i

Size: px
Start display at page:

Download "i"

Transcription

1 2012

2 i

3 ii RDD RDD RDD

4 iii R Excel

5 iv p Yates Fisher R Excel CO GDP

6 v t t t t t t t

7 U U 1 1 U = {1, 2, 3, 4, 5, 6} A A = {2, 4, 6} 1 A A P (A) A P (A) P (A) = n(a) n(u) n(u), n(a) U A 1 1 A P (A) = 3 6 = 1 2 ( ) 1. A 0 P (A) 1 U P (U) = 1 P ( ) = 0 2. A, B A, B A B A, B 1

8 2 1 A B P (A B) = P (A) + P (B) P (A B) A, B A, B P (A B) = P (A) + P (B) 3. A A A P (A) = 1 P (A) ( ) 1. A 0 P (A) 1 2. A 1, A 2, A 3, P (A 1 A 2 A 3 ) = P (A 1 ) + P (A 2 ) + P (A 3 ) (100 ) 1 48 (40 )

9 A B A B A B P A (B) 1 P B (A) A, B A A B n(a B) n(a B) n(b) B n(a B) n(a B) n(b) n(a) n(a) n(u) P A (B) = n(a B) n(a) = n(a B) n(u) n(a) n(u) = P (A B) P (A) P A (B) = P (A B) P (A) 2 60% 42% ( ) 1

10 4 1 ( ) A B P (A B) P (A) = P A (B) = 2 4 P (A B) = P (A) P A (B) = = (1) (2) 4 ( ) 2 3 a,b,c a b c 1 ( ) = 6 A B P A (B) A a 2 c 1 A B c 1 P (A) = = 1 6 2, P (A B) = 1 6 P A(B) = P (A B)P (A) = = ( ) 1.3 A B P A (B) = P (B) P B (A) = P (A) B A 2 A, B 2

11 P (A B) = P (A) P (B) A 2 B (1) 1 2 ) (2) 1 2 ) (1) P (A B) = = = P (A)P (B) 10 A, B (2) P (A B) = = , P (A B) = = P (B) = P (A B) + P (A B) = = 7 10 P (A B) = 42 ( ) = P (A)P (B) 10 A, B ( ) k A k P (A 1 ), P (A 2 ), P (A 3 ) P (A 1 ) = 3/7

12 6 1 P (A 2 ) A 1 A 2, A 1 A 2 P (A 1 A 2 ) = P (A 1 ) P A1 (A 2 ) = = 1 7 P (A 1 A 2 ) = P (A 1 ) P A1 (A 2 ) = = 2 7 P (A 2 ) = P (A 3 ) A 1 A 2 A 3, A 1 A 2 A 3, A 1 A 2 A 3, A 1 A 2 A 3 P (A 3 ) = P (A 1 A 2 A 3 ) + P (A 1 A 2 A 3 ) + P (A 1 A 2 A 3 ) + P (A 1 A 2 A 3 ) P (A 1 A 2 A 3 ) = P (A 1 A 2 ) P A1 A 2 (A 3 ) = P (A 1 ) P A1 (A 2 ) P A1 A 2 (A 3 ) = = 1 35 P (A 1 A 2 A 3 ) = P (A 1 ) P A1 (A 2 ) P A1 A 2 (A 3 ) = = 4 35 P (A 1 A 2 A 3 ) = P (A 1 ) P A1 (A 2 ) P A1 A 2 (A 3 ) = = 4 35 P (A 1 A 2 A 3 ) = P (A 1 ) P A1 (A 2 ) P A1 A 2 (A 3 ) = = 6 35 P (A 3 ) = = A 3 2 B 2 3 A 3 B B 1

13 X P (X = 0), P (X = 1), P (X = 2), P (X = 3) bwr 3! = 6 rbw, rwb, brw, bwr, wrb, wbr X 3, 1, 1, 0, 0, X X X k x 1, x 2,, x k i = 1, 2,, k X = x i p i x i p i 1 X x 1 x 2 x k p 1 p 2 p k X p 1 + p p k = 1

14 X X = = = = = = 99 09, 19, 29,, = X X p

15 p X X = = = = = X X X 1 E(X) = x 1 p 1 + x 2 p x k p k

16 10 2 X expectation 1 1 X E(X) = = X E(X) = ( ) ( ) ( ) ( ) p = = = = 46% X 2 1 X

17 X 1 m = E(X) X m V (X) = E((X m) 2 ) = k (x i m) 2 p i i=1 X variance m X m 2 (X m) 2 X m E(X m) = k (x i m)p i = i=1 k x i p i m i=1 k p i = m m 1 = 0 i=1 V (X) (X m) 2 X cm cm 2 m = E(X) cm σ(x) = V (X) standard deviation 1 1 X V (X) = (0 1) (1 1) (2 1) (3 1)2 1 6 = 1 2 A B 100

18 12 2 A B A 1 X B 1 Y E(X) = E(Y ) = 50 V (X) = ( ) 2 V (Y ) = (200 50) 2 = (150 50) ( ) = (50 50)2 σ(x) : σ(y ) = : 30 5 = (0 50)2 A B X X 2 2 X X X X 2.4 m = E(X) V (X) = E(X 2 ) m 2

19 V (X) = = k k (x i m) 2 p i = (x 2 i 2mx i + m 2 )p i i=1 k x 2 i p i 2m i=1 k x i p i + m 2 k i=1 i=1 i=1 = E(X 2 ) 2m m + m 2 1 = E(X 2 ) m 2 p i a, b E(aX + b) = ae(x) + b k k E(aX + b) = (ax i + b)p i = a x i p i + b i=1 i=1 = a E(X) + b 1 = ae(x) + b k i=1 p i a V (ax) = a 2 V (X) m = E(X) E(aX) = ae(x) = am V (ax) = E((aX) 2 ) (am) 2 = a 2 E(X 2 ) a 2 m 2 = a 2 (E(X 2 ) m 2 ) = a 2 V (X) X E(X 2 ) = ( ) (108 ) (105 ) (107 ) ( ) (10 6 ) (104 ) ( ) ( ) p = = 138 5

20 BIG J1 J , 2, , 2, % 14 78% 1 10% 2 4% 3 4% 4 4% BIG 1 X

21 X x 1, x 2,, x k P (X = x i ) E(X) = x 1 P (X = x 1 ) + x 2 P (X = x 2 ) + + x k P (X = x k ) A X = x i P A (X = x i ) A E A (X) E A (X) = x 1 P A (X = x 1 ) + x 2 P A (X = x 2 ) + + x k P A (X = x k ) A 1, A 2, A 3, A 1 A 2 A 3 P (B) = P (A 1 )P A1 (B) + P (A 2 )P A2 (B) + P (A 3 )P A3 (B) + A 1, A 2, A 3, A 1 A 2 A 3 E(X) = P (A 1 )E A1 (X) + P (A 2 )E A2 (X) + P (A 3 )E A3 (X) + E(X) = x i P (X = x i ) = i i x i P (A j )P Aj (X = x i ) = P (A j ) x i P Aj (X = x i ) = P (A j )E Aj (X) j i j j

22 p q p + q = 1 X X P (X = k) = q k 1 p k = 1, 2, 3, E(X) = kq k 1 p k=1 III 1 1 A A, A A A A X = 1 E A (X) = 1 A E A (X) A P A (X = k) Y P A (X = k) = P (Y = k) E A (X) = 1 + E(Y ) E(Y ) = E(X) E A (X) = 1 + E(X) E(X) = P (A) 1 + P (A) (1 + E(X)) E(X) = p + q(1 + E(X)) = 1 + qe(x) E(X) E(X) = 1 q 1

23 r w X E(X) a w 1 A A X = 1 E A (X) = 1 A 2 1 Y E A (X) = 1 + E(Y ) 1 r w 1 E(Y ) = a w 1 E A (X) = 1 + a w 1 a w = r w + r 1 + w w + r (1 + a w 1) a w = 1 + w w + r a w 1 1 a w 3.4 X a A E A (X) e a a < b a+ e a < b+ e b a = 0, b = 1 1 A P (A) = p 0 p 0 1 E(X) = P (A) E A (X) + P (A) E A (X)

24 18 3 e 0 = p (1 p 0) (1+ e 1 ) ( e 0 = ( e 1 +1) p 0 e ) < e e a < e a+1 +1 < e a+2 +2 < < e b +(b a)

25

26

27 total fertility rate b a X b,a Y b = X b,15 + X b, X b,49 5. Y b E(Y b ) = E(X b,15 ) + E(X b,16 ) + + E(X b,49 ) 1000 crude birth rate

28 a = E(X b,15 ) + E(X b,16 ) + E(X b,17 ) + E(X b,18 ) + E(X b,19 ) = = a = E(X b,20 ) + E(X b,21 ) + E(X b,22 ) + E(X b,23 ) + E(X b,24 ) = = E(X b,25 ) + E(X b,26 ) + E(X b,27 ) + E(X b,28 ) + E(X b,29 ) = E(X b,30 ) + E(X b,31 ) + E(X b,32 ) + E(X b,33 ) + E(X b,34 ) = E(X b,35 ) + E(X b,36 ) + E(X b,37 ) + E(X b,38 ) + E(X b,39 ) = = = = E(X b,40 ) + E(X b,41 ) + E(X b,42 ) + E(X b,43 ) + E(X b,44 ) = = E(X b,45 ) + E(X b,46 ) + E(X b,47 ) + E(X b,48 ) + E(X b,49 ) = = E(Y b ) = = b = 1961/7/1 1965/7/1

29 a a = 15, 16,, a a E(X 2010 a,a ) 3. E(X ,15 ) + E(X ,16 ) + + E(X ,49 ) = =

30

31 life expectancy x q x l x d x e x 0 q 0 l 0 d 0 e0 1 q 1 l 1 d 1 e1 2 q 2 l 2 d 2 e q x x x x + 1 l x d x x x l x x + 1 e x x l x Y x Y x E(Y x ) x

32 = = = e / = / = / = / = 0.09 X E(Y 0 ) = = 1.49

33 x e x = E(Y x ) Y x d x l x d x+1 l x d x+2 l x E(Y x ) = 1 2 dx + 3 l x 2 dx l x 2 dx+2 + l x = 1 [ 1 l x 2 d x d x ] 2 d x+2 + = 1 [ 1 l x 2 (l x l x+1 ) (l x+1 l x+2 ) + 5 ] 2 (l x+2 l x+3 ) + = 1 [ ] 1 l x 2 l x + l x+1 + l x+2 + l x+3 + (4.1) (4.2) (4.1) (4.2) = =

34

35 29 5 population sample random sampling , 1, 2, 3, 4, 5, 6, 7, 8, 9 20

36 , 01, 02,,

37 A,B,C,D,E 100, 200, 300, 400, ( ) A,B,C,D,E , 2 15, 3 15, 4 15, 5 15

38 A 01,02 B 03,04,05 C 06,07,08,09 D 10,11,12,13,14 E B D ( ) A ( ) 51 A 75 B , , 523

39 5.2. RDD RDD RDD Random Digit Dialing NTT RDD 1 RDD RDD RDD RDD RDD [ ]-[ ]-[ ]

40 RDD

41 5.2. RDD : : 30

42 36 5 =3000 =2000 =1000 = = 67% = = 50% n t n/t n = 1 t = 1 n/t = 1 n = 3 t = 2 n/t = 3/2 = % Graham Walden 40% 1, RDD RDD 3 (George Horace Gallup)

43 % /02/06 5

44 , % BS CS CATV

45 = RDD ( % ( PM ,20 FNN 5 19, ,27

46 % FNN FNN (2012 )

47

48 [?] 1 10 RDD [ ] IP DTMF 0 [?] ISBN

49 quality % discrete quantity

50 , , , , , , , continuous quantity 0, 1, 2, , 750 7, 559 7, , 020 7, 662 7, , 369 7, 884 7, , 635 8, 369 9, , 936 8, 265 8,

51

52 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , 492 3, , , ,

53 A B C D E F , , , , , , =SUM(B1:B23) 1. A (a) A1 2.5 (b) A2 =A1+5 (c) A2 A3:A23 ] ] 2. B C D 3. B25 =SUM(B1:B23) 4. F (a) F1 =B1/B$25 $ 25 (b) F1 F2:F23 ] ] F 5. (a) F1:F23 ] ] (b) ] (c) ] A1:A23.. (1) G H (2) (3)

54 mode mean median (1) 2, 4, 7, 9, 12, 15, 17 (2) 2, 4, 7, 9, 12, 15, 17, 46, 54 (3) 4, 6, 9, 10, 11, 12 (1) (2) (2) (1) (3) 9 10 (9 + 10)/2 = (1) (2)

55 , , , , , , , % 50% = standard deviation

56 50 6 inter-quartile range Q 1 3 Q 3 1 Q 1 Q 1 1 = 25% 4 3 Q 3 Q 3 3 = 75% 4 3 Q 3 1 Q 1 2 = 50% % %

57 = = Q 1 = = Q 3 = = Q 3 Q 1 = = % % , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

58 x 1, x 2, x 3 x = (x 1 + x 2 + x 3 )/3 x 1 x, x 2 x, x 3 x (x 1 x) + (x 2 x) + (x 3 x) = 0 (x 1 x) 2 + (x 2 x) 2 + (x 3 x) 2 n x 1, x 2, x 3,, x n n n s 2 s 2 = 1 n [ (x1 x) 2 + (x 2 x) 2 + (x 3 x) (x n x) 2] s 2 s standard deviation s 2 s cm s 2 cm 2 s 2 1 A B 5 A B B A A s 2 A = 1 [ (50 60) 2 + (55 60) 2 + (60 60) 2 + (65 60) 2 + (70 60) 2] 5 = 50

59 s A = 5 2 B s 2 B = 1 [ (20 60) 2 + (40 60) 2 + (60 60) 2 + (80 60) 2 + (100 60) 2] 5 = 800 s B = 20 2 B A 4 2 A B A B A B 50 s 2 A = 1 [ ( ) (0 50) 2 99 ] = s 2 B = 1 [ (200 50) (150 50) (50 50) (0 50) 2 55 ] 100 = s A = , s B = 30 5 A B 7.4 A B s s 2 = {}}{{}}{ 100 (10 x) 2 + (10 x) 2 + (17 x) 2 + (17 x) 2 = (10 x) (17 x)

60 54 6 x 1. (a) B10 B2 / $S2 B10 : R15 2. (a) B18 B$1 * B10 B18 : R23 (b) S18 SUM(B18:R18) S18 : S23 3. (a) B26 (B$1 - $S18)^2 * B10 B26 : R31 (b) S26 SUM(B26:R26) S26 : S31 (c) T26 SQRT(S26) T26 : T31

61 se02.xls 6.3.4

62 56 6 n x 1, x 2,, x n x n x k x, k=1 n (x k x) 2, k=1 n (x k x) 4 k=1 f(x) = n (x k x) 2 k=1 x f(x) x = 1 n n x k, x 2 = 1 n n x 2 k. k=1 k=1 ] f(x) = nx 2 2nxx + nx 2 = n [(x x) 2 + x 2 x 2 f(x) x = x g g f(x) = n g(x x k ) k=1 f(x) g

63 f(x) = n x k x k=1 x

64

65 59 7 k x 1, x 2,, x k x 1 + x x k k , 1 5, 2 5, 1 5, 2 5 k x 1, x 2,, x k w 1, w 2,, w k w 1 x 1 + w 2 x 2 + w k x k 1 k p 1, p 2,, p k 7.1 X B(n, p) n E(X) = k nc k p k q n k k=0

66 60 7 k 1 E(X) = k nc k = n n 1 C k 1 (7.1) n k nc k p k q n k = k=1 = np j = k 1 n n n 1 C k 1 p k q n k k=1 n n 1C k 1 p k 1 q n k k=1 E(X) = np n 1 j=0 n 1 j=0 n 1C j p j q n 1 j n 1C j p j q n 1 j B(n 1, p) 1 E(X) = np m = E(X) V (X) = E(X 2 ) m 2 = E(X(X 1) + X) m 2 = E(X(X 1)) + m m 2 V (X) E(X(X 1)) (??) k 2 E(X(X 1)) = k(k 1) nc k = n(n 1) n 2 C k 2 (7.2) n k(k 1) nc k p k q n k = k=2 = n(n 1)p 2 j = k 2 n n(n 1) n 2 C k 2 p k q n k k=2 n n 2C k 2 p k 2 q n k k=2 E(X(X 1)) = n(n 1)p 2 n 2 j=0 n 2C j p j q n 2 j = n(n 1)p 2 1 = n(n 1)p 2

67 V (X) = n(n 1)p 2 + m m 2 = npq B(n, p) = np, = npq X HG(n, r, w)

68

69 63 8 p q = 1 p n X X n k n k n C k p k q n k P (X = k) = n C k p k q n k binomial distribution B(n, p) binomial expansion (a + b) n = n nc k a k b n k k=0 1 5 (1) 1 3 (2) (1) 3 2 (2) a b 1 p q = 1 p

70 64 8 P Q P : Q P, Q Fermat n = a+b 1 n a n a 1 P = n nc k p k q n k. Q = k=a a 1 k=0 nc k p k q n k Monmort a k k < b a 1 + k a 1 a 1+kC a 1 p a 1 q k p = a 1+k C a 1 p a q k n 2n Excel b k = n C k p k q n k n = 20, p = 0.1 Excel COMBIN(n,k) b k (k = 0, 1, 2,, 20) (combinatorial number) n C k

71 65 1. A k = 0, 1, 2,..., B b k B1 =COMBIN(20,A1)*0.1^A1*0.9^(20-A1) B2:B21 nc k nc k 1 = n! (k 1)!(n k + 1)! k!(n k)! n! = n k + 1 k b k = b k 1 (n k + 1)p kq (8.1) 1. A k = 0, 1, 2,..., B1 b 0 =0.9^(20) 3. B2:B21 B2 =B1*(21-A2)/A2/9 (1) 1 (2)

72

73 67 9 r w n ( n ) X X = k r + w n r+w C n r k r C k w n k w C n k P (X = k) = r C k wc n k r+wc n k n r hyper-geometric distribution 1 HG(n, r, w) n X B(n, p) p = r r + w 7 3 (1) (2) (3) X X 1

74

75 r w X w f w (t) = E(t X w ) 1 A X w = { 1 A 1 + X w 1 A f w (t) = X 0 = 1 f 0 (t) = t (10.1) f 1 (t) = f 2 (t) = f 3 (t) = r w + r t + w w + r tf w 1(t) (10.1) r [rt + t2 ], 1 (1 + r)(2 + r) [r(1 + r)t + 2rt2 + 2t 3 ], 1 (1 + r)(2 + r)(3 + r) [r(1 + r)(2 + r)t + 3r(1 + r)t2 + 6rt 3 + 6t 4 ] f w (t) f w (t) t w k µ (k) w = E(X w (X w 1)(X w 2) (X w k + 1))

76 70 10 k = 1 (10.1) f w(t) = t = 1 r w + r + w w + r (f w 1(t) + f w 1(t)) µ (1) w = 1 + w w + r µ(1) w 1 µ (1) w = w 1 + r + 1 w k 2 (10.1) f w (k) (t) = w [ ] tf (k) w + r w 1(t) + k C 1 f (k 1) w 1 (t) µ (k) w = w w + r ( ) µ (k) w 1 + kµ (k 1) w 1 (10.2) (10.2) 1 x [x] n = x(x 1)(x 2) (x n + 1), [x] n = x(x + 1)(x + 2) (x + n 1) µ (k) w = k! [1 + r] k (w r)[w] k 1 (w + r)µ (k) w = wµ (k) w 1 k! [1 + r] k {(w + r) (w r)[w] k 1 w (w + r)[w 1] k 1 } 1

77 k! = [1 + r] (w + r) {(w + 1)[w] k k 1 + r[w] k 1 w[w 1] k 1 } k! = [1 + r] (w + r) {[w + 1] k k [w] k + r[w] k 1 } k! = [1 + r] (w + r) {k[w] k k 1 + r[w] k 1 } k! = [1 + r] (w + r)(k + r)[w] k k 1 (k 1)! = k [1 + r] (w + r)[w] k 1 k 1 (k 1)! = kw [1 + r] (w + r)[w 1] k 1 k 2 = kwµ (k 1) w 1 V ar(x w ) = r w(w r) (1 + r) 2 (2 + r)

78

79 n = A1 =INT(6*RAND())+1 2. A2:A20 RAND() 0 1 (0 1 ) *RAND() 0 6 INT(x) x INT(3.14) = 3 =INT(6*RAND()) 0 6 0, 1, 2, 3, 4, 5 p = 2 n = A1 =IF(RAND() < 1/3,0,1) 2. A2:A

80 ( ) 11.3 population sample random sampling

81 A ( ) 51 A 75 B , , A,B,C,...,I,J 100, 200,,

82 ( ) 1. A,B,...,I,J 1 55, 2 55, 3 55,, 9 55, (11.1) 2. C F (11.1) X X x 1 x 2 x k p 1 p 2 p k Excel X VLOOKUP 1. F1:Gk VLOOKUP T (a) E1:Ek p 1, p 2,, p k (b) F1:Fk q 1 = p 1, q 2 = p 1 + p 2, q 3 = p 1 + p 2 + p 3,, q k = p 1 + p p k F1:Fk 0, q 1, q 2,, q k 1 (c) G1:Gk x 1, x 2,, x k 2. A RAND() 0 1

83 B1 =VLOOKUP(A1, F$1:G$k, 2) B B2 VLOOKUP(z, T, 2) z ( ) T F1:Gk 0 x 1 q 1 x 2 q 2 x 3.. q k 1 x k 2 T 2 z < q 1 = x 1 z < q 2 = x 2 z < q 3 = x 3 5 X 10

84

85 p n ˆp p ˆp 1. ˆp ˆp(1 ˆp) 2. ŝ = n n 3. 95% ±1.96 ŝ 99% ±2.545 ŝ 95% p ˆp 1.96 ŝ ˆp ŝ 95% ( ) 15 1

86 80 12 (%) 1990/10/28( ) 18 : : /9/16( ) 18 : : Dr. 1981/12/16( ) 19 : : /2/23( ) 18 : : /1/10/( ) 19 : : 30 TBS /12/8( ) 18 : : /12/22( ) 19 : : /3/13( ) 18 : : /2/11( ) 19 : : /3/22( ) 18 : : /10/28 40% 95% 1. n = 600 ˆp = (1 0.4) 2. ŝ = = % ±1.96 ŝ = ± /3/22 ) 30% 95% %

87 % , , , , % % /20 % 6, 176 3, /20 n ˆp = 0.45 ˆp(1 ˆp) n 95% n = /20 = = = = p = 0.05 p = 0.50

88 82 12

89 , 606 1, 589 1, 619 1, 660 1, 717 1, 824 1, 361 1, 936 1, 872 1, , 934 2, 001 2, 039 2, 092 2, 030 1, 901 1, 833 1, 755 1, 709 1, n = 1, 872, 000 ˆp = 107.1/( ) = % ( ) 1.96 = = , 872, /( ) = % 1980 (1) (2) , , , 882

90 X X B(n, p) ˆp = X n E(ˆp) = 1 n E(X) = 1 n np = p V (ˆp) = 1 n V (X) = 1 pq npq = 2 n2 n ˆp p pq n n - P (p zs ˆp p + zs) = 1 α(z) s = α(z) pq n α(1.645) = 0.10, α(1.96) = 0.05, α(2.575) = 0.01 p(1 p) p(1 p) p z ˆp p + z n n p 2 (p ˆp) 2 z 2 p(1 p) n

91 ) ) (1 + z2 p 2 2 (ˆp + z2 n 2n + ˆp 2 0 D = ) 2 ) (ˆp + z2 (1 + z2 ˆp 2 2n n = z 2 ˆp(1 ˆp) + z4 n 4n 2 n 2 1 D = z 2 ˆp(1 ˆp) n ŝ = ˆp(1 ˆp) n (12.1) D = zŝ 2 ( ) ˆp + z2 ( ) D ˆp + z2 + D 2n 2n p 1 + z2 1 + z2 n n ˆp zŝ p ˆp + zŝ (12.2) 2 1 α(z) (12.2) 1 α(z) p ˆp zŝ ˆp zŝ ˆp(1 ˆp) ŝ = n A 95% 2%

92 86 12 [ˆp zs, ˆp + zs] 2zs w% 2zs w ˆp(1 ˆp) n s w 2z ( w ) 2 2z I 2 f(x) = x(1 x) ( w ) 2 ( z ) 2 4n, n (12.3) 2z w 95% z = % w = 0.02 (12.3) n % 1%

93 ( ) A B

94 88 13 A, B A B 6 k X 1, X 2,, X k 1 k n 1 k = n k n n = X 1 + X X k X 1 n k, X 2 n k,, X k n k 3 3 χ χ

95 A Excel A B A B D1 =CHITEST(A1:A6,B1:B6) p p = p p B A B A B D1 =CHITEST(A1:A6,B1:B6) p = p

96 p p p p A p B p 0.05 p p p

97 k X 1, X 2,, X k 1 k χ 2 = (X 1 e) 2 e + (X 2 e) 2 e + + (X k e) 2 e (13.1) e = n/k χ k chi2 n X 1 +X 2 + +X k = n 2 (13.1) chi2 <- function(n,k) { y <- as.integer(runif(n,1,k+1)) x <- table(y) e <- n/k w <- sum((x-e)^2/e) return(w) } y <- as.integer(runif(n,1,k+1)) 1, 2,, k n x <- table(y) y e <- n/k

98 92 13 w <- sum((x-e)^2/e) 2 (13.1) n = w <- c(1:1000) for (k in 1:1000) { w[k] <- chi2(60,6) } hist(w) n = t <- c(1:300)/10 f <- dchisq(t, 11) plot(t,f,type="l") P {a χ 2 b} = 2 t t = a t = b 1 t P {χ 2 b} = 0.95 b t t = b 0.95 b qchisq(0.95,11) χ

99 R A 2 x <- c(12,7,8,10,12,11) chisq.test(x) p Chi-squared test for given probabilities data: x X-squared = 2.2, df = 11, p-value = B Chi-squared test for given probabilities data: x X-squared = 24.6, df = 11, p-value = π

100

101

102 ( ) ( )

103 ( ) ( )

104 ( ) = 34.1, =

105 Excel 1. A B C A5 =A$3*$C1/$C$3 A B E1 p =CHITEST(A1:B2,A5:B6) A1:B6 2. A B C

106 A9 =A$7*$C1/$C$7 A B E1 p =CHITEST(A1:B6,A9:C14)

107 A B C 1 x 11 x 12 x 13 2 x 21 x 22 x 23 3 x 31 x 32 x 33 4 x 41 x 42 x 43 A B C 6 e 11 e 12 e 13 7 e 21 e 22 e 23 8 e 31 e 32 e 33 9 e 41 e 42 e 43 χ 2 = (x 11 e 11 ) 2 e 11 + (x 12 e 12 ) 2 e 12 + (x 13 e 13 ) 2 e 13 + (x 21 e 21 ) 2 e 21 + (x 22 e 22 ) 2 e 22 + (x 23 e 23 ) 2 e 23 + (x 31 e 31 ) 2 e 31 + (x 32 e 32 ) 2 e 32 + (x 33 e 33 ) 2 e 33 + (x 41 e 41 ) 2 e 41 + (x 42 e 42 ) 2 e 42 + (x 43 e 43 ) 2 Excel 4 3 CHITEST =CHITEST(A1:C4,A6:C9) F1 p p e 43

108 p p p 0.05 p

109 Yates Excel p p Yates A B C p χ 2 χ 2 5 5

110 Fisher E F E E F a b a + b F c d c + d a + c b + d N N = a + b + c + d E F E p 1 E q 1 = 1 p 1 F p 2 F q 2 = 1 p 2 E F p 1 p 2 E F p 1 q 2 a, b, c, d f(a, b, c, d) f(a, b, c, d) = = N! a! b! c! d! (p 1p 2 ) a (q 1 p 2 ) b (p 1 q 2 ) c (q 1 q 2 ) d n! a! b! c! d! pa+c 1 q1 b+d p a+b 2 q2 c+d p 1, p 2 a + c, b + d, a + b, c + d a, b, c, d f(a, b, c, d) = K a! b! c! d! K = n! p a+c 1 q b+d 1 p a+b 2 q c+d 2 K a, b, c, d E F a + c, b + d, a + b, c + d a, b, c, d f(a, b, c, d) = a+b C a c+d C c NC a+c

111 14.5. Fisher 105 ( ) 1 1 K = a+c,b+d,a+b,c+d 1 a! b! c! d! a + b = k, a + c = l 2 kc a x a = (x + 1) k n kc c x c = (x + 1) n k 0 a k 0 c n k x l (x+1) n x l n! nc l = (a + c)! (b + d)! a+c=l 1 K = kc a n k C c = a+c,b+d,a+b,c+d a+c,b+d,a+b,c+d (a + b)! (c + d)! a! b! c! d! 1 a! b! c! d! = N! (a + b)! (c + d)! (a + c)! (b + d)! f(a, b, c, d) ( ) a + b = R, c + d = W, a + c = n N F R W N R W F ( ) E ( ) F ( ) F ( ) n ( ) a c RC a W C c NC n

112 a, b, c, d χ 2 ( ) 2 = χ 2 = N (ad bc)2 (a + b)(c + d)(a + c)(b + d) ( ) Np 1 p 2, Nq 1 p 2, Np 1 q 2, Nq 1 q 2 p 1, p 2 p 1, p 2 ˆp 1 = a + b N, ˆq 1 = c + d N ( ) ˆχ 2 = [ (a + b)(a + c) a N (a + b)(a + c) N [ (c + d)(a + c) c N + (c + d)(a + c) N, ˆp 2 = a + c N, ˆq 2 = b + d N ] 2 [ (a + b)(b + d) b N + (a + b)(b + d) N [ (c + d)(b + d) d N + (c + d)(b + d) N ( ) ] 2 ] 2 ] 2 a = 4, b = 3, c = 1, d = 7 a + b = 7, c + d = 8, a + c = 5, b + d = 10

113 14.5. Fisher ( ad bc) T 0 T 1 T 2 T 3 T 4 T 5 ad bc ad bc T 2, T 3, T 1, T 4, T 0, T 5 T 4 p = P {T 5 } + P {T 0 } + P {T 4 } = = ( p = ) Fisher s Tea Drinker

114 a 0 a a 60 a a a A1:A61 0, 1,, B1:B61 B1 =COMBIN(60,A1)*COMBIN(84,72-A1)/COMBIN(144,72) COMBIN(n, k) n C k 4. C1:C61 ad bc C1 =ABS(A1*(A1+12)-(60-A1)*(7 ABS(x) x 5. a = 36 ad bc = 864 ad bc 864 =SUM(B1:B25)+SUM(B37:B61) 6. p = Chadwick and Dudley Can malt whisky be discriminated from blended whisky? The proof. A modification of Sir Ronald Fisher s hypothetical tea tasting experiment., Br. Med. J. (Clin Res Ed) 1983, 287, Glendiddch, Springbank, Glenmorangic White Horse, Bells, Haig Glendiddch 30 7 White Horse 18 2

115 14.6. R R 2 > x <- > x [,1] [,2] [1,] [2,] > Pearson s Chi-squared test with Yates continuity correction data: x X-squared = 3.225, df = 1, p-value = > fisher.test(x) Fisher s Exact Test for Count Data data: x p-value = alternative hypothesis: true odds ratio is not equal to 1 95 percent confidence interval: sample estimates: odds ratio > x <- matrix(c(261,163,342,402,229,219),ncol=3,byrow=t) > x [,1] [,2] [,3] [1,] [2,] > chisq.test(x) Pearson s Chi-squared test data: x X-squared = , df = 2, p-value = 1.350e-14

116 > fisher.test(x) Fisher s Exact Test for Count Data data: x p-value = 1.162e-14 alternative hypothesis: two.sided > x <- matrix(c(315,108,101,32), ncol=2, byrow=t) > x [,1] [,2] [1,] [2,] > chisq.test(x) Pearson s Chi-squared test with Yates continuity correction data: x X-squared = , df = 1, p-value = > x <- matrix(c(56,6759,272,11396), ncol=2, byrow=t) > x [,1] [,2] [1,] [2,] > chisq.test(x) Pearson s Chi-squared test with Yates continuity correction data: x X-squared = , df = 1, p-value = 9.978e-14 > x <- matrix(c(10,3,2,15), ncol=2, byrow=t) > x [,1] [,2] [1,] 10 3 [2,] 2 15 > chisq.test(x)

117 14.6. R Pearson s Chi-squared test with Yates continuity correction data: x X-squared = , df = 1, p-value = > fisher.test(x) Fisher s Exact Test for Count Data data: x p-value = alternative hypothesis: true odds ratio is not equal to 1 95 percent confidence interval: sample estimates: odds ratio

118

119 X, Y X, Y X Y X, Y X Y A B C D E F G H I J K L Excel A1:C B2:C13

120 B2:C13 r =

121 X Y X Y X Y X Y r 1 r 1 r > 0 r < 0 r = 1 r =

122 X Y X, Y X Y Z X, Y Y, Z Z, X X, Y, Z ( Excel X, Y, Z 2 3 X, Y, Z 1

123 X Y Z X Y Z X Y Z X Y Z H23-center.xls 23 X Y Z 200, 100, 200 X, Y Y, Z Z, X X, Y, Z (X, Y ) n (x 1, y 1 ), (x 2, y 2 ),, (x n, y n ) µ X = 1 n n x i, i=1 µ Y = 1 n n y i (15.1) i=1 X Y x i µ X y i µ Y x i µ X y i µ Y (x i µ X )(y i µ Y )

124 X Y x i µ X y i µ Y x i µ X y i µ Y (x i µ X )(y i µ Y ) s XY = 1 n n (x i µ X )(y i µ Y ) (15.2) i=1 s XY X, Y s XY X Y mm s XY cm s XY 10 2 = 100 s XY cm s XY 1/ X Y s X = 1 n (x i µ X ) n 2, s Y = 1 n (y i µ Y ) n 2 (15.3) i=1 mm s X, s Y cm 10 r = i=1 s XY s X s Y (15.4) (15.4) r (15.4) r = 1 n n i=1 x i µ X s X yi µ Y s Y.

125 x i µ X s X y i µ Y s Y X, Y r X, Y r x i x i µ X s X r r 1 1 n (x i µ X )(y i µ Y ) n 1 n (x i µ X ) n 2 1 n (y i µ Y ) n 2 i=1 2 n 2 ( n 2 ( n ) ( n ) (x i µ X )(y i µ Y )) (x i µ X ) 2 (y i µ Y ) 2 i=1 i=1 i=1 x i µ X = a i, y i µ y = b i (a 1 b 1 + a 2 b a n b n )) 2 ( ) ( a a a 2 n b b bn) 2 i=1 i=1 2. r = 1 n (x i, y i ) r = 1 k b 1 = ka 1, b 2 = ka 2,, b n = ka n i = 1, 2,, n y i µ Y = k(x i µ X ) n (x i, y i ) y µ Y = k(x µ X )

126 n (x i, y i ) y = ax + b l i l1 2 + l ln 2 a, b

127 N N N N N N N N N N N N N N N N N N N N N N N N N N N N N S S S S S S S S S S 0.5

128 ,667 40, ,333 52, ,167 54, ,167 56, ,833 59, ,500 60, ,167 63, ,667 66, ,500 65, ,500 71, ,000 71, ,833 72, ,167 76, ,333 76, ,500 83, ,500 87, ,333 88, , ,116 1 X 1 Y X, Y a206-1.xls 1 12

129 X, Y 3 (1) 150 X Y 0.6 Z X, Z Y, Z 0.8 Z X, Y (2) X Y Z Z X Y X, Y (3) X Y Z Z X Y X, Y 4 (1) X Y r r = 0.2 (2) X = 1, 2, 3 X = 4, 5, 6 Y X, Y r r = 0.6

130 X Y 1 = 2.54cm X Y (X, Y ) = (65.5, 63.2) 9 1. X B1:L1 Y A2:A15 B2:L15 2. A1:L15

131 Excel X, Y X, Y X, Y

132

133 (a) II B 20 kg A B E C F D

134 (1) 10 A. kg 20 M. kg. kg (2) 20 M S. (3) t 20 M S M ts M + ts 20 N(t) N(1) = N(2) = (4) 10 D kg B kg C kg B C E F (5) 20 (a) (b) 20 (c) (a) 0 4

135 129 (b) (c)

136 II B 10 I II A, B, C, D I 3 59 B C 80 1 A 48 D II E (1) 1 I A II 1 A (2) II (3) 1 I 3 B M B. (4) 2 I II 4.6 I 5 C II 1 D

137 131 (5) 1 (a) 2 (b) 1 r 1 2 r 2 (r1, r 2 ) (c) (a), (b) 0 3 (c) 0 3

138 (0.54, 0.20) 1 ( 0.54, 0.20) 2 (0.20, 0.54) 3 (0.20, 0.54) (6) (d) (e) (d), (e)

139 II B x y C 1 x y (1) 1 12 x 12, 9, 3, 3, 10, 17, 20, 19, 15, 7, 1, C. C (2) x 0 C A 0 C B A x. C. A y 6.0 C B y 21.5 C 1 12 y. C x y x 7 C y 30 C y 18 C

140 (3) y. C y (a) (a) (4) y (b) C 1 (c) C 1 (b), (c) (5) z = y x z. C x z (d) (d) 0 3

141 135 (6) 1 12 x z (e) (e) II B P 20 x

142 y x, y x, y x y x x (x x) 2 y y (y y) 2 (x x)(y y) A B (1) 1 x x 3.0 B. A (2) x. (3) z = x + y z z. z (z z) 2 = (x x) 2 + (y y) 2 + 2(x x)(y y) (z ) (a) {(x ) + (y )} (a) > 1 = 2 < (4) x y (b) 1 (b) 0 3

143 137 P 20 Q 25 P Q

144 (5) (c) (c) P 1 Q 2 P Q 3 (6) Q.. (1) P B (d) (d) P 1 Q 2 P Q 3 (7) (e) (e) Q 1 54 Q 2 65 Q 3 70 P

145 Excel X, Y X, Y Y X Y = ax + b Y = ax + b a b X Y J

146 F X Y B2:B19 C2:C19 D2:D Y B2:B19 X C2:C19

147 17.1. Excel 141 a b B18, B17 Y = X % % ax + b

148 X Y Y = X

149 17.1. Excel 143 Y = ax + b a b r 1 2 (1) (2) (1) (2) X Y kion-kadai.xls (1) (2) 100 m 4 X Y X Y 5 X Y X Y 2 3

150 n x i (i = 1, 2,, n) µ n µ n x = 1 n x i n x i x (i = 1, 2,, n) n n (x i x) = 0 i=1 b n x i b b n Q = (x i b) 2 i=1 b ν n n n Q = x 2 i 2b x i + b 2 = x 2 i 2nxb + b 2 = i=1 i=1 i=1 n x 2 i x 2 + (b x) 2 i=1 i=1 Q b = x n n Q min = x 2 i x 2 = (x i i=1 i=1 n (x i µ) 2 ) 2 i=1 Q min /n =

151 Q = n [y i (ax i + b)] 2 i=1 a, b a, b 2 Q b a n n Q = [(y i ax i ) b] 2 = [(y i ax i ) 2 2b(y i ax i ) + b 2 ] = i=1 n (y i ax i ) 2 2b i=1 x = 1 n i=1 n (y i ax i ) + nb 2 i=1 n x i, i=1 y = 1 n b Q n = 1 n (y i ax i ) 2 2b(y ax) + b 2 n i=1 = [b (y ax)] n (y i ax i ) 2 (y ax) 2 n i=1 n i=1 y i Q n b = y ax (17.1) = 1 n n (y i ax i ) 2 (y ax) 2 n = (yi 2 2ax i y i + a 2 x 2 i ) (y 2 2axy + a 2 x 2 ) 1 n i=1 ( = a 2 1 n i=1 ) n x 2 i x 2 2a i=1 ( 1 n ) n x i y i xy + i=1 ( 1 n ) n yi 2 y 2 i=1

152 s 2 x = 1 n s xy = 1 n s 2 y = 1 n n x 2 i x 2 = 1 n (x i x) 2, n i=1 n x i y i xy = 1 n (x i x)(y i y), n i=1 n yi 2 y 2 = 1 n (y i y) 2 n i=1 i=1 i=1 i=1 = a 2 s 2 x 2as xy + s 2 y a ( = s 2 x a s ) 2 xy + s2 xs 2 y s 2 xy s 2 x s 2 x Q min n a = s xy s 2 x = s2 xs 2 y s 2 xy s 2 x (17.2) (17.3) 1. x, y s 2 x, y 2 2 s xy 2. a (17.2) y b (17.1) X Y 1 = 2.54cm

153 X Y X Y (63.5, 61.2) (68.5, 69.2) (73.5, 73.2)

154 Y = 0.645X cm 170 cm cm 6.45 cm 10 cm 6.45 cm X 10 Y kakei-kadai.xls (1) 10 Y = ax + b (2) 10

155 y t y = at + b y t y t fertility.xls A1:B27 3. Y B13:B24 X A13:A24 4. E1 5. F17 b X 1 F18 a a = , b = a CO 2 Mauna Loa CO 2 5 ppm (parts per million, ) 15 WEB Excel maunaloa.co2.xls source Excel ( ) source

156 = data CO t t t = t = t = 1/12, 6/12, 11/ t = 2 + 6/12 B t 1. B B3 =B2+1/12 3. B3 B4:B Y C2:C541 X B2:B E GDP GDP GDP 30 48

157 GDP GDP GDP GDP GDP GDP = 10 at+b log 10 (GDP ) = at + b GDP t = t = t = 1/ t = /4 A B GDP C t 1. C C2 =C1+1/4 3. C2 C3:C44 D GDP 1. D1 =LOG10(B1) 2. D1 D2:D44 F17 b X 1 F18 a GDP

158 E1 =F$18 * C1 + F$17 2. E1 E2:E GDP 17.5 y x y = 10 ax+b x t y log 10 y x log 10 y = ax + b log 10 y log 10 x log 10 y = a log 10 x + b y = 10 b x a y x a x y x y Doll,R. The Age Distribution of Cancer: Implicatins for Models of Carcinogenesis, Journal of the Royal Statistical Society,Series A,1971

159 x y 1. A1:A5 x = 40, 50, 60, 70, 80 y B1:B5 2. C1:C5 x C1 =LOG10(A1) C2:C5 3. D1:D5 y 4. C X D Y 5. a, b x y 17.6 GDP GDP y t = A at b

160 y t y t w t = log 10 A y t w t = at + b w t t fukyuritsu.xls 1003fukyuritsu.xls fukyuritsu.xls mywork.xls B2:B t = t = 48 A2:A49 0, 1, 2,, 47

161 A2 0 A3 =A2+1 A4:A49 3. C2:C49 w t = log 10 ( yt 100 y t ) C2 =LOG10(B2/(100-B2)) C3:C49 4. w t w t

162

163 ( ) ( ) 4/ / : 2 = 2 1

164 p 1 p 2 ( ) rr rr = p 1 p 2 n 1, n 2 X 1 X 2 X 1 n 1 X 1 n 1 X 2 n 2 X 2 n 2 X 1 n 1 X 2 n 2 ( ) RR RR = X 1 n 1 : X 2 n 2 = X 1 n 1 X 2 n 2 1. s = 1 X 1 1 n X 2 1 n 2 2. k = e zs z 90% z = % z = % z = RR/k, RR k 95%

165 s = = k = e = 5.46 = 2/5.46 = 0.366, = = ( ) ( ) (2.5 km ) ( km) 2.5 km 12 ( ) ( ) Sv 90%

166 % Sv 90% Sv 90% % msv % 5 msv

167 , , , % 1.97 ( ) 1.50 ( ) 1.57 ( ) 1.57 ( ) 2.66 ( ) 1.89 ( ) 1.97 ( ) 1.23 ( ) 3.39 ( ) 2.22 ( ) 1.90 ( ) 3.59 ( ) 1.51 ( ) 1.28 ( ) 1.22 ( ) 1.47 ( ) 1.81 ( ) 1.63 ( ) 1.73 ( ) 1.23 ( ) 1.58 ( ) 1.19 ( ) 1.81 ( ) 1.96 ( ) 5.47 ( ) 3.03 ( ) 0.00 () 0.00 () 4.79 ( ) 2.41 ( ) 3.88 ( ) 2.63 ( ) 2.32 ( ) 1.00 ( ) 1.57 ( ) 1.46 ( ) 0.60 ( ) 1.55 ( ) 5.35 ( ) 2.76 ( ) 1.86 ( ) 0.00 () 1.45 ( ) 2.13 ( ) 0.96 ( ) 0.96 ( ) 1 Katanoda et al. Population Attributable Fraction of Mortality Associated with Tobacco Smoking in Japan: A Pooled Analysis of Three Large-scale Cohort Studies, J. Epidenmiology (2008)

168

169 T N T p 1 p 2 p 1, p 2 T α β p 1 /p 2 αp 1 N β(1 p 1 )N αp 2 N β(1 p 2 )N = = αp 1 N β(1 p 1 )N = αp 1 β(1 p 1 ) αp 2 N β(1 p 2 )N = αp 2 β(1 p 2 )

170 = = αp 1 β(1 p 1 ) : αp 2 β(1 p 2 ) p 1 p 2 : 1 p 1 1 p 2 = p 1 p 2 1 p 2 1 p 1 p 1, p 2 1 p 1, 1 p X 1, X 2 B(n 1, p 1 ), B(n 2, p 2 ) n 1, n 2 Z 1 = X 1 n 1 p 1 n1 p 1 q 1, Z 2 = X 2 n 2 p 2 n2 p 2 q 2 X 1 n 1 = p 1 + p1 q 1 n 1 Z 1, X 2 n 2 = p 2 + p2 q 2 n 2 Z 2 RR = p 1 + p1 q 1 n 1 Z 1 p 2 + p2 q 2 n 2 Z 2 = p 1 + q1 1 p 1 n 1 Z 1 = rr p q2 p 2 n 2 Z q1 p 1 n 1 Z q2 p 2 n 2 Z 2 ( ) q1 log RR = log rr + log 1 + Z 1 p 1 n 1 q1 q2 rr + Z 1 Z 2 p 1 n 1 p 2 n 2 ( ) q2 log 1 + Z 2 p 2 n 2 Y = q1 q2 Z 1 Z 2 p 1 n 1 p 2 n 2 Y 0 q 1 + q ( 2 1 = 1 ) ( ) p 1 n 1 p 2 n 2 n 1 p 1 n 1 n 2 p 2 n 2

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,.

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,. (1 C205) 4 10 (2 C206) 4 11 (2 B202) 4 12 25(2013) http://www.math.is.tohoku.ac.jp/~obata,.,,,..,,. 1. 2. 3. 4. 5. 6. 7. 8. 1., 2007 ( ).,. 2. P. G., 1995. 3. J. C., 1988. 1... 2.,,. ii 3.,. 4. F. ( ),..

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

(1) (2) (1) (2) 2 3 {a n } a 2 + a 4 + a a n S n S n = n = S n

(1) (2) (1) (2) 2 3 {a n } a 2 + a 4 + a a n S n S n = n = S n . 99 () 0 0 0 () 0 00 0 350 300 () 5 0 () 3 {a n } a + a 4 + a 6 + + a 40 30 53 47 77 95 30 83 4 n S n S n = n = S n 303 9 k d 9 45 k =, d = 99 a d n a n d n a n = a + (n )d a n a n S n S n = n(a + a n

More information

x y 1 x 1 y 1 2 x 2 y 2 3 x 3 y 3... x ( ) 2

x y 1 x 1 y 1 2 x 2 y 2 3 x 3 y 3... x ( ) 2 1 1 1.1 1.1.1 1 168 75 2 170 65 3 156 50... x y 1 x 1 y 1 2 x 2 y 2 3 x 3 y 3... x ( ) 2 1 1 0 1 0 0 2 1 0 0 1 0 3 0 1 0 0 1...... 1.1.2 x = 1 n x (average, mean) x i s 2 x = 1 n (x i x) 2 3 x (variance)

More information

I L01( Wed) : Time-stamp: Wed 07:38 JST hig e, ( ) L01 I(2017) 1 / 19

I L01( Wed) : Time-stamp: Wed 07:38 JST hig e,   ( ) L01 I(2017) 1 / 19 I L01(2017-09-20 Wed) : Time-stamp: 2017-09-20 Wed 07:38 JST hig e, http://hig3.net ( ) L01 I(2017) 1 / 19 ? 1? 2? ( ) L01 I(2017) 2 / 19 ?,,.,., 1..,. 1,2,.,.,. ( ) L01 I(2017) 3 / 19 ? I. M (3 ) II,

More information

151021slide.dvi

151021slide.dvi : Mac I 1 ( 5 Windows (Mac Excel : Excel 2007 9 10 1 4 http://asakura.co.jp/ books/isbn/978-4-254-12172-8/ (1 1 9 1/29 (,,... (,,,... (,,, (3 3/29 (, (F7, Ctrl + i, (Shift +, Shift + Ctrl (, a i (, Enter,

More information

熊本県数学問題正解

熊本県数学問題正解 00 y O x Typed by L A TEX ε ( ) (00 ) 5 4 4 ( ) http://www.ocn.ne.jp/ oboetene/plan/. ( ) (009 ) ( ).. http://www.ocn.ne.jp/ oboetene/plan/eng.html 8 i i..................................... ( )0... (

More information

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P 1 1.1 (population) (sample) (event) (trial) Ω () 1 1 Ω 1.2 P 1. A A P (A) 0 1 0 P (A) 1 (1) 2. P 1 P 0 1 6 1 1 6 0 3. A B P (A B) = P (A) + P (B) (2) A B A B A 1 B 2 A B 1 2 1 2 1 1 2 2 3 1.3 A B P (A

More information

tokei01.dvi

tokei01.dvi 2. :,,,. :.... Apr. - Jul., 26FY Dept. of Mechanical Engineering, Saga Univ., JAPAN 4 3. (probability),, 1. : : n, α A, A a/n. :, p, p Apr. - Jul., 26FY Dept. of Mechanical Engineering, Saga Univ., JAPAN

More information

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C 0 9 (1990 1999 ) 10 (2000 ) 1900 1994 1995 1999 2 SAT ACT 1 1990 IMO 1990/1/15 1:00-4:00 1 N 1990 9 N N 1, N 1 N 2, N 2 N 3 N 3 2 x 2 + 25x + 52 = 3 x 2 + 25x + 80 3 2, 3 0 4 A, B, C 3,, A B, C 2,,,, 7,

More information

A(6, 13) B(1, 1) 65 y C 2 A(2, 1) B( 3, 2) C 66 x + 2y 1 = 0 2 A(1, 1) B(3, 0) P 67 3 A(3, 3) B(1, 2) C(4, 0) (1) ABC G (2) 3 A B C P 6

A(6, 13) B(1, 1) 65 y C 2 A(2, 1) B( 3, 2) C 66 x + 2y 1 = 0 2 A(1, 1) B(3, 0) P 67 3 A(3, 3) B(1, 2) C(4, 0) (1) ABC G (2) 3 A B C P 6 1 1 1.1 64 A6, 1) B1, 1) 65 C A, 1) B, ) C 66 + 1 = 0 A1, 1) B, 0) P 67 A, ) B1, ) C4, 0) 1) ABC G ) A B C P 64 A 1, 1) B, ) AB AB = 1) + 1) A 1, 1) 1 B, ) 1 65 66 65 C0, k) 66 1 p, p) 1 1 A B AB A 67

More information

( )

( ) 18 10 01 ( ) 1 2018 4 1.1 2018............................... 4 1.2 2018......................... 5 2 2017 7 2.1 2017............................... 7 2.2 2017......................... 8 3 2016 9 3.1 2016...............................

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y No1 1 (1) 2 f(x) =1+x + x 2 + + x n, g(x) = 1 (n +1)xn + nx n+1 (1 x) 2 x 6= 1 f 0 (x) =g(x) y = f(x)g(x) y 0 = f 0 (x)g(x)+f(x)g 0 (x) 3 (1) y = x2 x +1 x (2) y = 1 g(x) y0 = g0 (x) {g(x)} 2 (2) y = µ

More information

iii 1 1 1 1................................ 1 2.......................... 3 3.............................. 5 4................................ 7 5................................ 9 6............................

More information

68 A mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1

68 A mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1 67 A Section A.1 0 1 0 1 Balmer 7 9 1 0.1 0.01 1 9 3 10:09 6 A.1: A.1 1 10 9 68 A 10 9 10 9 1 10 9 10 1 mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1 A.1. 69 5 1 10 15 3 40 0 0 ¾ ¾ É f Á ½ j 30 A.3: A.4: 1/10

More information

1 1 n 0, 1, 2,, n n 2 a, b a n b n a, b n a b (mod n) 1 1. n = (mod 10) 2. n = (mod 9) n II Z n := {0, 1, 2,, n 1} 1.

1 1 n 0, 1, 2,, n n 2 a, b a n b n a, b n a b (mod n) 1 1. n = (mod 10) 2. n = (mod 9) n II Z n := {0, 1, 2,, n 1} 1. 1 1 n 0, 1, 2,, n 1 1.1 n 2 a, b a n b n a, b n a b (mod n) 1 1. n = 10 1567 237 (mod 10) 2. n = 9 1567 1826578 (mod 9) n II Z n := {0, 1, 2,, n 1} 1.2 a b a = bq + r (0 r < b) q, r q a b r 2 1. a = 456,

More information

() 3 3 2 5 3 6 4 2 5 4 2 (; ) () 8 2 4 0 0 2 ex. 3 n n =, 2,, 20 : 3 2 : 9 3 : 27 4 : 8 5 : 243 6 : 729 7 : 287 8 : 656 9 : 9683 0 : 59049 : 7747 2 : 5344 3 : 594323 4 : 4782969 5 : 4348907 6 : 4304672

More information

newmain.dvi

newmain.dvi 数論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/008142 このサンプルページの内容は, 第 2 版 1 刷発行当時のものです. Daniel DUVERNEY: THÉORIE DES NOMBRES c Dunod, Paris, 1998, This book is published

More information

?

? 240-8501 79-2 Email: nakamoto@ynu.ac.jp 1 3 1.1...................................... 3 1.2?................................. 6 1.3..................................... 8 1.4.......................................

More information

数理統計学Iノート

数理統計学Iノート I ver. 0/Apr/208 * (inferential statistics) *2 A, B *3 5.9 *4 *5 [6] [],.., 7 2004. [2].., 973. [3]. R (Wonderful R )., 9 206. [4]. ( )., 7 99. [5]. ( )., 8 992. [6],.., 989. [7]. - 30., 0 996. [4] [5]

More information

OABC OA OC 4, OB, AOB BOC COA 60 OA a OB b OC c () AB AC () ABC D OD ABC OD OA + p AB + q AC p q () OABC 4 f(x) + x ( ), () y f(x) P l 4 () y f(x) l P

OABC OA OC 4, OB, AOB BOC COA 60 OA a OB b OC c () AB AC () ABC D OD ABC OD OA + p AB + q AC p q () OABC 4 f(x) + x ( ), () y f(x) P l 4 () y f(x) l P 4 ( ) ( ) ( ) ( ) 4 5 5 II III A B (0 ) 4, 6, 7 II III A B (0 ) ( ),, 6, 8, 9 II III A B (0 ) ( [ ] ) 5, 0, II A B (90 ) log x x () (a) y x + x (b) y sin (x + ) () (a) (b) (c) (d) 0 e π 0 x x x + dx e

More information

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g( 06 5.. ( y = x x y 5 y 5 = (x y = x + ( y = x + y = x y.. ( Y = C + I = 50 + 0.5Y + 50 r r = 00 0.5Y ( L = M Y r = 00 r = 0.5Y 50 (3 00 0.5Y = 0.5Y 50 Y = 50, r = 5 .3. (x, x = (, u = = 4 (, x x = 4 x,

More information

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n ( 3 n nc k+ k + 3 () n C r n C n r nc r C r + C r ( r n ) () n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (4) n C n n C + n C + n C + + n C n (5) k k n C k n C k (6) n C + nc

More information

( 30 ) 30 4 5 1 4 1.1............................................... 4 1.............................................. 4 1..1.................................. 4 1.......................................

More information

2012 A, N, Z, Q, R, C

2012 A, N, Z, Q, R, C 2012 A, N, Z, Q, R, C 1 2009 9 2 2011 2 3 2012 9 1 2 2 5 3 11 4 16 5 22 6 25 7 29 8 32 1 1 1.1 3 1 1 1 1 1 1? 3 3 3 3 3 3 3 1 1, 1 1 + 1 1 1+1 2 2 1 2+1 3 2 N 1.2 N (i) 2 a b a 1 b a < b a b b a a b (ii)

More information

80 X 1, X 2,, X n ( λ ) λ P(X = x) = f (x; λ) = λx e λ, x = 0, 1, 2, x! l(λ) = n f (x i ; λ) = i=1 i=1 n λ x i e λ i=1 x i! = λ n i=1 x i e nλ n i=1 x

80 X 1, X 2,, X n ( λ ) λ P(X = x) = f (x; λ) = λx e λ, x = 0, 1, 2, x! l(λ) = n f (x i ; λ) = i=1 i=1 n λ x i e λ i=1 x i! = λ n i=1 x i e nλ n i=1 x 80 X 1, X 2,, X n ( λ ) λ P(X = x) = f (x; λ) = λx e λ, x = 0, 1, 2, x! l(λ) = n f (x i ; λ) = n λ x i e λ x i! = λ n x i e nλ n x i! n n log l(λ) = log(λ) x i nλ log( x i!) log l(λ) λ = 1 λ n x i n =

More information

untitled

untitled 2 : n =1, 2,, 10000 0.5125 0.51 0.5075 0.505 0.5025 0.5 0.4975 0.495 0 2000 4000 6000 8000 10000 2 weak law of large numbers 1. X 1,X 2,,X n 2. µ = E(X i ),i=1, 2,,n 3. σi 2 = V (X i ) σ 2,i=1, 2,,n ɛ>0

More information

untitled

untitled yoshi@image.med.osaka-u.ac.jp http://www.image.med.osaka-u.ac.jp/member/yoshi/ II Excel, Mathematica Mathematica Osaka Electro-Communication University (2007 Apr) 09849-31503-64015-30704-18799-390 http://www.image.med.osaka-u.ac.jp/member/yoshi/

More information

さくらの個別指導 ( さくら教育研究所 ) A 2 P Q 3 R S T R S T P Q ( ) ( ) m n m n m n n n

さくらの個別指導 ( さくら教育研究所 ) A 2 P Q 3 R S T R S T P Q ( ) ( ) m n m n m n n n 1 1.1 1.1.1 A 2 P Q 3 R S T R S T P 80 50 60 Q 90 40 70 80 50 60 90 40 70 8 5 6 1 1 2 9 4 7 2 1 2 3 1 2 m n m n m n n n n 1.1 8 5 6 9 4 7 2 6 0 8 2 3 2 2 2 1 2 1 1.1 2 4 7 1 1 3 7 5 2 3 5 0 3 4 1 6 9 1

More information

6.1 (P (P (P (P (P (P (, P (, P.

6.1 (P (P (P (P (P (P (, P (, P. (011 30 7 0 ( ( 3 ( 010 1 (P.3 1 1.1 (P.4.................. 1 1. (P.4............... 1 (P.15.1 (P.16................. (P.0............3 (P.18 3.4 (P.3............... 4 3 (P.9 4 3.1 (P.30........... 4 3.

More information

O E ( ) A a A A(a) O ( ) (1) O O () 467

O E ( ) A a A A(a) O ( ) (1) O O () 467 1 1.0 16 1 ( 1 1 ) 1 466 1.1 1.1.1 4 O E ( ) A a A A(a) O ( ) (1) O O () 467 ( ) A(a) O A 0 a x ( ) A(3), B( ), C 1, D( 5) DB C A x 5 4 3 1 0 1 3 4 5 16 A(1), B( 3) A(a) B(b) d ( ) A(a) B(b) d AB d = d(a,

More information

June 2016 i (statistics) F Excel Numbers, OpenOffice/LibreOffice Calc ii *1 VAR STDEV 1 SPSS SAS R *2 R R R R *1 Excel, Numbers, Microsoft Office, Apple iwork, *2 R GNU GNU R iii URL http://ruby.kyoto-wu.ac.jp/statistics/training/

More information

入試の軌跡

入試の軌跡 4 y O x 4 Typed by L A TEX ε ) ) ) 6 4 ) 4 75 ) http://kumamoto.s.xrea.com/plan/.. PDF) Ctrl +L) Ctrl +) Ctrl + Ctrl + ) ) Alt + ) Alt + ) ESC. http://kumamoto.s.xrea.com/nyusi/kumadai kiseki ri i.pdf

More information

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,. 24(2012) (1 C106) 4 11 (2 C206) 4 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 (). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5... 6.. 7.,,. 8.,. 1. (75%)

More information

populatio sample II, B II? [1] I. [2] 1 [3] David J. Had [4] 2 [5] 3 2

populatio sample II, B II?  [1] I. [2] 1 [3] David J. Had [4] 2 [5] 3 2 (2015 ) 1 NHK 2012 5 28 2013 7 3 2014 9 17 2015 4 8!? New York Times 2009 8 5 For Today s Graduate, Just Oe Word: Statistics Google Hal Varia I keep sayig that the sexy job i the ext 10 years will be statisticias.

More information

高校生の就職への数学II

高校生の就職への数学II II O Tped b L A TEX ε . II. 3. 4. 5. http://www.ocn.ne.jp/ oboetene/plan/ 7 9 i .......................................................................................... 3..3...............................

More information

取扱説明書 -詳細版- 液晶プロジェクター CP-AW3019WNJ

取扱説明書 -詳細版- 液晶プロジェクター CP-AW3019WNJ B A C D E F K I M L J H G N O Q P Y CB/PB CR/PR COMPONENT VIDEO OUT RS-232C LAN RS-232C LAN LAN BE EF 03 06 00 2A D3 01 00 00 60 00 00 BE EF 03 06 00 BA D2 01 00 00 60 01 00 BE EF 03 06 00 19 D3 02 00

More information

13 0 1 1 4 11 4 12 5 13 6 2 10 21 10 22 14 3 20 31 20 32 25 33 28 4 31 41 32 42 34 43 38 5 41 51 41 52 43 53 54 6 57 61 57 62 60 70 0 Gauss a, b, c x, y f(x, y) = ax 2 + bxy + cy 2 = x y a b/2 b/2 c x

More information

R R 16 ( 3 )

R R 16   ( 3 ) (017 ) 9 4 7 ( ) ( 3 ) ( 010 ) 1 (P3) 1 11 (P4) 1 1 (P4) 1 (P15) 1 (P16) (P0) 3 (P18) 3 4 (P3) 4 3 4 31 1 5 3 5 4 6 5 9 51 9 5 9 6 9 61 9 6 α β 9 63 û 11 64 R 1 65 13 66 14 7 14 71 15 7 R R 16 http://wwwecoosaka-uacjp/~tazak/class/017

More information

ii

ii ii iii 1 1 1.1..................................... 1 1.2................................... 3 1.3........................... 4 2 9 2.1.................................. 9 2.2...............................

More information

6. Euler x

6. Euler x ...............................................................................3......................................... 4.4................................... 5.5......................................

More information

6.1 (P (P (P (P (P (P (, P (, P.101

6.1 (P (P (P (P (P (P (, P (, P.101 (008 0 3 7 ( ( ( 00 1 (P.3 1 1.1 (P.3.................. 1 1. (P.4............... 1 (P.15.1 (P.15................. (P.18............3 (P.17......... 3.4 (P................ 4 3 (P.7 4 3.1 ( P.7...........

More information

確率論と統計学の資料

確率論と統計学の資料 5 June 015 ii........................ 1 1 1.1...................... 1 1........................... 3 1.3... 4 6.1........................... 6................... 7 ii ii.3.................. 8.4..........................

More information

ii 3.,. 4. F. (), ,,. 8.,. 1. (75% ) (25% ) =9 7, =9 8 (. ). 1.,, (). 3.,. 1. ( ).,.,.,.,.,. ( ) (1 2 )., ( ), 0. 2., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75% ) (25% ) =9 7, =9 8 (. ). 1.,, (). 3.,. 1. ( ).,.,.,.,.,. ( ) (1 2 )., ( ), 0. 2., 1., 0,. 23(2011) (1 C104) 5 11 (2 C206) 5 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 ( ). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5.. 6.. 7.,,. 8.,. 1. (75%

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f ,,,,.,,,. R f : R R R a R, f(a + ) f(a) lim 0 (), df dx (a) f (a), f(x) x a, f (a), f(x) x a ( ). y f(a + ) y f(x) f(a+) f(a) f(a + ) f(a) f(a) x a 0 a a + x 0 a a + x y y f(x) 0 : 0, f(a+) f(a)., f(x)

More information

ad bc A A A = ad bc ( d ) b c a n A n A n A A det A A ( ) a b A = c d det A = ad bc σ {,,,, n} {,,, } {,,, } {,,, } ( ) σ = σ() = σ() = n sign σ sign(

ad bc A A A = ad bc ( d ) b c a n A n A n A A det A A ( ) a b A = c d det A = ad bc σ {,,,, n} {,,, } {,,, } {,,, } ( ) σ = σ() = σ() = n sign σ sign( I n n A AX = I, YA = I () n XY A () X = IX = (YA)X = Y(AX) = YI = Y X Y () XY A A AB AB BA (AB)(B A ) = A(BB )A = AA = I (BA)(A B ) = B(AA )B = BB = I (AB) = B A (BA) = A B A B A = B = 5 5 A B AB BA A

More information

HITACHI 液晶プロジェクター CP-AX3505J/CP-AW3005J 取扱説明書 -詳細版- 【技術情報編】

HITACHI 液晶プロジェクター CP-AX3505J/CP-AW3005J 取扱説明書 -詳細版- 【技術情報編】 B A C E D 1 3 5 7 9 11 13 15 17 19 2 4 6 8 10 12 14 16 18 H G I F J M N L K Y CB/PB CR/PR COMPONENT VIDEO OUT RS-232C LAN RS-232C LAN LAN BE EF 03 06 00 2A D3 01 00 00 60 00 00 BE EF 03 06 00 BA D2 01

More information

( )/2 hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1

( )/2   hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1 ( )/2 http://www2.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html 1 2011 ( )/2 2 2011 4 1 2 1.1 1 2 1 2 3 4 5 1.1.1 sample space S S = {H, T } H T T H S = {(H, H), (H, T ), (T, H), (T, T )} (T, H) S

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information

a n a n ( ) (1) a m a n = a m+n (2) (a m ) n = a mn (3) (ab) n = a n b n (4) a m a n = a m n ( m > n ) m n 4 ( ) 552

a n a n ( ) (1) a m a n = a m+n (2) (a m ) n = a mn (3) (ab) n = a n b n (4) a m a n = a m n ( m > n ) m n 4 ( ) 552 3 3.0 a n a n ( ) () a m a n = a m+n () (a m ) n = a mn (3) (ab) n = a n b n (4) a m a n = a m n ( m > n ) m n 4 ( ) 55 3. (n ) a n n a n a n 3 4 = 8 8 3 ( 3) 4 = 8 3 8 ( ) ( ) 3 = 8 8 ( ) 3 n n 4 n n

More information

76 3 B m n AB P m n AP : PB = m : n A P B P AB m : n m < n n AB Q Q m A B AQ : QB = m : n (m n) m > n m n Q AB m : n A B Q P AB Q AB 3. 3 A(1) B(3) C(

76 3 B m n AB P m n AP : PB = m : n A P B P AB m : n m < n n AB Q Q m A B AQ : QB = m : n (m n) m > n m n Q AB m : n A B Q P AB Q AB 3. 3 A(1) B(3) C( 3 3.1 3.1.1 1 1 A P a 1 a P a P P(a) a P(a) a P(a) a a 0 a = a a < 0 a = a a < b a > b A a b a B b B b a b A a 3.1 A() B(5) AB = 5 = 3 A(3) B(1) AB = 3 1 = A(a) B(b) AB AB = b a 3.1 (1) A(6) B(1) () A(

More information

1: *2 W, L 2 1 (WWL) 4 5 (WWL) W (WWL) L W (WWL) L L 1 2, 1 4, , 1 4 (cf. [4]) 2: 2 3 * , , = , 1

1: *2 W, L 2 1 (WWL) 4 5 (WWL) W (WWL) L W (WWL) L L 1 2, 1 4, , 1 4 (cf. [4]) 2: 2 3 * , , = , 1 I, A 25 8 24 1 1.1 ( 3 ) 3 9 10 3 9 : (1,2,6), (1,3,5), (1,4,4), (2,2,5), (2,3,4), (3,3,3) 10 : (1,3,6), (1,4,5), (2,2,6), (2,3,5), (2,4,4), (3,3,4) 6 3 9 10 3 9 : 6 3 + 3 2 + 1 = 25 25 10 : 6 3 + 3 3

More information

2000年度『数学展望 I』講義録

2000年度『数学展望 I』講義録 2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53

More information

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx 4 4 5 4 I II III A B C, 5 7 I II A B,, 8, 9 I II A B O A,, Bb, b, Cc, c, c b c b b c c c OA BC P BC OP BC P AP BC n f n x xn e x! e n! n f n x f n x f n x f k x k 4 e > f n x dx k k! fx sin x cos x tan

More information

31 33

31 33 17 3 31 33 36 38 42 45 47 50 52 54 57 60 74 80 82 88 89 92 98 101 104 106 94 1 252 37 1 2 2 1 252 38 1 15 3 16 6 24 17 2 10 252 29 15 21 20 15 4 15 467,555 14 11 25 15 1 6 15 5 ( ) 41 2 634 640 1 5 252

More information

1 + 1 + 1 + 1 + 1 + 1 + 1 = 0? 1 2003 10 8 1 10 8, 2004 1, 2003 10 2003 10 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 ( )?, 1, 8, 15, 22, 29?, 1 7, 1, 8, 15, 22,

More information

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C 8 ( ) 8 5 4 I II III A B C( ),,, 5 I II A B ( ),, I II A B (8 ) 6 8 I II III A B C(8 ) n ( + x) n () n C + n C + + n C n = 7 n () 7 9 C : y = x x A(, 6) () A C () C P AP Q () () () 4 A(,, ) B(,, ) C(,,

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

( 28 ) ( ) ( ) 0 This note is c 2016, 2017 by Setsuo Taniguchi. It may be used for personal or classroom purposes, but not for commercial purp

( 28 ) ( ) ( ) 0 This note is c 2016, 2017 by Setsuo Taniguchi. It may be used for personal or classroom purposes, but not for commercial purp ( 28) ( ) ( 28 9 22 ) 0 This ote is c 2016, 2017 by Setsuo Taiguchi. It may be used for persoal or classroom purposes, but ot for commercial purposes. i (http://www.stat.go.jp/teacher/c2epi1.htm ) = statistics

More information

10:30 12:00 P.G. vs vs vs 2

10:30 12:00 P.G. vs vs vs 2 1 10:30 12:00 P.G. vs vs vs 2 LOGIT PROBIT TOBIT mean median mode CV 3 4 5 0.5 1000 6 45 7 P(A B) = P(A) + P(B) - P(A B) P(B A)=P(A B)/P(A) P(A B)=P(B A) P(A) P(A B) P(A) P(B A) P(B) P(A B) P(A) P(B) P(B

More information

AR(1) y t = φy t 1 + ɛ t, ɛ t N(0, σ 2 ) 1. Mean of y t given y t 1, y t 2, E(y t y t 1, y t 2, ) = φy t 1 2. Variance of y t given y t 1, y t

AR(1) y t = φy t 1 + ɛ t, ɛ t N(0, σ 2 ) 1. Mean of y t given y t 1, y t 2, E(y t y t 1, y t 2, ) = φy t 1 2. Variance of y t given y t 1, y t 87 6.1 AR(1) y t = φy t 1 + ɛ t, ɛ t N(0, σ 2 ) 1. Mean of y t given y t 1, y t 2, E(y t y t 1, y t 2, ) = φy t 1 2. Variance of y t given y t 1, y t 2, V(y t y t 1, y t 2, ) = σ 2 3. Thus, y t y t 1,

More information

renshumondai-kaito.dvi

renshumondai-kaito.dvi 3 1 13 14 1.1 1 44.5 39.5 49.5 2 0.10 2 0.10 54.5 49.5 59.5 5 0.25 7 0.35 64.5 59.5 69.5 8 0.40 15 0.75 74.5 69.5 79.5 3 0.15 18 0.90 84.5 79.5 89.5 2 0.10 20 1.00 20 1.00 2 1.2 1 16.5 20.5 12.5 2 0.10

More information

5 Armitage x 1,, x n y i = 10x i + 3 y i = log x i {x i } {y i } 1.2 n i i x ij i j y ij, z ij i j 2 1 y = a x + b ( cm) x ij (i j )

5 Armitage x 1,, x n y i = 10x i + 3 y i = log x i {x i } {y i } 1.2 n i i x ij i j y ij, z ij i j 2 1 y = a x + b ( cm) x ij (i j ) 5 Armitage. x,, x n y i = 0x i + 3 y i = log x i x i y i.2 n i i x ij i j y ij, z ij i j 2 y = a x + b 2 2. ( cm) x ij (i j ) (i) x, x 2 σ 2 x,, σ 2 x,2 σ x,, σ x,2 t t x * (ii) (i) m y ij = x ij /00 y

More information

2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a

More information

untitled

untitled 0. =. =. (999). 3(983). (980). (985). (966). 3. := :=. A A. A A. := := 4 5 A B A B A B. A = B A B A B B A. A B A B, A B, B. AP { A, P } = { : A, P } = { A P }. A = {0, }, A, {0, }, {0}, {}, A {0}, {}.

More information

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K II. () 7 F 7 = { 0,, 2, 3, 4, 5, 6 }., F 7 a, b F 7, a b, F 7,. (a) a, b,,. (b) 7., 4 5 = 20 = 2 7 + 6, 4 5 = 6 F 7., F 7,., 0 a F 7, ab = F 7 b F 7. (2) 7, 6 F 6 = { 0,, 2, 3, 4, 5 },,., F 6., 0 0 a F

More information

B. 41 II: 2 ;; 4 B [ ] S 1 S 2 S 1 S O S 1 S P 2 3 P P : 2.13:

B. 41 II: 2 ;; 4 B [ ] S 1 S 2 S 1 S O S 1 S P 2 3 P P : 2.13: B. 41 II: ;; 4 B [] S 1 S S 1 S.1 O S 1 S 1.13 P 3 P 5 7 P.1:.13: 4 4.14 C d A B x l l d C B 1 l.14: AB A 1 B 0 AB 0 O OP = x P l AP BP AB AP BP 1 (.4)(.5) x l x sin = p l + x x l (.4)(.5) m d A x P O

More information

名古屋工業大の数学 2000 年 ~2015 年 大学入試数学動画解説サイト

名古屋工業大の数学 2000 年 ~2015 年 大学入試数学動画解説サイト 名古屋工業大の数学 年 ~5 年 大学入試数学動画解説サイト http://mathroom.jugem.jp/ 68 i 4 3 III III 3 5 3 ii 5 6 45 99 5 4 3. () r \= S n = r + r + 3r 3 + + nr n () x > f n (x) = e x + e x + 3e 3x + + ne nx f(x) = lim f n(x) lim

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

/02/18

/02/18 3 09/0/8 i III,,,, III,?,,,,,,,,,,,,,,,,,,,,?,?,,,,,,,,,,,,,,!!!,? 3,,,, ii,,,!,,,, OK! :!,,,, :!,,,,,, 3:!,, 4:!,,,, 5:!,,! 7:!,,,,, 8:!,! 9:!,,,,,,,,, ( ),, :, ( ), ( ), 6:!,,, :... : 3 ( )... iii,,

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

空き容量一覧表(154kV以上)

空き容量一覧表(154kV以上) 1/3 A. 電気所 ( 発電所, 変電所, 配電塔 ) における変圧器の空き容量 覧 < 留意事項 > (1) 空容量は 安であり 系統接続の前には 接続検討のお申込みによる詳細検討が必要となります その結果 空容量が変更となる場合があります (2) 熱容量を考慮した空き容量を記載しております その他の要因 ( や系統安定度など ) で連系制約が発 する場合があります (3) 表 は 既に空容量がないため

More information

i

i i 3 4 4 7 5 6 3 ( ).. () 3 () (3) (4) /. 3. 4/3 7. /e 8. a > a, a = /, > a >. () a >, a =, > a > () a > b, a = b, a < b. c c n a n + b n + c n 3c n..... () /3 () + (3) / (4) /4 (5) m > n, a b >, m > n,

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

2/8 一次二次当該 42 AX 変圧器 なし 43 AY 変圧器 なし 44 BA 変圧器 なし 45 BB 変圧器 なし 46 BC 変圧器 なし

2/8 一次二次当該 42 AX 変圧器 なし 43 AY 変圧器 なし 44 BA 変圧器 なし 45 BB 変圧器 なし 46 BC 変圧器 なし 1/8 A. 電気所 ( 発電所, 変電所, 配電塔 ) における変圧器の空き容量一覧 < 留意事項 > (1) 空容量は目安であり 系統接続の前には 接続検討のお申込みによる詳細検討が必要となります その結果 空容量が変更となる場合があります (2) 特に記載のない限り 熱容量を考慮した空き容量を記載しております その他の要因 ( や系統安定度など ) で連系制約が発生する場合があります (3)

More information

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k II 231017 1 1.1. R n k +1 v 0,, v k k v 1 v 0,, v k v 0 1.2. v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ kσ dimσ = k 1.3. k σ {v 0,...,v k } {v i0,...,v il } l σ τ < τ τ σ 1.4.

More information

1 I

1 I 1 I 3 1 1.1 R x, y R x + y R x y R x, y, z, a, b R (1.1) (x + y) + z = x + (y + z) (1.2) x + y = y + x (1.3) 0 R : 0 + x = x x R (1.4) x R, 1 ( x) R : x + ( x) = 0 (1.5) (x y) z = x (y z) (1.6) x y =

More information

ii

ii i 2013 5 143 5.1...................................... 143 5.2.................................. 144 5.3....................................... 148 5.4.................................. 153 5.5...................................

More information

A A = a 41 a 42 a 43 a 44 A (7) 1 (3) A = M 12 = = a 41 (8) a 41 a 43 a 44 (3) n n A, B a i AB = A B ii aa

A A = a 41 a 42 a 43 a 44 A (7) 1 (3) A = M 12 = = a 41 (8) a 41 a 43 a 44 (3) n n A, B a i AB = A B ii aa 1 2 21 2 2 [ ] a 11 a 12 A = a 21 a 22 (1) A = a 11 a 22 a 12 a 21 (2) 3 3 n n A A = n ( 1) i+j a ij M ij i =1 n (3) j=1 M ij A i j (n 1) (n 1) 2-1 3 3 A A = a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33

More information

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63> 電気電子数学入門 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/073471 このサンプルページの内容は, 初版 1 刷発行当時のものです. i 14 (tool) [ ] IT ( ) PC (EXCEL) HP() 1 1 4 15 3 010 9 ii 1... 1 1.1 1 1.

More information

T T T T A 0 1 A 1 A P (A 1 ) = C 1 6 C 8C 3 = 15 8, P (A ) = C 6 C 1 8C 3 = 3 8 T 5 B P (A 1 B) = =

T T T T A 0 1 A 1 A P (A 1 ) = C 1 6 C 8C 3 = 15 8, P (A ) = C 6 C 1 8C 3 = 3 8 T 5 B P (A 1 B) = = 4 1.. 3. 4. 1. 1 3 4 5 6 1 3 4 5 6. 1 1 1 A B P (A B) = P (A) + P (B) P (C) = P (A) P (B) 3. 1 1 P (A) = 1 P (A) A A 4. A B P A (B) = n(a B) n(a) = P (A B) P (A) 50 015 016 018 1 4 5 8 8 3 T 1 3 1 T T

More information

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) 2017 12 9 4 1 30 4 10 3 1 30 3 30 2 1 30 2 50 1 1 30 2 10 (1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) (1) i 23 c 23 0 1 2 3 4 5 6 7 8 9 a b d e f g h i (2) 23 23 (3) 23 ( 23 ) 23 x 1 x 2 23 x

More information

09RW-res.pdf

09RW-res.pdf - "+$,&!"'$%"'&&!"($%"(&&!"#$%"#&&!"$%"&& 2009, http://c-faculty.chuo-u.ac.jp/ nishioka/ 2 11 38 : 5 ( 1.1!"*$%"*&& W path, x (i ρ 1, ρ 2, ±1. n, 2 n paths. 1 ρ 1, ρ 2, {1, 1}. a n, { a, n = 0 (1.1 w(n

More information

IMO 1 n, 21n n (x + 2x 1) + (x 2x 1) = A, x, (a) A = 2, (b) A = 1, (c) A = 2?, 3 a, b, c cos x a cos 2 x + b cos x + c = 0 cos 2x a

IMO 1 n, 21n n (x + 2x 1) + (x 2x 1) = A, x, (a) A = 2, (b) A = 1, (c) A = 2?, 3 a, b, c cos x a cos 2 x + b cos x + c = 0 cos 2x a 1 40 (1959 1999 ) (IMO) 41 (2000 ) WEB 1 1959 1 IMO 1 n, 21n + 4 13n + 3 2 (x + 2x 1) + (x 2x 1) = A, x, (a) A = 2, (b) A = 1, (c) A = 2?, 3 a, b, c cos x a cos 2 x + b cos x + c = 0 cos 2x a = 4, b =

More information

II Time-stamp: <05/09/30 17:14:06 waki> ii

II Time-stamp: <05/09/30 17:14:06 waki> ii II waki@cc.hirosaki-u.ac.jp 18 1 30 II Time-stamp: ii 1 1 1.1.................................................. 1 1.2................................................... 3 1.3..................................................

More information

koji07-01.dvi

koji07-01.dvi 2007 I II III 1, 2, 3, 4, 5, 6, 7 5 10 19 (!) 1938 70 21? 1 1 2 1 2 2 1! 4, 5 1? 50 1 2 1 1 2 2 1?? 2 1 1, 2 1, 2 1, 2, 3,... 3 1, 2 1, 3? 2 1 3 1 2 1 1, 2 2, 3? 2 1 3 2 3 2 k,l m, n k,l m, n kn > ml...?

More information

漸化式のすべてのパターンを解説しましたー高校数学の達人・河見賢司のサイト

漸化式のすべてのパターンを解説しましたー高校数学の達人・河見賢司のサイト https://www.hmg-gen.com/tuusin.html https://www.hmg-gen.com/tuusin1.html 1 2 OK 3 4 {a n } (1) a 1 = 1, a n+1 a n = 2 (2) a 1 = 3, a n+1 a n = 2n a n a n+1 a n = ( ) a n+1 a n = ( ) a n+1 a n {a n } 1,

More information

8 i, III,,,, III,, :!,,,, :!,,,,, 4:!,,,,,,!,,,, OK! 5:!,,,,,,,,,, OK 6:!, 0, 3:!,,,,! 7:!,,,,,, ii,,,,,, ( ),, :, ( ), ( ), :... : 3 ( )...,, () : ( )..., :,,, ( ), (,,, ),, (ϵ δ ), ( ), (ˆ ˆ;),,,,,,!,,,,.,,

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

3 m = [n, n1, n 2,..., n r, 2n] p q = [n, n 1, n 2,..., n r ] p 2 mq 2 = ±1 1 1 6 1.1................................. 6 1.2......................... 8 1.3......................... 13 2 15 2.1.............................

More information

ORIGINAL TEXT I II A B 1 4 13 21 27 44 54 64 84 98 113 126 138 146 165 175 181 188 198 213 225 234 244 261 268 273 2 281 I II A B 292 3 I II A B c 1 1 (1) x 2 + 4xy + 4y 2 x 2y 2 (2) 8x 2 + 16xy + 6y 2

More information

Rによる計量分析:データ解析と可視化 - 第3回 Rの基礎とデータ操作・管理

Rによる計量分析:データ解析と可視化 - 第3回  Rの基礎とデータ操作・管理 R 3 R 2017 Email: gito@eco.u-toyama.ac.jp October 23, 2017 (Toyama/NIHU) R ( 3 ) October 23, 2017 1 / 34 Agenda 1 2 3 4 R 5 RStudio (Toyama/NIHU) R ( 3 ) October 23, 2017 2 / 34 10/30 (Mon.) 12/11 (Mon.)

More information

HITACHI 液晶プロジェクター CP-EX301NJ/CP-EW301NJ 取扱説明書 -詳細版- 【技術情報編】 日本語

HITACHI 液晶プロジェクター CP-EX301NJ/CP-EW301NJ 取扱説明書 -詳細版- 【技術情報編】 日本語 A B C D E F G H I 1 3 5 7 9 11 13 15 17 19 2 4 6 8 10 12 14 16 18 K L J Y CB/PB CR/PR COMPONENT VIDEO OUT RS-232C RS-232C RS-232C Cable (cross) LAN cable (CAT-5 or greater) LAN LAN LAN LAN RS-232C BE

More information