Size: px
Start display at page:

Download ""

Transcription

1 ver 0.3

2

3 Chapter () 0( ) 0.2 3

4 4 CHAPTER % ( Wikipedia ) ( ) 0.4! 2006

5 MIT OCW ( ) MIT Open Courseware MIT (Massachusetts Institute of Technology) Open Courseware MIT Creative Commons Lisence MIT OCW (transcription)

6

7 Chapter m ( 1 )

8 8 CHAPTER /3= π,e, 2 = , 3 = i = 1 ( ) ( ) 2 : 1 + 2i ( ) ( )

9 ( ) Figure 1.1: = 1 1/10 π = /10 π 7 a < b( a 0) a < b 6 < 7 < 8 6 = = = 2 2 ( 2 2 = 2 2 = 2) 2 = = = 2.44, 8 = [ 6, 8] = [2.44, 2.82] = < a < b a 2 < b = 6.76, =

10 10 CHAPTER 1. octave-3.0.0:16> 2.65^2 ans = octave-3.0.0:17> 2.62^2 ans = octave-3.0.0:18> 2.63^2 ans = octave-3.0.0:19> 2.64^2 ans = octave-3.0.0:20> octave-3.0.0:20> octave-3.0.0:20> 2.65^2 ans = octave-3.0.0:21> 2.63^2 ans = octave-3.0.0:22> 2.64^2 ans = octave-3.0.0:23> 2.645^2 ans = octave-3.0.0:24> 2.648^2 ans = octave-3.0.0:25> 2.646^2 ans = octave-3.0.0:26> ^2 ans = octave-3.0.0:27> ^2 ans = octave-3.0.0:28> ^2 ans = octave-3.0.0:29> ^2 ans = PC Octave

11 Octave Octave Octave octave-3.0.0:> (3+4+5)/100 ans = octave-3.0.0:> (3+4)+5/100 ans = octave-3.0.0:> sqrt(3) ans = () sqrt(x) x

12 12 CHAPTER (number theory) 3 n x n + y n = z n (x, y, z) (n = = 5 2 ) 2000 :Simon Singh, Fermat s Enigma: The Epic Quest to Solve the World s Greatest Mathematical Problem Anchor Books 1998 (paperback) 2008 : David Wells Prime Numbers The Most Mysterious Figures in Math John Wiley & Sons 2005 ( ) :Simon Singh, The Code Book: The Science of Secrecy from Ancient Egypt to Quantum Cryptography Anchor Books 2000 (paperback)

13 a b c d 1. a = b, a = c b = c 2. a = b, c = d a + c = b + d 3. a = b, c = d a c = b d ( ) ( ) 4. a = b, c = d ac = bd ( ) 5. a = b, c = d c 0 a c = b d 6. a + (b + c) = (a + b) + c 7. a (b c) = (a b) c 8. a (b + c) = a b + a c

14 14 CHAPTER (a + b) ax + b = 0 x 5. () 0

15 ( 5 ) 3 1l 2

16 16 CHAPTER m kg ( ) s A Table 1.1: 4 SI ( MKSA ) k (1000 ) g( ) SI 4 ([K]) ([mol]) ([cd]) [ ] ( ) SI N m kg/s 2 Pa N/m 2 m 1 kg /s 2 J N m m 2 kg/s 2 J N m m 2 kg/s 2 J N m m 2 kg/s 2 W J/s m 2 kg/s 2 V W/A m 2 kg /(s 3 A 1 ) Table 1.2: SI ( ) 1.3 (9.8 [m/s 2 ])

17 / km/h / m/s m 2 bar 10 5 Pa kgw 9.8 N 9.8m kg/s 2 Table 1.3: ( ) P peta T tera G 10 9 giga M 10 6 mega k 10 3 kilo h 10 2 hecto da 10 1 deca d 10 1 deci c 10 2 centi m 10 3 mili µ 10 6 micro n 10 9 nano p pico f femto Table 1.4: SI ( ) hpa ( ) h mbar ( ) SI hpa

18 18 CHAPTER ( ) 100% [g] 100[kg] [g] ( ) 100[kg] 0.1[kg] 99.9[kg] 100.1[kg] 1[g] [kg] = = SI ( 1.2) ( = x ) F = m a = kg m/s 2 ( 1.2 ) = (kg) x (m/s 2 ) = kg m/s 2 =

19 E = mc [hpa] 10[cm] = 1.414, 3 = 1.732, 5 = ( 10, 11,... 30) 3 25 = 5 12 = 2 3 ( : ) π 4. SI 5. 2 ax 2 + bx + c = 0 x pp.13 ( )

20 20 CHAPTER (= 1 ) xx 200m (= ) () ( ) (1,3), (-1,1), ( 3/2,1/2), (x,y) 2 (1,3,2), (-1,0,1), ( 3/2,1/2, 2), (x,y,z) 3 () 2 2 Figure 1.2:

21 ( ) (a,b) a 2 + b 2 (a,b,c) a 2 + b 2 + c e x = (1, 0) (1.1) e y = (0, 1) (1.2) 3 3 x, a, b x, a, b X = (x 1, x 2 ) = (3, 2) X = ( x 1 x 2 ) ( ) 3 = 2 Octave

22 22 CHAPTER 1. octave:> A=[1,2,3] A = octave:> A=[1;2;3] A = octave:> (,) (;) ( ) (cf. ) 1. 2.

23 ( 1.3) (x 1, x 2 ) + (y 1, y 2 ) = (x 1 + y 1, x 2 + y 2 ) (1.3) (x 1, x 2 ) (y 1, y 2 ) = (x 1 y 1, x 2 y 2 ) (1.4) 2 (x 1, x 2 ) ± (y 1, y 2 ) = (x 1 ± y 1, x 2 ± y 2 ) (1.5) Figure 1.3: 1. 3 Octave 2. 2 A=(1;3;-1) B=(2;5;1)

24 24 CHAPTER m (a 1, a 2 ) = (m a 1, m a 2 ) (1.6) m ( ) (x 1, x 2 ) (y 1, y 2 ) = x 1 y 1 + x 2 y 2 (1.7) 2 x = (x 1, x 2,...x n ), y = (y 1, y 2,...y n ) n x y = x i y i (1.8) i=1 ( x ) x y = x y cos θ (1.9) x, y 2 cos θ = x y x y (1.10) cos(π/2) = 0 ( )2 0

25 Octave Octave 2 A,B A*B (JIS Shift+7) ctave-3.0.0:38> X=[1;2;3;4] X = octave-3.0.0:39> Y=[9;8;7;6] Y = octave-3.0.0:40> X*Y error: operator *: nonconformant arguments (op1 is 4x1, op2 is 4x1) error: evaluating binary operator * near line 40, column 2 # octave-3.0.0:40> X ans = # octave-3.0.0:41> X *Y ans = 70

26 26 CHAPTER ( ) a b = b a (a + b) c = a c + b c 2 3 x = (x 1, x 2, x 3 ), y = (y 1, y 2, y 3 ) θ z = x y (1.11) z = (x 2 y 3 x 3 y 2, x 3 y 1 x 1 y 3, x 1 y 2 x 2 y 1 ) (1.12) z = x y sin θ (1.13) 1.7 ( ) ( ) a b c 2 1, d e f (2x3) 2 2 (2x2) (, ) (1,2) b 1

27 A A = (1.14) A 2. A (1,4) (3,2) 3. A 2 4. A Octave Octave (,) (;) ( ) (, ) A (2,1) A(2,1) (:) A n A(:,n) m A(m,:) A,m 1..3 A(m,1:3) (:) Octave 1:n 1...n... octave:1> A=[3,1,-3,2;1,2,1,0; 2,5,4,7] A = octave:2> A(1,4)

28 28 CHAPTER 1. ans = 2 octave:3> A(3,2) ans = 5 octave:4> A(:,2) ans = octave:5> A(2,:) ans = octave:6> A(3,:) ans = A,B Octave A = , B = (1.15) A+B 2. A-B 3. 2A-B 4. t A ( )

29 t A+ t B ( ) A B AB A B ( ) t t (transpose) Octave ( : A ) shift-7 ( ) a a b c A =, t A = b d e f c d e (1.16) f A B A tb (1.17) A(m n ) B(n p ) C C (m p ) c ij = n a ik b kj, i = 1 m, j = 1 p (1.18) k=1 a ij, b ij, c ij A,B,C (i j ) Figure 1.4:

30 30 CHAPTER 1. A,B A ta A tb Octave Octave.*./ ( ) N, P Octave:> N = [1,2,10; 3,0, 5; 4, 0, 1]; Octave:> P = [ 30, 20, 99; 40, 0, 112; 25, 0, 80]; octave:> Q = N.* P #.* Q = octave:> sum(q) ans = # ( ) octave:> sum(q ) ans = # ( ) octave-3.0.0:80> sum(sum(q)) ans = 1920

31 # ( ) 1 0 E E = (1.19) 0 4x1 m m (1.20) ( ) 5 1/5 x 1/x = x A AX = E (1.21) X A 1 Octave inv(a) 0 A 3

32 32 CHAPTER 1. A 0 A Octave det(a) A = 1 2 1, B = x2 X = ( a c ) b d det(x) = ad-bc R = ( cos θ sin θ ) sin θ cos θ Ax = b (1.22) a b c x j d e f y = k (1.23) g h i z l ax + by + cz = j (1.24) dx + ey + fz = k (1.25) gx + hy + iz = l (1.26)

33 A A 1 Ax = A 1 b (1.27) A A 1 = I x = A 1 b (1.28) x 2 x x 1 OAB Figure 1.5: OAB OA, OB, AB, BA ( ) 4 2.

34 34 CHAPTER 1. (a) ( ) ( ) ( ) 1 1 x 9 = 4 2 y 24 (b) 9 24 (c) () 5. () 6. ( Excel)

35 θ ( ) cos θ sin θ sin θ cos θ (1.29) 2. a ( ) a 0 0 a function y=rot(x) y = [cos(x),-sin(x);sin(x),cos(x)]; endfunction x0=[1;0]; step=0.1*pi; for(i=1:21) x0=rot(step)*x0; X(i,:)=x0 ; endfor plot(x(:,1),x(:,2), + ); (1.30) Octave function y=rot(x) x = x*pi; y = [cos(x),-sin(x);sin(x),cos(x)];

36 36 CHAPTER 1. endfunction function T=trans(x,y) for(i=1:5) T(i,:)=[x,y]; endfor endfunction function plotr(x) plot(x(:,1),x(:,2)) endfunction function Y=rotation(X,a) Y=(rot(a)*X ) ; endfunction Bigbox=[-3,-3;5,-3;5,4;-3,4;-3,-3]; hold off; plotr(bigbox); hold on; R1 = [0,0;2,0;2,1;0,1;0,0]; (5,2) R1 R2 = rotation(r1, θ) R1 θ[rad] R2 (plot ) plotr(r1) Octave:> plotr(r1) Octave:> R2 = rot(0.3)*r1; Octave:> plotr(r2) Octave:> R3 = trans(1,2)+r1; Octave:> plotr(r3) Octave:> for(u=0.1:0.3:1.0) plotr(rotation(r3,u)) endfor

A9RF112.tmp.pdf

A9RF112.tmp.pdf 9 1-1 9 9 10 11 13 17 1-2 18 18 19 20 21 21 22 23 24 26 2-1 26 26 26 30 33 35 2-2 36 36 38 40 44 44 45 3-1 45 45 47 49 51 53 58 3-2 59 59 60 62 64 68 69 70 4-1 70 70 72 4-2 73 73 74 74 75 76 77 77 79 80

More information

untitled

untitled (1) 100 100 60% (2) (3) - 1 - 1 2 3 4 100 200-2 - 1 2 3-3 - 4 5 6 7......... (1) (2) (3) 1) 2) 3) 8(5) - 4 - 0.5 27.3 3 0.05 27.30 4 0.005 Système International d'unités 7218 1 (1) Pas Pas J/molK J/(molK)

More information

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C 0 9 (1990 1999 ) 10 (2000 ) 1900 1994 1995 1999 2 SAT ACT 1 1990 IMO 1990/1/15 1:00-4:00 1 N 1990 9 N N 1, N 1 N 2, N 2 N 3 N 3 2 x 2 + 25x + 52 = 3 x 2 + 25x + 80 3 2, 3 0 4 A, B, C 3,, A B, C 2,,,, 7,

More information

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y No1 1 (1) 2 f(x) =1+x + x 2 + + x n, g(x) = 1 (n +1)xn + nx n+1 (1 x) 2 x 6= 1 f 0 (x) =g(x) y = f(x)g(x) y 0 = f 0 (x)g(x)+f(x)g 0 (x) 3 (1) y = x2 x +1 x (2) y = 1 g(x) y0 = g0 (x) {g(x)} 2 (2) y = µ

More information

2008 (2008/09/30) 1 ISBN 7 1.1 ISBN................................ 7 1.2.......................... 8 1.3................................ 9 1.4 ISBN.............................. 12 2 13 2.1.....................

More information

知能材料学

知能材料学 配 布 資 料 実 験 指 針, 実 施 要 領, 説 明 会 資 料 前 に 置 いてありますので, 各 自 で 持 っていくこと 担 当 教 員 ( 添 付 資 料 1: 実 施 要 領 p. 5) 尾 藤 輝 夫 : 全 体 の 取 りまとめ 齋 藤 直 樹 : 全 体 の 取 りまとめ, 欠 席 届 の 受 付 ニックス ステファニー: a. 力 学, c. トランジスタ ラジオ 伊 藤 一

More information

序章

序章 第 1 講 力 学 を 学 ぶ 1. 大 学 で 学 ぶ 力 学 都 市 工 学 科 では 建 物 を 設 計 し 造 るための 理 論 や 手 法 を 学 びます. 構 造 力 学, 土 質 力 学, 水 理 学, 環 境 工 学,コンクリート 工 学 などその 守 備 範 囲 は 非 常 に 広 く 多 岐 に 亘 っていますが,これら もの づくり に 関 する 学 問 の 根 底 に 一 貫

More information

example2_time.eps

example2_time.eps Google (20/08/2 ) ( ) Random Walk & Google Page Rank Agora on Aug. 20 / 67 Introduction ( ) Random Walk & Google Page Rank Agora on Aug. 20 2 / 67 Introduction Google ( ) Random Walk & Google Page Rank

More information

> > <., vs. > x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D > 0 x (2) D = 0 x (3

> > <., vs. > x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D > 0 x (2) D = 0 x (3 13 2 13.0 2 ( ) ( ) 2 13.1 ( ) ax 2 + bx + c > 0 ( a, b, c ) ( ) 275 > > 2 2 13.3 x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D >

More information

繖 7 縺6ァ80キ3 ッ0キ3 ェ ュ ョ07 縺00 06 ュ0503 ュ ッ 70キ ァ805 ョ0705 ョ ッ0キ3 x 罍陦ァ ァ 0 04 縺 ァ タ0903 タ05 ァ. 7

繖 7 縺6ァ80キ3 ッ0キ3 ェ ュ ョ07 縺00 06 ュ0503 ュ ッ 70キ ァ805 ョ0705 ョ ッ0キ3 x 罍陦ァ ァ 0 04 縺 ァ タ0903 タ05 ァ. 7 30キ36ヲ0 7 7 ュ6 70キ3 ョ6ァ8056 50キ300 縺6 5 ッ05 7 07 ッ 7 ュ ッ04 ュ03 ー 0キ36ヲ06 7 繖 70キ306 6 5 0 タ0503070060 08 ョ0303 縺0 ァ090609 0403 閨0303 003 ァ 0060503 陦ァ 06 タ09 ァ タ04 縺06 閨06-0006003 ァ ァ 04 罍ァ006 縺03 0403

More information

Microsoft Word - 触ってみよう、Maximaに2.doc

Microsoft Word - 触ってみよう、Maximaに2.doc i i e! ( x +1) 2 3 ( 2x + 3)! ( x + 1) 3 ( a + b) 5 2 2 2 2! 3! 5! 7 2 x! 3x! 1 = 0 ",! " >!!! # 2x + 4y = 30 "! x + y = 12 sin x lim x!0 x x n! # $ & 1 lim 1 + ('% " n 1 1 lim lim x!+0 x x"!0 x log x

More information

04年度LS民法Ⅰ教材改訂版.PDF

04年度LS民法Ⅰ教材改訂版.PDF ?? A AB A B C AB A B A B A B A A B A 98 A B A B A B A B B A A B AB AB A B A BB A B A B A B A B A B A AB A B B A B AB A A C AB A C A A B A B B A B A B B A B A B B A B A B A B A B A B A B A B

More information

学習内容と日常生活との関連性の研究-第2部-第6章

学習内容と日常生活との関連性の研究-第2部-第6章 378 379 10% 10%10% 10% 100% 380 381 2000 BSE CJD 5700 18 1996 2001 100 CJD 1 310-7 10-12 10-6 CJD 100 1 10 100 100 1 1 100 1 10-6 1 1 10-6 382 2002 14 5 1014 10 10.4 1014 100 110-6 1 383 384 385 2002 4

More information

情報量・音声画像動画のA/D変換

情報量・音声画像動画のA/D変換 L06(2014-10-29 Wed), A/D..... http://hig3.net ( ) L06 A/D (2014) 1 / 24 : L05-S1 Quiz :int 16 2 15 x 2 15 1, 16 0 x 2 16 1. L05-S5 Quiz : 2 17 < 200000 2 18, 18. 2 10 = 1024, 2 16 = 65536. log 10 2, log

More information

新たな基礎年金制度の構築に向けて

新たな基礎年金制度の構築に向けて [ ] 1 1 4 60 1 ( 1 ) 1 1 1 4 1 1 1 1 1 4 1 2 1 1 1 ( ) 2 1 1 1 1 1 1 1996 1 3 4.3(2) 1997 1 65 1 1 2 1/3 ( )2/3 1 1/3 ( ) 1 1 2 3 2 4 6 2.1 1 2 1 ( ) 13 1 1 1 1 2 2 ( ) ( ) 1 ( ) 60 1 1 2.2 (1) (3) ( 9

More information

untitled

untitled .. 3. 3 3. 3 4 3. 5 6 3 7 3.3 9 4. 9 0 6 3 7 0705 φ c d φ d., φ cd, φd. ) O x s + b l cos s s c l / q taφ / q taφ / c l / X + X E + C l w q B s E q q ul q q ul w w q q E E + E E + ul X X + (a) (b) (c)

More information

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e 7 -a 7 -a February 4, 2007 1. 2. 3. 4. 1. 2. 3. 1 Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e z

More information

48 * *2

48 * *2 374-1- 17 2 1 1 B A C A C 48 *2 49-2- 2 176 176 *2 -3- B A A B B C A B A C 1 B C B C 2 B C 94 2 B C 3 1 6 2 8 1 177 C B C C C A D A A B A 7 B C C A 3 C A 187 187 C B 10 AC 187-4- 10 C C B B B B A B 2 BC

More information

populatio sample II, B II? [1] I. [2] 1 [3] David J. Had [4] 2 [5] 3 2

populatio sample II, B II?  [1] I. [2] 1 [3] David J. Had [4] 2 [5] 3 2 (2015 ) 1 NHK 2012 5 28 2013 7 3 2014 9 17 2015 4 8!? New York Times 2009 8 5 For Today s Graduate, Just Oe Word: Statistics Google Hal Varia I keep sayig that the sexy job i the ext 10 years will be statisticias.

More information

122 6 A 0 (p 0 q 0 ). ( p 0 = p cos ; q sin + p 0 (6.1) q 0 = p sin + q cos + q 0,, 2 Ox, O 1 x 1., q ;q ( p 0 = p cos + q sin + p 0 (6.2) q 0 = p sin

122 6 A 0 (p 0 q 0 ). ( p 0 = p cos ; q sin + p 0 (6.1) q 0 = p sin + q cos + q 0,, 2 Ox, O 1 x 1., q ;q ( p 0 = p cos + q sin + p 0 (6.2) q 0 = p sin 121 6,.,,,,,,. 2, 1. 6.1,.., M, A(2 R).,. 49.. Oxy ( ' ' ), f Oxy, O 1 x 1 y 1 ( ' ' ). A (p q), A 0 (p q). y q A q q 0 y 1 q A O 1 p x 1 O p p 0 p x 6.1: ( ), 6.1, 122 6 A 0 (p 0 q 0 ). ( p 0 = p cos

More information

5 5.1 35

5 5.1 35 C: PC H19 A5 3.BUN 19 8 6 5 35 5.1............................ 35 5.2 1...................... 38 5.3 2...................... 39 5.4............................. 41 5.5 Thevenin................. 46 5.6.....................

More information

O E ( ) A a A A(a) O ( ) (1) O O () 467

O E ( ) A a A A(a) O ( ) (1) O O () 467 1 1.0 16 1 ( 1 1 ) 1 466 1.1 1.1.1 4 O E ( ) A a A A(a) O ( ) (1) O O () 467 ( ) A(a) O A 0 a x ( ) A(3), B( ), C 1, D( 5) DB C A x 5 4 3 1 0 1 3 4 5 16 A(1), B( 3) A(a) B(b) d ( ) A(a) B(b) d AB d = d(a,

More information

13 0 1 1 4 11 4 12 5 13 6 2 10 21 10 22 14 3 20 31 20 32 25 33 28 4 31 41 32 42 34 43 38 5 41 51 41 52 43 53 54 6 57 61 57 62 60 70 0 Gauss a, b, c x, y f(x, y) = ax 2 + bxy + cy 2 = x y a b/2 b/2 c x

More information

A B 5 C 9 3.4 7 mm, 89 mm 7/89 = 3.4. π 3 6 π 6 6 = 6 π > 6, π > 3 : π > 3

A B 5 C 9 3.4 7 mm, 89 mm 7/89 = 3.4. π 3 6 π 6 6 = 6 π > 6, π > 3 : π > 3 π 9 3 7 4. π 3................................................. 3.3........................ 3.4 π.................... 4.5..................... 4 7...................... 7..................... 9 3 3. p

More information

0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9

0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9 1-1. 1, 2, 3, 4, 5, 6, 7,, 100,, 1000, n, m m m n n 0 n, m m n 1-2. 0 m n m n 0 2 = 1.41421356 π = 3.141516 1-3. 1 0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c),

More information

福岡大学人文論叢47-3

福岡大学人文論叢47-3 679 pp. 1 680 2 681 pp. 3 682 4 683 5 684 pp. 6 685 7 686 8 687 9 688 pp. b 10 689 11 690 12 691 13 692 pp. 14 693 15 694 a b 16 695 a b 17 696 a 18 697 B 19 698 A B B B A B B A A 20 699 pp. 21 700 pp.

More information

1.1 ft t 2 ft = t 2 ft+ t = t+ t 2 1.1 d t 2 t + t 2 t 2 = lim t 0 t = lim t 0 = lim t 0 t 2 + 2t t + t 2 t 2 t + t 2 t 2t t + t 2 t 2t + t = lim t 0

1.1 ft t 2 ft = t 2 ft+ t = t+ t 2 1.1 d t 2 t + t 2 t 2 = lim t 0 t = lim t 0 = lim t 0 t 2 + 2t t + t 2 t 2 t + t 2 t 2t t + t 2 t 2t + t = lim t 0 A c 2008 by Kuniaki Nakamitsu 1 1.1 t 2 sin t, cos t t ft t t vt t xt t + t xt + t xt + t xt t vt = xt + t xt t t t vt xt + t xt vt = lim t 0 t lim t 0 t 0 vt = dxt ft dft dft ft + t ft = lim t 0 t 1.1

More information

Wa Da m 12-2-

Wa Da m 12-2- 22 2010 1 10 22 2010 1 10 10 45 55 41 1908 17 2005 22 2010 55 20 2008 / -1- Wa Da 22 2010 55 1862 929m 12-2- -3- -4- -5- -6-22 2010 1 10 1000 1000 10 1000 10 9 11cm 10 45 12 45 9 11cm internet -7- 55 55

More information

( ) 2002 1 1 1 1.1....................................... 1 1.1.1................................. 1 1.1.2................................. 1 1.1.3................... 3 1.1.4......................................

More information

7 27 7.1........................................ 27 7.2.......................................... 28 1 ( a 3 = 3 = 3 a a > 0(a a a a < 0(a a a -1 1 6

7 27 7.1........................................ 27 7.2.......................................... 28 1 ( a 3 = 3 = 3 a a > 0(a a a a < 0(a a a -1 1 6 26 11 5 1 ( 2 2 2 3 5 3.1...................................... 5 3.2....................................... 5 3.3....................................... 6 3.4....................................... 7

More information

2 1 17 1.1 1.1.1 1650

2 1 17 1.1 1.1.1 1650 1 3 5 1 1 2 0 0 1 2 I II III J. 2 1 17 1.1 1.1.1 1650 1.1 3 3 6 10 3 5 1 3/5 1 2 + 1 10 ( = 6 ) 10 1/10 2000 19 17 60 2 1 1 3 10 25 33221 73 13111 0. 31 11 11 60 11/60 2 111111 3 60 + 3 332221 27 x y xy

More information

00~33.換気マニュアル

00~33.換気マニュアル 2. 2.1 1 / / 1 2.2 3 2.3 1 2 3 3 1 3 4 2.3.1 1 1 2.3.2 2 2 2.3.3 3 3 1 2 3 5 6 2.4 2.4.1 : : : : 7 ( 120 3 / 8 2.4.2 9 3. 3.1 1. 0.5 /h 0.5 /h 0.7 /h 0.7 /h 2. ( ) 10 3. 0.5 / (P23) P16 24 1 2 3 (P5 6)

More information

6 12 10661 93100 227213202 222208197 85kg cm 20 64.521 106856142 2 1 4 3 9767 100 35 cm 7747 208198 90kg 23 5828 10661 93100 cm 227213202 10639 61 64.521 85kg 78kg 70kg 61 100 197204.5 cm 15 61

More information

<82D282A982C1746F95F18D908F57967B95B E696E6464>

<82D282A982C1746F95F18D908F57967B95B E696E6464> 1 2 (90cm 70cm 2015) 3 (68cm 28cm 30cm 12kg 2015) (77.5 109.5cm 2015) 4 (22cm 50cm 50cm 4.6kg 2015) (45cm 62.5cm 2015) (47.4cm 62.5cm 2014) 5 (28.5cm 23.5cm) (45cm 62cm 2015) (97cm 107cm 2015) 6 7 8 9

More information

180 140 22

180 140 22 21 180 140 22 23 25 50 1 3 350 140 500cm 600 140 24 25 26 27 28 29 30 31 1/12 8.3 1/15 6.7 10 1/8 12.5 1/20 140 90 75 150 60 150 10 30 15 35 2,000 30 32 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 % 100 50 33.3

More information

untitled

untitled 1 2 3 4 5 6 7 48.4 7 1 2 1210 2.5 10 15 37.5 6 8 2.5 10 3 25 19 2.5 15 3 55 37.5 4.5 10 5 25 19 4.5 15 5 55 19 4.5 15 5 92 37.5 1 4 550 3 2500 3 3 3 50 10 15 15 19 19 37.5 5 8 15 b 10 15 19 37.5

More information

2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a

More information

1 6 2011 3 2011 3 7 1 2 1.1....................................... 2 1.2................................. 3 1.3............................................. 4 6 2.1................................................

More information

CAT. No. 1154b 2008 C-9

CAT. No. 1154b 2008 C-9 T CAT. o. 1154b IS SK µm D K mm & Dmp 1 ea µm d CS mm & Bs K ia & dmp V dp & dmp & Hs 1 mm d & ds & & B2s d2s & Hs & A1s d d B C B2 H A1 SjD d2 H d µm d & dmp & d1mp & dmp V dp 1 mm d d d B & dmp & d1mp

More information

1: *2 W, L 2 1 (WWL) 4 5 (WWL) W (WWL) L W (WWL) L L 1 2, 1 4, , 1 4 (cf. [4]) 2: 2 3 * , , = , 1

1: *2 W, L 2 1 (WWL) 4 5 (WWL) W (WWL) L W (WWL) L L 1 2, 1 4, , 1 4 (cf. [4]) 2: 2 3 * , , = , 1 I, A 25 8 24 1 1.1 ( 3 ) 3 9 10 3 9 : (1,2,6), (1,3,5), (1,4,4), (2,2,5), (2,3,4), (3,3,3) 10 : (1,3,6), (1,4,5), (2,2,6), (2,3,5), (2,4,4), (3,3,4) 6 3 9 10 3 9 : 6 3 + 3 2 + 1 = 25 25 10 : 6 3 + 3 3

More information

(Basic of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Weak Law

(Basic of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Weak Law I (Radom Walks ad Percolatios) 3 4 7 ( -2 ) (Preface),.,,,...,,.,,,,.,.,,.,,. (,.) (Basic of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios, Meas).............................

More information

1 1 2 1 3 1 4 2 4.1 AKB............................................... 2 4.2......................................... 6 4.3...........................

1 1 2 1 3 1 4 2 4.1 AKB............................................... 2 4.2......................................... 6 4.3........................... 24 3 28 : 1 1 2 1 3 1 4 2 4.1 AKB............................................... 2 4.2......................................... 6 4.3............................................. 9 5 9 5.1.........................................

More information

Fortran90/95 [9]! (1 ) " " 5 "Hello!"! 3. (line) Fortran Fortran 1 2 * (1 ) 132 ( ) * 2 ( Fortran ) Fortran ,6 (continuation line) 1

Fortran90/95 [9]! (1 )   5 Hello!! 3. (line) Fortran Fortran 1 2 * (1 ) 132 ( ) * 2 ( Fortran ) Fortran ,6 (continuation line) 1 Fortran90/95 2.1 Fortran 2-1 Hello! 1 program example2_01! end program 2! first test program ( ) 3 implicit none! 4 5 write(*,*) "Hello!"! write Hello! 6 7 stop! 8 end program example2_01 1 program 1!

More information

a (a + ), a + a > (a + ), a + 4 a < a 4 a,,, y y = + a y = + a, y = a y = ( + a) ( x) + ( a) x, x y,y a y y y ( + a : a ) ( a : a > ) y = (a + ) y = a

a (a + ), a + a > (a + ), a + 4 a < a 4 a,,, y y = + a y = + a, y = a y = ( + a) ( x) + ( a) x, x y,y a y y y ( + a : a ) ( a : a > ) y = (a + ) y = a [] a x f(x) = ( + a)( x) + ( a)x f(x) = ( a + ) x + a + () x f(x) a a + a > a + () x f(x) a (a + ) a x 4 f (x) = ( + a) ( x) + ( a) x = ( a + a) x + a + = ( a + ) x + a +, () a + a f(x) f(x) = f() = a

More information

スライド タイトルなし

スライド タイトルなし AHP Analytic Hierarchy Process X4 X X4 X4 X4 a b c d AHP 00 ad4 6 2 a b c a b c a b c d 5.5 2 d d a b 5 a c.5 ad 2 6 3 a b a b c d 5.5 2 0.25 c.5 d a a b c d 5.5 2 a a b c d 5.5 2 b c 0.25.5 b c 0.2 2/3

More information

360_h1_4.ai

360_h1_4.ai 2008 EA Digital Illusions CE AB. Mirror's Edge and the DICE logo are trademarks or registered trademarks of EA Digital Illusions CE AB. All Rights Reserved. EA and the EA logo are trademarks or registered

More information

「諸雑公文書」整理の中間報告

「諸雑公文書」整理の中間報告 30 10 3 from to 10 from to ( ) ( ) 20 20 20 20 20 35 8 39 11 41 10 41 9 41 7 43 13 41 11 42 7 42 11 41 7 42 10 4 4 8 4 30 10 ( ) ( ) 17 23 5 11 5 8 8 11 11 13 14 15 16 17 121 767 1,225 2.9 18.7 29.8 3.9

More information

エッセー

エッセー 5.13................................... 3 5.14........................................ 9 5.15.................................. 12 5.16................................ 15 5.17..................... 18 5.18...................................

More information

P.3 P.4 P.9 P.11

P.3 P.4 P.9 P.11 MOST is the best! P.3 P.4 P.9 P.11 P. P.6 P.7 P.8 P.19 P.14 1 2 P.14 1 2 12,036 P.14 4 13,40 P.14 3 P.12P.14 P.12P.14 6 P.12 P.1 7 P.1 7 P.1 8 P.1 9 P.16 11 P.12 P.1 P.1 P.16 12 P.16 13 P.16-13 P.12 P.16

More information

34 2 2 h = h/2π 3 V (x) E 4 2 1 ψ = sin kxk = 2π/λ λ = h/p p = h/λ = kh/2π = k h 5 2 ψ = e ax2 ガウス 型 関 数 1.2 1 関 数 値 0.8 0.6 0.4 0.2 0 15 10 5 0 5 10

34 2 2 h = h/2π 3 V (x) E 4 2 1 ψ = sin kxk = 2π/λ λ = h/p p = h/λ = kh/2π = k h 5 2 ψ = e ax2 ガウス 型 関 数 1.2 1 関 数 値 0.8 0.6 0.4 0.2 0 15 10 5 0 5 10 33 2 2.1 2.1.1 x 1 T x T 0 F = ma T ψ) 1 x ψ(x) 2.1.2 1 1 h2 d 2 ψ(x) + V (x)ψ(x) = Eψ(x) (2.1) 2m dx 2 1 34 2 2 h = h/2π 3 V (x) E 4 2 1 ψ = sin kxk = 2π/λ λ = h/p p = h/λ = kh/2π = k h 5 2 ψ = e ax2

More information

13ィェィ 0002ィェィ 00ィヲ1 702ィョ ィーィ ィイ071 7ィ 06ィヲ02, ISSN

13ィェィ 0002ィェィ 00ィヲ1 702ィョ ィーィ ィイ071 7ィ 06ィヲ02, ISSN 13 13ィェィ 0002ィェィ 00ィヲ1 702ィョ050702 0709ィーィ ィイ071 7ィ 06ィヲ02, ISSN 1992-6138 1 70306070302071 70307090303 07030209020703 1 7 03000009070807 01090803010908071 7030709030503 0300060903031 709020705 ィヲ0302090803001

More information

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi II (Basics of Probability Theory ad Radom Walks) (Preface),.,,,.,,,...,,.,.,,.,,. (Basics of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios, Meas).............................

More information

2 p T, Q

2 p T, Q 270 C, 6000 C, 2 p T, Q p: : p = N/ m 2 N/ m 2 Pa : pdv p S F Q 1 g 1 1 g 1 14.5 C 15.5 1 1 cal = 4.1855 J du = Q pdv U ( ) Q pdv 2 : z = f(x, y). z = f(x, y) (x 0, y 0 ) y y = y 0 z = f(x, y 0 ) x x =

More information

a q q y y a xp p q y a xp y a xp y a x p p y a xp q y x yaxp x y a xp q x p y q p x y a x p p p p x p

a q q y y a xp p q y a xp y a xp y a x p p y a xp q y x yaxp x y a xp q x p y q p x y a x p p p p x p a a a a y y ax q y ax q q y ax y ax a a a q q y y a xp p q y a xp y a xp y a x p p y a xp q y x yaxp x y a xp q x p y q p x y a x p p p p x p y a xp q y a x p q p p x p p q p q y a x xy xy a a a y a x

More information

2 CHAPTER 2. ) ( ) 2 () () 2.1.1 10 Octave rand() octave:27> A=rand(10,1) A = 0.225704 0.018580 0.818762 0.634118 0.026280 0.980303 0.014780 0.477392

2 CHAPTER 2. ) ( ) 2 () () 2.1.1 10 Octave rand() octave:27> A=rand(10,1) A = 0.225704 0.018580 0.818762 0.634118 0.026280 0.980303 0.014780 0.477392 Chapter 2 2.1 (cf. ) (= ) 76, 86, 77, 88, 78, 83, 86, 77, 74, 79, 82, 79, 80, 81, 78, 78, 73, 78, 81, 86, 71, 80, 81, 88, 82, 80, 80, 70, 77, 81 10? () ( 1 2 CHAPTER 2. ) ( ) 2 () () 2.1.1 10 Octave rand()

More information

表紙(社会系)/153024H

表紙(社会系)/153024H ! ""! Sa! "! " # $ % & ' Sa! !! " # $ % & " #! " # $ $ %! " # $ & '! " # $ Sa% "! " # $ Sa! ! " #! " #! " # $ $! " # $ % & % & '! " # $ Sa% ! " # Sa! ! " #! " # $ % & Sa% Sa! ! " # $ % Sa! Sa! Sa! ! "

More information

199510 156 8 19963 8 42 1620045 7 5 20872127 63 19082003 4 1929 7 1932 353946 34 58 68 106 59 4 1511 5 95 1995 40 42 2004.8.10 2005.4.30

199510 156 8 19963 8 42 1620045 7 5 20872127 63 19082003 4 1929 7 1932 353946 34 58 68 106 59 4 1511 5 95 1995 40 42 2004.8.10 2005.4.30 2004 8 2005 5 pdf 2 199510 156/1 19951015611 3 4 5 JIS JIS X 0208, 1997 10o o http://www.pref.hiroshima.jp/soumu/bunsyo/monjokan/index.htm 199510 156 8 19963 8 42 1620045 7 5 20872127 63 19082003 4 1929

More information

2 Excel =sum( ) =average( ) B15:D20 : $E$26 E26 $ =A26*$E$26 $ $E26 E$26 E$26 $G34 $ E26 F4

2 Excel =sum( ) =average( ) B15:D20 : $E$26 E26 $ =A26*$E$26 $ $E26 E$26 E$26 $G34 $ E26 F4 1234567 0.1234567 = 2 3 =2+3 =2-3 =2*3 =2/3 =2^3 1:^, 2:*/, 3:+- () =2+3*4 =(2+3)*4 =3*2^2 =(3*2)^2 =(3+6)^0.5 A12 =A12+B12 ( ) ( )0.4 ( 100)0.9 % 1 2 Excel =sum( ) =average( ) B15:D20 : $E$26 E26 $ =A26*$E$26

More information

96 7 1m =2 10 7 N 1A 7.1 7.2 a C (1) I (2) A C I A A a A a A A a C C C 7.2: C A C A = = µ 0 2π (1) A C 7.2 AC C A 3 3 µ0 I 2 = 2πa. (2) A C C 7.2 A A

96 7 1m =2 10 7 N 1A 7.1 7.2 a C (1) I (2) A C I A A a A a A A a C C C 7.2: C A C A = = µ 0 2π (1) A C 7.2 AC C A 3 3 µ0 I 2 = 2πa. (2) A C C 7.2 A A 7 Lorentz 7.1 Ampère I 1 I 2 I 2 I 1 L I 1 I 2 21 12 L r 21 = 12 = µ 0 2π I 1 I 2 r L. (7.1) 7.1 µ 0 =4π 10 7 N A 2 (7.2) magnetic permiability I 1 I 2 I 1 I 2 12 21 12 21 7.1: 1m 95 96 7 1m =2 10 7 N

More information

58 5 5.2 1933 (Proctor) (JIS A 1210) ( 2.5 kg 4.5 kg ) (2.5 kg 30 cm 4.5 kg 45 cm) 5.3 5 5.1 ρ d w ρ d max w opt 5.1

58 5 5.2 1933 (Proctor) (JIS A 1210) ( 2.5 kg 4.5 kg ) (2.5 kg 30 cm 4.5 kg 45 cm) 5.3 5 5.1 ρ d w ρ d max w opt 5.1 57 5 5.1 2 2.1 ( ) ( ) 58 5 5.2 1933 (Proctor) (JIS A 1210) ( 2.5 kg 4.5 kg ) (2.5 kg 30 cm 4.5 kg 45 cm) 5.3 5 5.1 ρ d w ρ d max w opt 5.1 5.3 59 5.1 v a = 0 % S r = 100 % 5.3 5.1 5 5.1 5.4 2 2 5.2 3

More information

(I) GotoBALS, http://www-is.amp.i.kyoto-u.ac.jp/ kkimur/charpoly.html 2

(I) GotoBALS, http://www-is.amp.i.kyoto-u.ac.jp/ kkimur/charpoly.html 2 sdmp Maple - (Ver.2) ( ) September 27, 2011 1 (I) GotoBALS, http://www-is.amp.i.kyoto-u.ac.jp/ kkimur/charpoly.html 2 (II) Nehalem CPU GotoBLAS Intel CPU Nehalem CPU, GotoBLAS, Hyper-Thread technology

More information

1 ( : Documents/kadai4), (ex.py ),. print 12345679 * 63, cd Documents/kadai4, python ex.py., python: can t open file ex.py : [Errno 2] No such file or

1 ( : Documents/kadai4), (ex.py ),. print 12345679 * 63, cd Documents/kadai4, python ex.py., python: can t open file ex.py : [Errno 2] No such file or Python 2010.6 1 Python 1.1 ( ). mi.,.py. 1.2, python.. 1. python, python. ( ). 2.., python. Python (>>>). Python 2.6.2 (release26-maint, Apr 19 2009, 01:56:41) [GCC 4.3.3] on linux2 Type help, copyright,

More information

1

1 005 11 http://www.hyuki.com/girl/ http://www.hyuki.com/story/tetora.html http://www.hyuki.com/ Hiroshi Yuki c 005, All rights reserved. 1 1 3 (a + b)(a b) = a b (x + y)(x y) = x y a b x y a b x y 4 5 6

More information

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1.

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1. 1.1 1. 1.3.1..3.4 3.1 3. 3.3 4.1 4. 4.3 5.1 5. 5.3 6.1 6. 6.3 7.1 7. 7.3 1 1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N

More information

untitled

untitled 1 th 1 th Dec.2006 1 1 th 1 th Dec.2006 103 1 2 EITC 2 1 th 1 th Dec.2006 3 1 th 1 th Dec.2006 2006 4 1 th 1 th Dec.2006 5 1 th 1 th Dec.2006 2 6 1 th 1 th Dec.2006 7 1 th 1 th Dec.2006 3 8 1 th 1 th Dec.2006

More information

2002.N.x.h.L.......g9/20

2002.N.x.h.L.......g9/20 1 2 3 4 5 6 1 2 3 4 5 8 9 1 11 11 12 13 k 14 l 16 m 17 n 18 o 19 k 2 l 2 m 21 n 21 o 22 p 23 q 23 r 24 24 25 26 27 28 k 28 l 29 m 29 3 31 34 42 44 1, 8, 6, 4, 2, 1,2 1, 8 6 4 2 1, 8, 6, 4, 2, 1,2 1, 8

More information

R

R R ) R NTN NTN NTN NTN NTN @ 1. 2. 3. CONTENTS 4. 5. 6. NTN NTN NTN 1. NTN NTN NTN NTN NTN NTN NTN NTN NTN NTN NTN NTN NTN 2. L1 4 -M8 230 4 -M10 8-11 175 260 250 150 210 230 Bpx 150 250 210 Bx Bpx

More information

24.15章.微分方程式

24.15章.微分方程式 m d y dt = F m d y = mg dt V y = dy dt d y dt = d dy dt dt = dv y dt dv y dt = g dv y dt = g dt dt dv y = g dt V y ( t) = gt + C V y ( ) = V y ( ) = C = V y t ( ) = gt V y ( t) = dy dt = gt dy = g t dt

More information

MacOSX印刷ガイド

MacOSX印刷ガイド 3 CHAPTER 3-1 3-2 3-3 1 2 3 3-4 4 5 6 3-5 1 2 3 4 3-6 5 6 3-7 7 8 3-8 1 2 3 4 3-9 5 6 3-10 7 1 2 3 4 3-11 5 6 3-12 7 8 9 3-13 10 3-14 1 2 3-15 3 4 1 2 3-16 3 4 5 3-17 1 2 3 4 3-18 1 2 3 4 3-19 5 6 7 8

More information

荳也阜轣ス螳ウ蝣ア蜻・indd

荳也阜轣ス螳ウ蝣ア蜻・indd 1 2 3 CHAPTER 1 4 CHAPTER 1 5 6CHAPTER 1 CHAPTER 1 7 8CHAPTER 1 CHAPTER 2 9 10CHAPTER 2 CHAPTER 2 11 12 CHAPTER 2 13 14CHAPTER 3 CHAPTER 3 15 16CHAPTER 3 CHAPTER 3 17 18 CHAPTER 4 19 20CHAPTER 4 CHAPTER

More information

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)............................................

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)............................................ 5 partial differentiation (total) differentiation 5. z = f(x, y) (a, b) A = lim h f(a + h, b) f(a, b) h........................................................... ( ) f(x, y) (a, b) x A (a, b) x (a, b)

More information

第4章.doc

第4章.doc 101 4 1 102 6) 1 103 104 105 106 107 108 109 110 (Skinner) 111 David1993, p6 112 113 114 115 J.S. Mill 3 116 117 118 4. 119 120 121 122 4.1 (1920) 200115 SCIENCE ART 1) 2) 3) 123 200115 16 124 125 126

More information

表紙030313.PDF

表紙030313.PDF H2 CO (1) (3) (4) () () ( ) ( : 11 ) [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]......... [ ] [ ] [ ] [ ] [] [ ] [ ] [ ] [ ] (g) [ ] ) [ ] [ [ ] [ ] [ ] ) ) ) )... [ ] [] [ ] [] [ []........

More information

untitled

untitled (a) (b) (c) (d) Wunderlich 2.5.1 = = =90 2 1 (hkl) {hkl} [hkl] L tan 2θ = r L nλ = 2dsinθ dhkl ( ) = 1 2 2 2 h k l + + a b c c l=2 l=1 l=0 Polanyi nλ = I sinφ I: B A a 110 B c 110 b b 110 µ a 110

More information

4 4. A p X A 1 X X A 1 A 4.3 X p X p X S(X) = E ((X p) ) X = X E(X) = E(X) p p 4.3p < p < 1 X X p f(i) = P (X = i) = p(1 p) i 1, i = 1,,... 1 + r + r

4 4. A p X A 1 X X A 1 A 4.3 X p X p X S(X) = E ((X p) ) X = X E(X) = E(X) p p 4.3p < p < 1 X X p f(i) = P (X = i) = p(1 p) i 1, i = 1,,... 1 + r + r 4 1 4 4.1 X P (X = 1) =.4, P (X = ) =.3, P (X = 1) =., P (X = ) =.1 E(X) = 1.4 +.3 + 1. +.1 = 4. X Y = X P (X = ) = P (X = 1) = P (X = ) = P (X = 1) = P (X = ) =. Y P (Y = ) = P (X = ) =., P (Y = 1) =

More information

GMN超精密スピンドルベアリング

GMN超精密スピンドルベアリング TEL.03-5565-6837 FAX.03-5565-6839 2 3 NEW NEW 4 5 6 7 NEW 8 9 mm mm N d D B r smin r smin d a D a r amax r bmax E tk C C 0 S 619/5 C TA 5 13 4 0.20 0.20 6.8 11.2 0.20 0.10 8.05 1200 430 S 605 C TA 5 14

More information

案内(最終2).indd

案内(最終2).indd 1 2 3 4 5 6 7 8 9 Y01a K01a Q01a T01a N01a S01a Y02b - Y04b K02a Q02a T02a N02a S02a Y05b - Y07b K03a Q03a T03a N03a S03a A01r Y10a Y11a K04a K05a Q04a Q05a T04b - T06b T08a N04a N05a S04a S05a Y12b -

More information

1 (1) vs. (2) (2) (a)(c) (a) (b) (c) 31 2 (a) (b) (c) LENCHAR

1 (1) vs. (2) (2) (a)(c) (a) (b) (c) 31 2 (a) (b) (c) LENCHAR () 601 1 () 265 OK 36.11.16 20 604 266 601 30.4.5 (1) 91621 3037 (2) 20-12.2 20-13 (3) ex. 2540-64 - LENCHAR 1 (1) vs. (2) (2) 605 50.2.13 41.4.27 10 10 40.3.17 (a)(c) 2 1 10 (a) (b) (c) 31 2 (a) (b) (c)

More information

vol.31_H1-H4.ai

vol.31_H1-H4.ai http://www.jmdp.or.jp/ http://www.donorsnet.jp/ CONTENTS 29 8,715 Vol. 31 2 3 ac ad bc bd ab cd 4 Point! Point! Point! 5 Point! Point! 6 7 314 611 122 4 125 2 72 2 102 3 2 260 312 0 3 14 3 14 18 14 60

More information

lim lim lim lim 0 0 d lim 5. d 0 d d d d d d 0 0 lim lim 0 d

lim lim lim lim 0 0 d lim 5. d 0 d d d d d d 0 0 lim lim 0 d lim 5. 0 A B 5-5- A B lim 0 A B A 5. 5- 0 5-5- 0 0 lim lim 0 0 0 lim lim 0 0 d lim 5. d 0 d d d d d d 0 0 lim lim 0 d 0 0 5- 5-3 0 5-3 5-3b 5-3c lim lim d 0 0 5-3b 5-3c lim lim lim d 0 0 0 3 3 3 3 3 3

More information

untitled

untitled 20 7 1 22 7 1 1 2 3 7 8 9 10 11 13 14 15 17 18 19 21 22 - 1 - - 2 - - 3 - - 4 - 50 200 50 200-5 - 50 200 50 200 50 200 - 6 - - 7 - () - 8 - (XY) - 9 - 112-10 - - 11 - - 12 - - 13 - - 14 - - 15 - - 16 -

More information

untitled

untitled 19 1 19 19 3 8 1 19 1 61 2 479 1965 64 1237 148 1272 58 183 X 1 X 2 12 2 15 A B 5 18 B 29 X 1 12 10 31 A 1 58 Y B 14 1 25 3 31 1 5 5 15 Y B 1 232 Y B 1 4235 14 11 8 5350 2409 X 1 15 10 10 B Y Y 2 X 1 X

More information

2

2 2 3 Page 4 5 6 A-1B-1 C0 D0 E0 F0 G0 A0 B0 C1 D1 E1 F1 G1 A1 B1 C2 D2 E2 F2 G2 A2 B2 C3 D3 E3 7 F3 G3 A3 B3 C4 D4 E4 F4 G4 A4 B4 C5 D5 E5 F5 G5 A5 B5 C6 D6 E6 F6 G6 A6 B6 C7 8 Page 9 1 2 3 1 2 10 1 11

More information

取扱説明書 [F-07E]

取扱説明書 [F-07E] 2 3 4 5 6 7 8 9 0 2 3 4 5 a b c d a b c d 6 a b cd e a b c d e 7 8 9 20 a b a a b b 2 22 a c b d 23 24 a b ef ghi j k cd l m n op q w xy z r s t u v A B a b c d e f g h i j k l m n o p q r s 25 t u v

More information