é¥ß¥ó¥°ÆþÌç (2018) - Â裱£²²ó ¡Ý½ÉÂꣲ¤Î²òÀ⡤±é½¬£²¡Ý
(2018) 2018 7 5 f(x) [ 1, 1] 3 3 1 3 f(x) dx c i f(x i ) 1 0 i=1 = 5 ) ( ) 3 ( 9 f + 8 5 9 f(0) + 5 3 9 f 5 1 1 + sin(x) θ ( 1 θ dx = tan 1 + sin x 2 π ) + 1 4 1 3 [a, b] f a, b double G3(double (*f)(),
USB 0.6 https://duet.doshisha.ac.jp/info/index.jsp 2 ID TA DUET 24:00 DUET XXX -YY.c ( ) XXX -YY.txt() XXX ID 3 YY ID 5 () #define StudentID 231
0 0.1 ANSI-C 0.2 web http://www1.doshisha.ac.jp/ kibuki/programming/resume p.html 0.3 2012 1 9/28 0 [ 01] 2 10/5 1 C 2 3 10/12 10 1 2 [ 02] 4 10/19 3 5 10/26 3 [ 03] 6 11/2 3 [ 04] 7 11/9 8 11/16 4 9 11/30
¥Ñ¥Ã¥±¡¼¥¸ Rhpc ¤Î¾õ¶·
Rhpc COM-ONE 2015 R 27 12 5 1 / 29 1 2 Rhpc 3 forign MPI 4 Windows 5 2 / 29 1 2 Rhpc 3 forign MPI 4 Windows 5 3 / 29 Rhpc, R HPC Rhpc, ( ), snow..., Rhpc worker call Rhpc lapply 4 / 29 1 2 Rhpc 3 forign
C 2 / 21 1 y = x 1.1 lagrange.c 1 / Laglange / 2 #include <stdio.h> 3 #include <math.h> 4 int main() 5 { 6 float x[10], y[10]; 7 float xx, pn, p; 8 in
C 1 / 21 C 2005 A * 1 2 1.1......................................... 2 1.2 *.......................................... 3 2 4 2.1.............................................. 4 2.2..............................................
Python Speed Learning
Python Speed Learning 1 / 76 Python 2 1 $ python 1 >>> 1 + 2 2 3 2 / 76 print : 1 print : ( ) 3 / 76 print : 1 print 1 2 print hello 3 print 1+2 4 print 7/3 5 print abs(-5*4) 4 / 76 print : 1 print 1 2
コンピュータ概論
4.1 For Check Point 1. For 2. 4.1.1 For (For) For = To Step (Next) 4.1.1 Next 4.1.1 4.1.2 1 i 10 For Next Cells(i,1) Cells(1, 1) Cells(2, 1) Cells(10, 1) 4.1.2 50 1. 2 1 10 3. 0 360 10 sin() 4.1.2 For
11042 計算機言語7回目 サポートページ:
11042 7 :https://goo.gl/678wgm November 27, 2017 10/2 1(print, ) 10/16 2(2, ) 10/23 (3 ) 10/31( ),11/6 (4 ) 11/13,, 1 (5 6 ) 11/20,, 2 (5 6 ) 11/27 (7 12/4 (9 ) 12/11 1 (10 ) 12/18 2 (10 ) 12/25 3 (11
Microsoft Word - 資料 (テイラー級数と数値積分).docx
δx δx n x=0 sin x = x x3 3 + x5 5 x7 7 +... x ak = (-mod(k,2))**(k/2) / fact_k ( ) = a n δ x n f x 0 + δ x a n = f ( n) ( x 0 ) n f ( x) = sin x n=0 58 I = b a ( ) f x dx ΔS = f ( x)h I = f a h h I = h
Fortran90/95 [9]! (1 ) " " 5 "Hello!"! 3. (line) Fortran Fortran 1 2 * (1 ) 132 ( ) * 2 ( Fortran ) Fortran ,6 (continuation line) 1
Fortran90/95 2.1 Fortran 2-1 Hello! 1 program example2_01! end program 2! first test program ( ) 3 implicit none! 4 5 write(*,*) "Hello!"! write Hello! 6 7 stop! 8 end program example2_01 1 program 1!
2.2 Sage I 11 factor Sage Sage exit quit 1 sage : exit 2 Exiting Sage ( CPU time 0m0.06s, Wall time 2m8.71 s). 2.2 Sage Python Sage 1. Sage.sage 2. sa
I 2017 11 1 SageMath SageMath( Sage ) Sage Python Sage Python Sage Maxima Maxima Sage Sage Sage Linux, Mac, Windows *1 2 Sage Sage 4 1. ( sage CUI) 2. Sage ( sage.sage ) 3. Sage ( notebook() ) 4. Sage
listings-ext
(6) Python (2) ( ) [email protected] 5 Python (2) 1 5.1 (statement)........................... 1 5.2 (scope)......................... 11 5.3 (subroutine).................... 14 5 Python (2) Python 5.1
Python Speed Learning
Python Speed Learning 1 / 89 1 2 3 4 (import) 5 6 7 (for) (if) 8 9 10 ( ) 11 12 for 13 2 / 89 Contents 1 2 3 4 (import) 5 6 7 (for) (if) 8 9 10 ( ) 11 12 for 13 3 / 89 (def) (for) (if) etc. 1 4 / 89 Jupyter
arctan 1 arctan arctan arctan π = = ( ) π = 4 = π = π = π = =
arctan arctan arctan arctan 2 2000 π = 3 + 8 = 3.25 ( ) 2 8 650 π = 4 = 3.6049 9 550 π = 3 3 30 π = 3.622 264 π = 3.459 3 + 0 7 = 3.4085 < π < 3 + 7 = 3.4286 380 π = 3 + 77 250 = 3.46 5 3.45926 < π < 3.45927
untitled
1 1 1. 2. 3. 2 2 1 (5/6) 4 =0.517... 5/6 (5/6) 4 1 (5/6) 4 1 (35/36) 24 =0.491... 0.5 2.7 3 1 n =rand() 0 1 = rand() () rand 6 0,1,2,3,4,5 1 1 6 6 *6 int() integer 1 6 = int(rand()*6)+1 1 4 3 500 260 52%
Microsoft Word - 03-数値計算の基礎.docx
δx f x 0 + δ x n=0 a n = f ( n) ( x 0 ) n δx n f x x=0 sin x = x x3 3 + x5 5 x7 7 +... x ( ) = a n δ x n ( ) = sin x ak = (-mod(k,2))**(k/2) / fact_k 10 11 I = f x dx a ΔS = f ( x)h I = f a h I = h b (
2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta
009 IA 5 I, 3, 4, 5, 6, 7 6 3. () Arcsin ( (4) Arccos ) 3 () Arcsin( ) (3) Arccos (5) Arctan (6) Arctan ( 3 ) 3. n () tan x (nπ π/, nπ + π/) f n (x) f n (x) fn (x) Arctan x () sin x [nπ π/, nπ +π/] g n
C
C 1 2 1.1........................... 2 1.2........................ 2 1.3 make................................................ 3 1.4....................................... 5 1.4.1 strip................................................
θ (t) ω cos θ(t) = ( : θ, θ. ( ) ( ) ( 5) l () θ (t) = ω sin θ(t). ω := g l.. () θ (t) θ (t)θ (t) + ω θ (t) sin θ(t) =. [ ] d dt θ (t) ω cos θ(t
7 8, /3/, 5// http://nalab.mind.meiji.ac.jp/~mk/labo/text/furiko/ l (, simple pendulum) m g mlθ (t) = mg sin θ(t) () θ (t) + ω sin θ(t) =, ω := ( m ) ( θ ) sin θ θ θ (t) + ω θ(t) = ( ) ( ) g l θ(t) = C
1 4 2 EP) (EP) (EP)
2003 2004 2 27 1 1 4 2 EP) 5 3 6 3.1.............................. 6 3.2.............................. 6 3.3 (EP)............... 7 4 8 4.1 (EP).................... 8 4.1.1.................... 18 5 (EP)
, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f
,,,,.,,,. R f : R R R a R, f(a + ) f(a) lim 0 (), df dx (a) f (a), f(x) x a, f (a), f(x) x a ( ). y f(a + ) y f(x) f(a+) f(a) f(a + ) f(a) f(a) x a 0 a a + x 0 a a + x y y f(x) 0 : 0, f(a+) f(a)., f(x)
/* do-while */ #include <stdio.h> #include <math.h> int main(void) double val1, val2, arith_mean, geo_mean; printf( \n ); do printf( ); scanf( %lf, &v
1 http://www7.bpe.es.osaka-u.ac.jp/~kota/classes/jse.html [email protected] /* do-while */ #include #include int main(void) double val1, val2, arith_mean, geo_mean; printf( \n );
[1] #include<stdio.h> main() { printf("hello, world."); return 0; } (G1) int long int float ± ±
[1] #include printf("hello, world."); (G1) int -32768 32767 long int -2147483648 2147483647 float ±3.4 10 38 ±3.4 10 38 double ±1.7 10 308 ±1.7 10 308 char [2] #include int a, b, c, d,
29
9 .,,, 3 () C k k C k C + C + C + + C 8 + C 9 + C k C + C + C + C 3 + C 4 + C 5 + + 45 + + + 5 + + 9 + 4 + 4 + 5 4 C k k k ( + ) 4 C k k ( k) 3 n( ) n n n ( ) n ( ) n 3 ( ) 3 3 3 n 4 ( ) 4 4 4 ( ) n n
2 P.S.P.T. P.S.P.T. wiki 26
P.S.P.T. C 2011 4 10 2 P.S.P.T. P.S.P.T. wiki [email protected] http://www23.atwiki.jp/pspt 26 3 2 1 C 8 1.1 C................................................ 8 1.1.1...........................................
1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =
1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A
微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.
微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)
1 1 Gnuplot gnuplot Windows gnuplot gp443win32.zip gnuplot binary, contrib, demo, docs, license 5 BUGS, Chang
Gnuplot で微分積分 2011 年度前期 数学解析 I 講義資料 (2011.6.24) 矢崎成俊 ( 宮崎大学 ) 1 1 Gnuplot gnuplot http://www.gnuplot.info/ Windows gnuplot 2011 6 22 4.4.3 gp443win32.zip gnuplot binary, contrib, demo, docs, license 5
n 第1章 章立ての部分は、書式(PC入門大見出し)を使います
FORTRAN FORTRAN FORTRAN ) DO DO IF IF FORTRAN FORTRAN(FORmula TRANslator)1956 IBM FORTRAN IV FORTRAN77 Fortran90 FORTRAN77 FORTRAN FORTARN IF, DO C UNIX FORTRAN PASCAL COBOL PL/I BASIC Lisp PROLOG Lisp
01_OpenMP_osx.indd
OpenMP* / 1 1... 2 2... 3 3... 5 4... 7 5... 9 5.1... 9 5.2 OpenMP* API... 13 6... 17 7... 19 / 4 1 2 C/C++ OpenMP* 3 Fortran OpenMP* 4 PC 1 1 9.0 Linux* Windows* Xeon Itanium OS 1 2 2 WEB OS OS OS 1 OS
compiler-text.dvi
2018.4 1 2 2.1 1 1 1 1: 1. (source program) 2. (object code) 3. 1 2.2 C if while return C input() output() fun var ( ) main() C (C-Prime) C A B C 2.3 Pascal P 1 C LDC load constant LOD load STR store AOP
Bessel ( 06/11/21) Bessel 1 ( ) 1.1 0, 1,..., n n J 0 (x), J 1 (x),..., J n (x) I 0 (x), I 1 (x),..., I n (x) Miller (Miller algorithm) Bess
Bessel 5 3 11 ( 6/11/1) Bessel 1 ( ) 1.1, 1,..., n n J (x), J 1 (x),..., J n (x) I (x), I 1 (x),..., I n (x) Miller (Miller algorithm) Bessel (6 ) ( ) [1] n n d j J n (x), d j I n (x) Deuflhard j= j=.1
資料
PC PC C VMwareをインストールする Tips: VmwareFusion *.vmx vhv.enable = TRUE Tips: Windows Hyper-V -rwxr-xr-x 1 masakazu staff 8552 7 29 13:18 a.out* -rw------- 1 masakazu staff 8552 7 29
GraphicsWithPlotFull.nb Plot[{( 1), ( ),...}, {( ), ( ), ( )}] Plot Plot Cos x Sin x, x, 5 Π, 5 Π, AxesLabel x, y x 1 Plot AxesLabel
http://yktlab.cis.k.hosei.ac.jp/wiki/ 1(Plot) f x x x 1 1 x x ( )[( 1)_, ( )_, ( 3)_,...]=( ) Plot Plot f x, x, 5, 3 15 10 5 Plot[( ), {( ), ( ), ( )}] D g x x 3 x 3 Plot f x, g x, x, 10, 8 00 100 10 5
£Ã¥×¥í¥°¥é¥ß¥ó¥°(2018) - Âè11²ó – ½ÉÂꣲ¤Î²òÀ⡤±é½¬£² –
(2018) 11 2018 12 13 2 g v dv x dt = bv x, dv y dt = g bv y (1) b v 0 θ x(t) = v 0 cos θ ( 1 e bt) (2) b y(t) = 1 ( v 0 sin θ + g ) ( 1 e bt) g b b b t (3) 11 ( ) p14 2 1 y 4 t m y > 0 y < 0 t m1 h = 0001
untitled
II 4 Yacc Lex 2005 : 0 1 Yacc 20 Lex 1 20 traverse 1 %% 2 [0-9]+ { yylval.val = atoi((char*)yytext); return NUM; 3 "+" { return + ; 4 "*" { return * ; 5 "-" { return - ; 6 "/" { return / ; 7 [ \t] { /*
Appendix A BASIC BASIC Beginner s All-purpose Symbolic Instruction Code FORTRAN COBOL C JAVA PASCAL (NEC N88-BASIC Windows BASIC (1) (2) ( ) BASIC BAS
Appendix A BASIC BASIC Beginner s All-purpose Symbolic Instruction Code FORTRAN COBOL C JAVA PASCAL (NEC N88-BASIC Windows BASIC (1 (2 ( BASIC BASIC download TUTORIAL.PDF http://hp.vector.co.jp/authors/va008683/
Windows (L): D:\jyugyou\ D:\jyugyou\ D:\jyugyou\ (N): en2 OK 2
Windows C++ Microsoft Visual Studio 2010 C++ Microsoft C++ Microsoft Visual Studio 2010 Microsoft Visual Studio 2010 C++ C C++ Microsoft Visual Studio 2010 Professional Professional 1 Professional Professional
4................................. 4................................. 4 6................................. 6................................. 9.................................................... 3..3..........................
1 28 6 12 7 1 7.1...................................... 2 7.1.1............................... 2 7.1.2........................... 2 7.2...................................... 3 7.3...................................
Pascal Pascal Free Pascal CPad for Pascal Microsoft Windows OS Pascal
Pascal Pascal Pascal Free Pascal CPad for Pascal Microsoft Windows OS 2010 10 1 Pascal 2 1.1.......................... 2 1.2.................. 2 1.3........................ 3 2 4 2.1................................
i
i 3 4 4 7 5 6 3 ( ).. () 3 () (3) (4) /. 3. 4/3 7. /e 8. a > a, a = /, > a >. () a >, a =, > a > () a > b, a = b, a < b. c c n a n + b n + c n 3c n..... () /3 () + (3) / (4) /4 (5) m > n, a b >, m > n,
2014 3 10 5 1 5 1.1..................................... 5 2 6 2.1.................................... 6 2.2 Z........................................ 6 2.3.................................. 6 2.3.1..................
Excel ではじめる数値解析 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.
Excel ではじめる数値解析 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009631 このサンプルページの内容は, 初版 1 刷発行時のものです. Excel URL http://www.morikita.co.jp/books/mid/009631 i Microsoft Windows
A S hara/lectures/lectures-j.html ϵ-n 1 ϵ-n lim n a n = α n a n α 2 lim a n = 0 1 n a k n n k= ϵ
A S1-20 http://www2.mth.kyushu-u.c.jp/ hr/lectures/lectures-j.html 1 1 1.1 ϵ-n 1 ϵ-n lim n n = α n n α 2 lim n = 0 1 n k n n k=1 0 1.1.7 ϵ-n 1.1.1 n α n n α lim n n = α ϵ N(ϵ) n > N(ϵ) n α < ϵ (1.1.1)
3. :, c, ν. 4. Burgers : t + c x = ν 2 u x 2, (3), ν. 5. : t + u x = ν 2 u x 2, (4), c. 2 u t 2 = c2 2 u x 2, (5) (1) (4), (1 Navier Stokes,., ν. t +
B: 2016 12 2, 9, 16, 2017 1 6 1,.,,,,.,.,,,., 1,. 1. :, ν. 2. : t = ν 2 u x 2, (1), c. t + c x = 0, (2). e-mail: [email protected],. 1 3. :, c, ν. 4. Burgers : t + c x = ν 2 u x 2, (3), ν. 5. : t +
kiso2-06.key
座席指定があります Linux を起動して下さい 第6回 計算機基礎実習II 計算機基礎実習II 2018 のウェブページか ら 以下の課題に自力で取り組んで下さい 第5回の復習課題(rev05) 第6回の基本課題(base06) 第5回課題の回答例 ex05-2.c 1. キーボードから整数値 a を入力すると a*a*a の値を出力することを繰り返すプログラムを作成しなさい 2. ただし 入力された
OABC OA OC 4, OB, AOB BOC COA 60 OA a OB b OC c () AB AC () ABC D OD ABC OD OA + p AB + q AC p q () OABC 4 f(x) + x ( ), () y f(x) P l 4 () y f(x) l P
4 ( ) ( ) ( ) ( ) 4 5 5 II III A B (0 ) 4, 6, 7 II III A B (0 ) ( ),, 6, 8, 9 II III A B (0 ) ( [ ] ) 5, 0, II A B (90 ) log x x () (a) y x + x (b) y sin (x + ) () (a) (b) (c) (d) 0 e π 0 x x x + dx e
3. :, c, ν. 4. Burgers : u t + c u x = ν 2 u x 2, (3), ν. 5. : u t + u u x = ν 2 u x 2, (4), c. 2 u t 2 = c2 2 u x 2, (5) (1) (4), (1 Navier Stokes,.,
B:,, 2017 12 1, 8, 15, 22 1,.,,,,.,.,,,., 1,. 1. :, ν. 2. : u t = ν 2 u x 2, (1), c. u t + c u x = 0, (2), ( ). 1 3. :, c, ν. 4. Burgers : u t + c u x = ν 2 u x 2, (3), ν. 5. : u t + u u x = ν 2 u x 2,
36 3 D f(z) D z f(z) z Taylor z D C f(z) z C C f (z) C f(z) f (z) f(z) D C D D z C C 3.: f(z) 3. f (z) f 2 (z) D D D D D f (z) f 2 (z) D D f (z) f 2 (
3 3. D f(z) D D D D D D D D f(z) D f (z) f (z) f(z) D (i) (ii) (iii) f(z) = ( ) n z n = z + z 2 z 3 + n= z < z < z > f (z) = e t(+z) dt Re z> Re z> [ ] f (z) = e t(+z) = (Rez> ) +z +z t= z < f(z) Taylor
1. A0 A B A0 A : A1,...,A5 B : B1,...,B
1. A0 A B A0 A : A1,...,A5 B : B1,...,B12 2. 3. 4. 5. A0 A, B Z Z m, n Z m n m, n A m, n B m=n (1) A, B (2) A B = A B = Z/ π : Z Z/ (3) A B Z/ (4) Z/ A, B (5) f : Z Z f(n) = n f = g π g : Z/ Z A, B (6)
Visual Python, Numpy, Matplotlib
Visual Python, Numpy, Matplotlib 1 / 38 Contents 1 2 Visual Python 3 Numpy Scipy 4 Scipy 5 Matplotlib 2 / 38 Contents 1 2 Visual Python 3 Numpy Scipy 4 Scipy 5 Matplotlib 3 / 38 3 Visual Python: 3D Numpy,
68 A mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1
67 A Section A.1 0 1 0 1 Balmer 7 9 1 0.1 0.01 1 9 3 10:09 6 A.1: A.1 1 10 9 68 A 10 9 10 9 1 10 9 10 1 mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1 A.1. 69 5 1 10 15 3 40 0 0 ¾ ¾ É f Á ½ j 30 A.3: A.4: 1/10
1. A0 A B A0 A : A1,...,A5 B : B1,...,B12 2. 5 3. 4. 5. A0 (1) A, B A B f K K A ϕ 1, ϕ 2 f ϕ 1 = f ϕ 2 ϕ 1 = ϕ 2 (2) N A 1, A 2, A 3,... N A n X N n X N, A n N n=1 1 A1 d (d 2) A (, k A k = O), A O. f
tuat1.dvi
( 1 ) http://ist.ksc.kwansei.ac.jp/ tutimura/ 2012 6 23 ( 1 ) 1 / 58 C ( 1 ) 2 / 58 2008 9 2002 2005 T E X ptetex3, ptexlive pt E X UTF-8 xdvi-jp 3 ( 1 ) 3 / 58 ( 1 ) 4 / 58 C,... ( 1 ) 5 / 58 6/23( )
演習1: 演習準備
演習 1: 演習準備 2013 年 8 月 6 日神戸大学大学院システム情報学研究科森下浩二 1 演習 1 の内容 神戸大 X10(π-omputer) について システム概要 ログイン方法 コンパイルとジョブ実行方法 OpenMP の演習 ( 入門編 ) 1. parallel 構文 実行時ライブラリ関数 2. ループ構文 3. shared 節 private 節 4. reduction 節
#define N1 N+1 double x[n1] =.5, 1., 2.; double hokan[n1] = 1.65, 2.72, 7.39 ; double xx[]=.2,.4,.6,.8,1.2,1.4,1.6,1.8; double lagrng(double xx); main
=1= (.5, 1.65), (1., 2.72), (2., 7.39).2,.4,.6,.8, 1., 1.2, 1.4, 1.6 1 1: x.2 1.4128.4 1.5372.6 1.796533.8 2.198 1.2 3.384133 1.4 4.1832 1.6 5.1172 8 7 6 5 y 4 3 2 1.5 1 1.5 2 x 1: /* */ #include
No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y
No1 1 (1) 2 f(x) =1+x + x 2 + + x n, g(x) = 1 (n +1)xn + nx n+1 (1 x) 2 x 6= 1 f 0 (x) =g(x) y = f(x)g(x) y 0 = f 0 (x)g(x)+f(x)g 0 (x) 3 (1) y = x2 x +1 x (2) y = 1 g(x) y0 = g0 (x) {g(x)} 2 (2) y = µ
unix.dvi
1 UNIX 1999 4 27 1 UNIX? 2 1.1 Windows/Macintosh? : : : : : : : : : : : : : : : : : : : : : : : : 2 1.2 UNIX OS : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2 1.3 : : : : : : : : : : : :
解きながら学ぶC言語
printf 2-5 37 52 537 52 printf("%d\n", 5 + 37); 5370 source program source file.c ex00.c 0 comment %d d 0 decimal -2 -p.6 3-2 5 37 5 37-22 537 537-22 printf("537%d\n", 5-37); function function call ( )argument,
2009 I 2 II III 14, 15, α β α β l 0 l l l l γ (1) γ = αβ (2) α β n n cos 2k n n π sin 2k n π k=1 k=1 3. a 0, a 1,..., a n α a
009 I II III 4, 5, 6 4 30. 0 α β α β l 0 l l l l γ ) γ αβ ) α β. n n cos k n n π sin k n π k k 3. a 0, a,..., a n α a 0 + a x + a x + + a n x n 0 ᾱ 4. [a, b] f y fx) y x 5. ) Arcsin 4) Arccos ) ) Arcsin
, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,
6,,3,4,, 3 4 8 6 6................................. 6.................................. , 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p,
nakao
Fortran+Python 4 Fortran, 2018 12 12 !2 Python!3 Python 2018 IEEE spectrum https://spectrum.ieee.org/static/interactive-the-top-programming-languages-2018!4 Python print("hello World!") if x == 10: print
2 1 Octave Octave Window M m.m Octave Window 1.2 octave:1> a = 1 a = 1 octave:2> b = 1.23 b = octave:3> c = 3; ; % octave:4> x = pi x =
1 1 Octave GNU Octave Matlab John W. Eaton 1992 2.0.16 2.1.35 Octave Matlab gnuplot Matlab Octave MATLAB [1] Octave [1] 2.7 Octave Matlab Octave Octave 2.1.35 2.5 2.0.16 Octave 1.1 Octave octave Octave
‚æ2›ñ C„¾„ê‡Ìš|
I 8 10 10 I ( 6 ) 10 10 1 / 23 1 C ( ) getchar(), gets(), scanf() ( ) putchar(), puts(), printf() 1 getchar(), putchar() 1 I ( 6 ) 10 10 2 / 23 1 (getchar 1 1) 1 #include 2 void main(void){ 3 int
