2

Size: px
Start display at page:

Download "2"

Transcription

1

2 2

3 [ ] [ ] [ ] 1687 (Prinkipia) (The three laws of motion) (1) ( ) (2) ( ) (3) () Newtonian mechanics [ ] * * [ ] [ ] [ ] Issac Newton 1642/ , [ ] A B A (B A B A B A

4 A., I., ( ),, 1939 R. P., ( ),, 1968 D. L., J. R., (),, 1996 (1) nishii@sci.yamaguchi-u.ac.jp (2) (3)

5 i ii ii ( ) * () * * * () * () Free-Body Diagrams

6 * * * * *

7

8 vi

9 ( ), [ ] 1 1/10 ( 3.3cm) [ ] (inch) (feet) (SI [ ] ) ( ) 1m ( ) SI ( ) [m], [kg], [s] [m][kg][s] MKS SI 2006 [ ] 1/3 m 1 (wikipedia(ja) ) [ ] 1 inch= 2.54 cm 1 feet=12 inch 1/12 inch (1/12 uncia ) 1 inch [ ] Le Système International d Unités The International System of Units. [s], [m], [kg], [A], [K], [mol], [cd] Cs 9,192,631,

10 kg 2.2 [ ] Albert Einstein, , 1933, 299, ± km/s [ ] [ ] [ ] Galileo Galilei, , [ ] (1752 ) [ ] [ ] vector vectum vector() x (position) x(t) [ ] P O x x x(t + h) = x(t) + x 1.1 P (distance) (scalar) [ ], (Origin), [ ] scale 1849

11 1.2 3 t P x(t) h x(t + h) displacement x = x(t + h) x(t) ( 1.1) (velocity) P h x(t) x(t + h) x = x(t + h) x(t), v v = x h x(t + h) x(t) = h (1.1) 2 x h v(t) v(t) = lim h 0 x(t + h) x(t) h (1.2) (differentiation) x dx dt, ẋ x [ ] (speed) (velocity) v (1.1) (1.2) MKS ẋ [ ] (Gottfried Wilhelm Leibniz, , ) d dt ẋ [ ] = [ ] = [m/s] (1.3) [ ] [ 1.1] km/hr 8.23m 23.77m ( ) ( % ) [ ]

12 4 1 % l l = (8.23 m) 2 + (23.77 m) 2 (8 m) 2 + (24 m) 2 = m m l = m 249.4km/hr m = m/( s) = /m / 3 s / 3 /m = 0.36 s (1.4) [ ] x 1 (1 + x) n 1 + nx 1 + x 1 + x/ / = 25.4 [ ] 2% (1) m km/h m/s (2) (3) 36 s

13 1.2 5 [ 1.2] A,B x A (t), x B (t) 2 A, B t x A (t) = x B (t) = 3 km (1) h = 10 A x A (t + h) = 9 km a t t + h b t t + h (km/h m/s ) (2) B t h = 10 x B (t h) = 13 km a t h t b t h t (km/h ) (3) B t t + h x = 10 km t + h B [ ] (1) a t t + h A x x = x A (t + h) x A (t) = 9 km 3 km = 6 km ( ) ( ) b v v = x h = 6 km 10 min 6 km = hr 6 km 60 = 10 hr = 36 km/hr ( ) = m s = 10 m/s ( )

14 6 1 (2) a t h t B x x = x B (t) x B (t h) = 3 km 13 km = 10 km ( ) ( ) 10 km b v x(t) x(t h) v = h 10 km = 10 min 10 km = 10 min 60 min/hr 10 km 60 = 10 hr = 60 km/hr (3) t t + h B x x = x(t + h) x(t) t + h x(t + h) x(t + h) = x(t) + x = 3 km 10 km = 7 km. B t + h 7 km [ 1.3] [ ] 50 position [m] 100 O time [s] v(t) 0 t < 10 s v = 100 m 0 m 10 s 0 s = 10 m/s.

15 t < 20 s v = 100 m 100 m 20 s 10 s 20 t < 30 s v = 50 m 100 m 30 s 20 s = 0 m/s. = 5 m/s. 10 m/s (0 t < 10s) v(t) = 0 m/s (10 t < 20s) 5 m/s (20 t < 30s) velocity [m/s] 10 O time [s] ( ) 1.2 ) 10t [m] (0 t < 10s) x(t) = 100 [m] (10 t < 20s) 5t [m/s] (20 t < 30s) ( ) t ( ( )) [ ] [ ] ( ) t [] (acceleration) t t + h h a a = v(t + h) v(t) h t (1.2) a(t) = lim h 0 v(t + h) v(t) h (1.3) a v(t) x a = dv dt = v a = d2 x dt 2 = ẍ ẍ (1.2) (1.3) MKS [] = [ ] [ ] = [m/s] = [m/s 2 ] (1.4) [s]

16 8 1 [ 1.4] t = velocity [m/s] 4 O time [s] (1) 0 (2) (3) 11 (4) [ ] (1) 0 t = 4 6 s (2) t = 6 9 s (3) a 0 t < 4 s 4 s t < 6 s 6 s t < 9 s 9 s t < 12 s a = a = a = a = 8 m/s 0 m/s 4 s 0 s 8 m/s 8 m/s 6 s 4 s 4 m/s 8 m/s 9 s 6 s 0 m/s ( 4) m/s 11 s 9 s = 2 m/s 2 = 0 m/s 2 = 4 m/s 2 = 2 m/s 2 2 m/s 2 (0 s t < 4 s) 0 m/s 2 (4 s t < 6 s) a(t) = 4 m/s 2 (6 s t < 9 s) 2 m/s 2 (9 s t < 11 s) ( ) (1.5) ) 2t m/s (0 s t < 4 s) 8 m/s (4 s t < 6 s) v(t) = 4(t 8) m/s (6 t < 8 s) 2(t 11) m/s (8 t < 11 s) (1.6)

17 1.3 9 t ( (1.5)) (4) t = 6 8 s t = 9 11 s t = 6 8 s t = 9 11 s [ 1.5] x t x = at 2 (a: ) [ ] (1) ẋ ẍ ẋ = dx dt = 2at ẍ = dẋ dt = 2a x(t) ẋ(t) ẍ(t) d dt d dt 位置 速度 加速度 x dt ẋ dt ẍ 1.3,, (integration) ( 1.3) km v(t) v(t)

18 10 1 (indefinite integral) v(t)dt (1.7) x(t) v(t) (ẋ(t) = v(t)) v(t)dt = x(t) + C (C ) (1.8) v v 0 v = v 0 C ( t = 0 ) O x x 1 x 0 O t x = v 0 t + x 0 x = v 0 t + x 1 t v(t) t 0 t f ( ) t = t f t 0 n x ( 1.5) 1.4 v( ) x( ), (t = 0 ) x v(t 0 ) t + v(t 1 ) t + v(t 2 ) t + + v(t n 1 ) t n 1 = v(t k ) t (1.9) k=0 t 1 = t 0 + t, t 2 = t t,, t f = t n = t 0 + n t t n x x = lim n k=0 n 1 v(t k ) t. lim n 1 n k=0 tf, n v(t) t dt t 0 O v(t) v(t) t t 0 t 1 t 2 t k t k+1 t n = t f t 1.5 t x = tf t 0 v(t)dt (1.10) v(t) (definite integral) () v(t)dt

19 v(t) X(t), dx(t) dt ( (1.8) ) = v(t) x(t) X(t) = x(t) + C (1.11) t 0 t x x = X(t) X(t 0 ) = {x(t) + C} {x(t 0 ) + C} (1.10) x = t = x(t) x(t 0 ) (1.12) t 0 v(t)dt = x(t) t t 0 = x(t) x(t 0 ) (1.13) (1.13) x(t) = x + x(t 0 ) = t t 0 v(t)dt + x(t 0 ) x(t) x(t 0 ) a(t) v(t) = t t 0 a(t)dt + v(t 0 ), v(t) a(t) t 0 t x v x = v = t t 0 v(t)dt = x(t) x(t 0 ) t t 0 a(t)dt = v(t) v(t 0 ) x(t) = v(t) = t t 0 v(t)dt + x(t 0 ) t t 0 a(t)dt + v(t 0 )

20 12 1 [ 1.6] (1) 1 v(t) (t = 0, 1, 2,, 10 [s]) t = 1 s v(t) t 10 (2) t (3) v t [ ] (1) t=0 v(t) t = (v(0) + v(1) + v(2) + + v(9) + v(10)) t = ( ( 4) + ( 2)) m/s 1 s = 34 m ( ) (1.14) t (2) 1.7 (2 + 8) s 8 m/s 3 s ( 4) m/s = 34 m ( ) (3) (1.6) velocity [m/s] 8 4 O time [s] velocity [m/s] 8 4 O time [s] x = 4 0 2tdt dt ( 4(t 8))dt + = t t 6 4 2(t 8) (t 11) = 34 m ( ) (t 11)dt 1.4 x(t) ẍ(t) (

21 1.4 13

22 14 1

23 ( ) ( ) (Newton s first law of motion: Law of inertia) [1] (force) [ ] () [ ] (Aristotle,BC ) 1 [ ] [ ] Nicolaus Copernicus, , or

24 16 2 [ ] wiki/galileo_galilei (Wikipedia(ja) ) [ ] (Christian Huygens, , ) (Constantijn Huygens) 2.3 [ ] [2]p.31 (Vincenzo Galilei) 1/16 (Wikipedia(ja) ) 19 (1583 ) [ ] [ ] (1656 ) [ ] *1 (2.3 ) (2.2 ) *1 (p.35) 1586

25 2.1 ( ) * [ ] () ( ) [ ] [ ] A B [ ] ( ) ( ) [ ] [ ] [ ] 2.5 [ ]

26 18 2 [ ] ( 7.5 ) [ ] [ 2.1] 2.2 () (Newton s second law of motion : Law of acceleration) [ ] (Leonhard Euler, ) Mechanica (equation of motion) [ ] ma = F (2.1) a F m ( ) (mass) (inertia mass) 1 kg (2.1) m a = F m (2.2) MKS (2.1) [ ] = [] = [kg m/s 2 ] (2.3) [N]( ) [N] = [kg m/s 2 ] (2.4) [N] a F = ma (2.5)

27 2.2 () 19 (inverse dynamics) ( ) (2.1) ( ) (forward dynamics) m [ ] (material point) x m O x 2.1 mẍ = 0 (2.6) [ ] m [ ] ( ) ẍ = 0 ẋ = 0dt = C 1 (C 1 : ) (2.7) [ ] ẍ = 0 ẋ(0) = v 0 C 1 = v 0 ẋ = v 0 (2.8) ẋ v 0 (2.8) (v 0 0) (v 0 = 0) (2.7) x = v 0 t + C 2 (C 1, C 2 : ) (2.9) x(0) = x 0 x = v 0 t + x 0 (2.10) [ 2.2] (1) (t = 0 ) 0 v 0 ( 0) t = 0 (2)

28 F mẍ = F m O m F 2.2 x ẍ = F m F ẋ = m dt = F m t + C 1 (C 1 ) (2.11) ( ) F x = m t + C 1 dt = 1 F 2 m t2 + C 1 t + C 2 (C 2 ) (2.12) 1 2 (2.11),(2.12) F = 0 (2.7)(2.9) n [ ] x(t) t = 0 x(0) = 0, ẋ(0) = 0 [ 2.3] F m t = 0 [ ] 2.2.4

29 2.2 () 21 [ 2.1] 1.4 (1) (2) (3) 800kg [ ] (1) (2) (3) F F = 800 [kg] ( 4) [m/s 2 ] = 3200 [N] (2.13) 3200 N [ 2.2] m t = 0 0 t t 1 [ ] F t 1 < t t 2 F t 2 [ ] (1) 0 t 1 (2) t 2 t 1 (3) t 1 t 2 (4) (5) 0 (6) 0 (7)

30 22 2 [ ] [ ] 0 t t 1 x ( 2.3) [ ] (i) 0 t t 1 O O m (a) (b) F F m 2.3 (a) 0 t t 1 (b) t 1 t t 2 x x mẍ = F (2.14) [ ] 1 F/m m [ ] ẍ = F m F ẍdt = m dt (2.15) ẋ = F t + C (C : ) (2.16) m ẋ(0) = C ẋ(0) = 0 C = 0 ẋ = F m t (2.17) x = 1 F 2 m t2 + C (C : ) (2.18) (t = 0) x(0) = C x(0) = 0 C = 0 (ii) t 1 t t 2 x = 1 F 2 m t2 (2.19) mẍ = F (2.20)

31 2.2 () 23 [ ] ẋ = F m t + C (2.22) m ẍ = F m (2.21) (2.21) (2.23) C [ ] ẍdt = F m dt ẋ = F m (t t 1) + C (C : ) (2.23) t 1 ẋ(t 1 ) = C (2.17) ẋ(t 1 ) = F m t 1 C = F m t 1 [ ] [ ] (2.24) ẋ = F m (t 2t 1) ẋ = F m (t t 1) + F m t 1 = F m {(t t 1) t 1 } (2.24) x = F { } 1 m 2 (t t 1) 2 t 1 (t t 1 ) + C (C : ) x(t 1 ) = C [ ] (2.19) x(t 1 ) = 1 2 C = 1 F 2 m t2 1 x = F { } 1 m 2 (t t 1) 2 t 1 (t t 1 ) + 1 F 2 m t2 1 = F { (t t1 ) 2 2t 1 (t t 1 ) t 2 2m 1} (1) 0 a 0 t t (2.17) t > t 1 0 (2.24) ẋ = 0 F m O F m v F m t 1 O F m t 1 F m t2 1 (2.25) t t [ ] (2.24) ẋ = F m (t 2t 1) x = F m ( 1 2 t2 2t 1 t) + C 0 = F m {(t t 1) t 1 } t = 2t 1 ( ) 0 2 F m t 1 x F m t2 1 1 F 2 m t2 1 O t t 1 2t 1 3t 1 (2 + 2)t 1 2.4

32 24 2 (2) (2.25) x(t) = 0 t T = t t 1 T T = t t 1 0 = F { (t t1 ) 2 2t 1 (t t 1 ) t 2 2m 1} T 2 2t 1 T t 2 1 = 0 (2.26) T = (1 ± 2)t 1 (2.27) t = T + t 1 t > t 1 t 2 [ ] [ ] t = (2 2)t1 t 2 = (2 + 2)t 1 ( ) (3) (2.15)(2.21), (2.17)(2.24), (2.19)(2.25) 2.4 = (1 ± 2)t 1 + t 1 = (2 ± 2)t 1 (2.28) t = 0 t = t 1 t = 2t 1 F F t = (2 + F 2)t 1 t = 3t 1 F O 2m t2 F 1 m t (4) t 1 < t < 2t 1 ( 2.5) (5) t 1 < t < 2t 1 x t = 2t 1 ( 2.5) v = (6) v(t) = t 0 a(t)dt + v(0) (2.29) v(0) = 0 v(t) = = t 0 t0 1 a(t)dt t a(t)dt + a(t)dt t 1 (2.30) a F m O F m v F m t 1 O F m t 1 2 F m t 1 x F m t2 1 1 F 2 m t2 1 O S D t t 1 2t 1 3t 1 (2 + 2)t t t

33 2.2 () 25 a > 0 t 1 t v = 0 0 ( 2.6) (7) x(t) = x(0) = 0 t 0 x(t) = v(t)dt + x(0) (2.31) t 0 v(t)dt (2.32) y = v(t) t t = 0 0 x = 0 t 2 S D ( 2.6) * (2.1) [1] [1] d (mv) = F (2.33) dt mv (linear momentum momentum) (2.1) (2.1) [ ] [ ] 5.1

34 26 2 [ 2.4]? * (2.1) F (2.1) [ ] [3], p.14 [ ] m/s 2 (gravitational acceleration) g g 9.8 m/s 2

35 (universal gravitation) m F 2.7 mÿ = F F y 2.7 F ÿ = g F = mg (2.34) F m m F = mg [ ] (, weight) 1kg 1[kgw]() [ ] 1 kg [ ] [ ] 1 kgw 1 kg m/s 2 1kgw=1kg 9.8m/s 2 = 9.8N 10 N 1 kg [ ] 2 [ ] 2.1 (1) 1kg ()? (2) (3) 1 [N] ( [ ] [ ] (aether, ether) (p.16) (wikipedia(ja) ) [ ] [ ], 3 (1) [ ] (Johannes Kepler, , ) [ ] Tycho Brahe, ,

36 28 2 (2) (3) Moon [ ] [1]p.1 [ ] Earth ( 2.8) [ ] ( [4]p.681) ( p.696) [1] 1 [ ] G = [m 3 /kg s 2 ] [ ] mg F 2.8 ( ) ( ) ( ) ( 2.9) F = G Mm r 2 (2.35) G [ ] (gravitational constant of universe) r [ ] M m [ ] 5.4 () 2.6 (gravitational mass) () r F F m M (mass)

37 (equivalence principle) [ ] ( 2.10) F = G Mm ˆr (2.36) r2 [ ] ˆr [ ] F ˆr F r [ ] m M 2.10 m M [ ] ˆr r ˆr = r r [ ] [ 2.5] 1kg 1mm?? [ ] ( ) () (2.34) 2 (2.35) Earth mg = G Mm R 2 R (2.34) (2.35) ( 2.11) mg = G Mm R 2 (2.37) 2.11 R R

38 30 2 M m R g = G M R 2 (2.38) [ ] (2.37) m, (2.38) [ ] (Henry Cavendish , ) 1874 http: // [ ] p.102[5] m [ ] m F R G (2.38) M r [ ] Wikimedia commons [ ] G = [m 3 /kg s 2 ] G = [m 3 /kg s 2 ] [ ] Eratosthenes, BC275 -BC195 [ ] km 50 [ 2.3]

39 [ ] L L = [km/day] 50 [day] [km] R R = L 2π [km] R = [km] [ ] 2 [ 2.4] (1) g G, R, M (2) g 9.8 [m/s 2 ] G = [m 3 /kg s 2 ] [ ] (1) m mg, G GmM/R 2 [ ] [km], [km] mg = G mm R 2 g = G M R 2 ( ) (2.39) (2) (2.39) M = g G R2 M = 9.8 [m/s 2 ] [m 3 /kg s 2 ] ( [m]) 2 = [kg] R = [km] M = [kg]

40 32 2 M = [kg] ( ) [ 2.5] y y = 0 m y 0 m v 0 t = 0, g (1) (2) (3) y 0 = 20 m v 0 = 0 m/s (g 10 m/s 2 ) (4) y 0 = 20 m 1 s v 0 t = 0 [ ] ÿ = g [ ] (1) [ ] mÿ = mg (2.40) y y0 O mg (2) (2.40) m ÿdt = ( g)dt ẏ = gt + C 1 (2.41) ẏdt = ( gt) + C 1 dt y = g 2 t2 + C 1 t + C 2 (2.42) (2.41)(2.42) t = 0 ẏ(0) = C 1, y(0) = C 2 (2.43) ẏ 0 (0) = v 0, y(0) = y 0 C 1 = v 0, C 2 = y 0 (2.42) y = 1 2 gt2 + v 0 t + y 0 ( ) (2.44)

41 (3) y 0 = 20 m, v 0 = 0 m/s (2.44) y(t) = 0 m t t 2 s 0 = 1 2 gt m t 2 = 2 20 m g = 2 20 m 9.8 m/s 2 ( ) (4) (2.44) v 0 4 s (2.45) v 0 = y y gt2 t y 0 = 20 m, t = 1 s y(1) = 0 m v 0 (2.46) v 0 = 0 m 20 m m/s2 (1 s) 2 1 s 15 m/s ( ) (2.47) v 0 < 0 t = 0 ( ) [ 2.6] m θ v 0 x y g [ ] (1) (2) () t (3) (y = 0) (4) (5)?? (6) 100km m? (1) ( 2.13) { mẍ = 0 ( ) (2.48) mÿ = mg y v 0 sin θ θ v 0 cos θ v 0 mg 2.13 x

42 34 2 (2) m { ẋ = C x ẏ = gt + C y ( C x, C y ) (2.49) { x = Cx t + C x2 y = g 2 t2 + C y t + C y2 ( C x2, C y2 ) (2.50) (2.49)(2.50) t = 0 { { ẋ(0) = C x x(0) = C x2 (2.51) ẏ(0) = C y y(0) = C y2 { ẋ(0) = v 0 cos θ ẏ(0) = v 0 sin θ { x(0) = 0 y(0) = 0 (2.52) (2.51)(2.52) { C x = v 0 cos θ { C x2 = 0 = v 0 sin θ C y2 = 0 C y (2.53) (2.49)(2.50) { ẋ = v 0 cos θ ẏ = gt + sin θ x = v 0 cos θ t y = 1 2 gt2 + v 0 sin θ t (2.54) ( ) (2.55) (2.54) g = 0 (2.54) (2.55) = + ( 2.14) (2.55) t (y = ax 2 + bx + c ) (3) (2.55) 2 y = 0 t y 1 2 gt2 x 0 = g 2 t2 + v 0 sin θ t (2.56) t = 0, 2v 0 g sin θ (2.57) 2.14 t 1 2 gt2

43 t = t = 2v 0 g sin θ ( ) (2.58) m g [ ] (4) (2.58) (2.55) 1 [ ] x = v 0 cos θ 2v 0 g sin θ = v2 0 sin 2θ ( ) (2.59) g m (5) ( (2.59)) sin 2θ 1 θ = π/4 ( ) (2.60) x = v2 0 g ( ) (2.61) (6) (2.61) v = 100km/h x = (100 km/h)2 9.8 m/s 2 78 m ( ) [ ] ( 2.15) [ ] (Simon Stevin, , ) wiki/simon_stevin

44 36 2 mg sin θ θ θ mg F θ F cos θ (a) (b) 2.16 (a) (b) θ F ( 2.16) [ 2.7] M m M g [ ] (1) M m (2) 2 (1) 2 M m (1) M m F M, F m F M = Mg sin 30 = 1 2 Mg ( ) 3 F m = mg sin 60 = 2 mg (2) F M = F m FM M mg m m Fm 2.17 ( ) ( ) 3 2 Mg = 1 2 mg M m = 3 (2.62) M m 3/1

45 [ 2.6] 2.16 A 2.18 AB CA AB CA B C 2.18 ( ) [ ] 1687 F 1 F 2 F 3 F 2 F 1 + F 2 F F 1 + F 2 + F 3 = 0 [ ] Pierre Varignon, , ( 2.19) F 1 F 2 F m F i (i = 1,..., N) N ma = F i (2.63) [ 2.7] F 1 F 2 F 3 F 1 F 2 F 3 i= * F 1 F 2 F 1 F 2 F 1, F 2 F

46 38 2 ( 2.19) F 1 F 2 F 3 F 1 F (a) (F 1 = F 2 ) F 1 ϕ F 1 F 2 ( 2.21(b)) F 3 F 3 F 3 F 2 F 2 F 1 F 2 F F 1, F 2 F 1, F 2 F 3 = F 1 cos ϕ + F 2 cos(θ ϕ) (2.64) θ F 1 F 2 F 1 = F 1, F 2 = F 2, F 3 = F 3 F 3 ϕ d F 3 dϕ = F 1 sin ϕ + F 2 sin(θ ϕ) = 0 (2.65) ϕ F 1 F 2 F 3 F 1 = F 2 F 1 sin ϕ = F 2 sin(θ ϕ) (2.66) ( 2.21(a)) (2.65) F 2 F 2 F 3 θ ϕ F 1 F 1 F 3 F 2 F 3 θ ϕ F 1 (a) (b) 2.21 (a) F 1,F 2 F 1 (2) F 1,F 2 F () *

47 2.5 () * 39 A x s(t) x O x A O s(t) x 2.22 x(t) x(t) a, b x = x + s(t) (2.67) s(t) = at + b (2.68) (2.67) x = x + at + b (2.69) (galilean transformation) [ 2.8] A x x A F A mẍ = F (2.70) m x = F (2.71) [ ] x x (2.69) (2.70) (2.71) ẍ = x m x = F 0 ( (2.69) a = 0 ) (galilean invariance)

48 40 2 ( ) [ 2.9] a s(t) = a 2 t2 (2.72) m x = F ma (2.73) [ ] (2.67) (2.72) ẍ = x + a (2.74) (2.70) m( x + a) = F

49 2.6 () 41 m x = F ma (2.75) (!) [ 2.8] 2.6 () (Newton s Third law of motion : Law of reciprocal actions) ) [1] 2.3 (Law of reciprocal actions) [ ] S F i 0 F i = 0 i S [ ] [ ] 5 [ ]

50 42 2 N y Object mg m x y x m Ground N mg (a) (b) 2.23 (a) (b) Free-Body Diagrams 2.7 Free-Body Diagrams [ ] Free-Body Diagrams [ ] Free-Body Diagrams [ ] (1) (2) (3) [ ] [ ] [ ] (4) [ ] 5 (5) [ ] N mg Free-Body Diagrams (1) ( ) (2) + -

51 2.7 Free-Body Diagrams 43 mg y x N N mg mg m y Object x Ground mg mg mg m (a) (b) 2.24 (a)free-body Diagrams N (b) [ 2.10] m 2.23(a) g (1) Free-Body Diagrams (2) (3) [ ] (1) 2.23(b) Free-Body Diagrams mg [ ] (normal force) [ ] N (ground reaction force) [ ] (3.3 ) [ ] normal normal force N Free-Body Diagrams 2.24(a) (2) 2.23(a) x, y

52 44 2 [ ] mẍ = N + mg x = (x, y), N = (N, 0), g = (0, g) + [ ] { mẍ = 0 mÿ = N mg ÿ = 0 (2.76) m 0 = N mg N = mg N = mg > 0 ( ) mg Free-Body Diagrams mg 2.24(b)

53 T T T T mg ceil string ball (a) (b) 3.1 (a) (b) Free- Body Diagrams. (tension, tensile strength) [ ] [ ] T T T T T T T T () ( 3.3) [ ] tension T [ ] 3.2

54 46 3 Free-Body Diagrams,?? [ 3.1] 3.4 A, B A F A, B m A, m B A, B T g (1) A B Free-Body Diagrams x xa xb O 3.4 F A B (2) x A, B x A, x B A, B x (3) A, B a T [ ] ( ) A B Free-Body Diagrams 3.5 ( ) 3.5 A, B { m A ẍ A = F m A g T (3.1) m B ẍ B = T m B g F T ( ) (3.1) ẍ A = ẍ B = a { m A a m B a = F m A g T = T m B g T A mag B mbg 3.5 A B Free- Body Diagrams F a = g m A + m m B B T = F m A + m B F = 0 A, B 0 m A = 0 m B = 0 0 F

55 [ 3.2] θ A A O x B A, B m A, m B y B θ A O g (1) A, B ( ) Free-Body Diagrams (2) A x B y A, B (3) ẍ = ÿ ẍ (4) A, B [ ] ( ) T, A N Free- Body Diagrams A T T T T N mag sinθ mbg mbg N mag θ θ mag B slope A 3.6 A, B ( ) Free-Body Diagrams ( ) Free-Body Diagrams A, B { m A ẍ m B ÿ = T m A g sin θ = m B g T (3.2) (θ = 0) A θ = 0 A

56 48 3 ( ) (3.2) ẍ = ÿ ẍ = m B m A sin θ g A + m B T = m Am B (1 + sin θ)g m A + m B (3.3) m A = 0 m B ( g) 0 m B = 0 m A ( g sin θ) 0 ( ) A, B 0 (3.3) ẍ = 0 0 = m B m A sin θ g m A + m B m B g = m A g sin θ A B θ = 90 m A = m B θ = 0 m B = [ ] (Robert Fooke, , ) ( org/wiki/ ) [ ] [ ] x k kx k [ ] [ ] [ ]

57 [ 3.3] 3.7 ( k) m x O x k O 3.7 m x x g (1) F, () N Free-Body Diagrams (2) x < 0 x > 0 (3) x(0) = a, ẋ(0) = 0 [ ] (1) N N Free-Body kx kx kx Diagrams 3.8 kx mg x < 0 N kx mg kx x (2) mẍ = kx ( ) (3.4) (x > 0) ( kx < 0) (x < 0) ( kx > 0) (3) (3.4) x(t) = A cos(ωt + ϕ) (3.5), A(> 0) ω [ ] ϕ t = 0 [ ] SI [rad/s]

58 50 3 (3.4) (3.5) d dt x = d A cos(ωt + ϕ) dt = ωa sin(ωt + ϕ) d 2 dt 2 x = d ( ωa sin(ωt + ϕ)) dt = ω 2 A cos(ωt + ϕ) (3.4) = ω 2 x (3.6) ω 2 mx = kx k ω = m ω, (3.5) t = 0 k x(t) = A cos( t + ϕ) (3.7) m x(0) = A cos ϕ ẋ(0) = Aω sin ϕ, x(0) = a, ẋ(0) = 0 a = A cos ϕ (3.8) 0 = Aω sin ϕ (3.9) (3.8) A 0, cos ϕ > 0 (3.9) sin ϕ = 0 ϕ = 0 sin ϕ = 0 ϕ = π cos ϕ > 0 ) (3.8) A = a x x = a cos k m t (3.10) [ ] T ω T [s] ω [rad/s] T = 2π/ω a T = 2π/ω = 2π m [ ] k (k ) m

59 [ 3.4] k x m ( ) O k [ ] (1) (2) (3) (4) A t = 0 t (1) 3.9 (2) mẍ = kx + mg = k(x mg ) ( ) (3.11) k (3) 0 (3.11) 0 [ ] x 0 k(x 0 mg k ) = 0 x 0 = mg k ( ) x kx mg m 3.9 (4) A t = 0 x = A + x 0 (3.4) x(t) = A cos ωt + x 0 (3.12), ω ẋ = ωa sin ωt ẍ = ω 2 A cos ωt = ω 2 (x x 0 ) (3.11) ω 2 m = k k ω = m [ ] 0

60 52 3 ω, (3.12) k x(t) = A cos m t + x 0 k = A cos m t + mg k ( ) t = v [ ] (Leonardo da Vinci, , ) [ ] Wikipedia(ja) History of science: Friction, abc/history.htm [ ] [ ] Guillaume Amontons, , [ ] (Charles Augustin de Coulomb, , ) [ ] Wikipedia(ja) (frictional force) 200 [ ] [ ] (1) (2) ( ) [ ] 200 [ ] 100 [ ] (static friction) (kinetic friction) [ ] (1) (2) F N N mg F mg v Free-Body Diagrams F N ( 3.10,3.11) (1) (2) (3) (

61 ) µ 0 N µ 0 N (4) (5) ( ) µ N µn (6) (µ 0 N) (µn) Free- Body Diagrams [ 3.5] m ( 3.12) µ 0, µ g y x 3.12 (1) F F f N a Free-Body Diagrams b x y c F f F (2) F 1 F 1 (3) F f [ ] (1)(a) Free-Body Diagrams 3.13 (1)(b) { mẍ = F F f mÿ = N mg (3.13) Ff N F mg Ff F (1)(c) ẍ = ÿ = 0 { 0 = F F f 0 = N mg (3.14) N mg 3.13 Free- Body Diagrams

62 54 3 { F f N = F = mg (3.15) (F f = F ) (2) µ 0 N F f µ 0 N (3.16) (3.15) F µ 0 mg (3.17) F F > µ 0 mg (3.18) F 1 = µ 0 mg (3) F f µn (3.15) F f = µn = µmg ( ) (3.19) [ 3.6] θ m ( 3.14) µ 0, µ g (1) Free-Body Diagrams m θ 3.14 (2) (3) m, g θ (4) θ θ (5) (6)

63 [ ] (1) N, F 3.15 (2) x y { mẍ mÿ = mg sin θ F = N mg cos θ (3.20) (3) ẍ = 0 y F x mg cos θ N N mg sin θ θ mg F θ mg F = mg sin θ (3) (3.21) 3.15 Free-Body Diagrams (4) µ 0 N F µ 0 N (3.22) N ÿ = 0 (3.20) (3.22) (3.21) N = mg cos θ (3.23) mg sin θ µ 0 mg cos θ tan θ µ 0 θ = tan 1 µ 0 (5) 3.15 µn = µmg cos θ (6) (3.20) mẍ = mg sin θ µmg cos θ ẍ = g(sin θ µ cos θ)

64 (viscosity) v σ > 0 σv σv σ [σ] = [F ] [v] = [N] [m/s] = [Ns/m] = [kg/s] O y 3.16 σv mg Free-Body Diagrams [ 3.7] v( ) m 3.16 σ) y (1) 3.16 (v ) (2) (3) m σ (4) [ ] (1) v = ẏ > 0( ) v = ẏ < 0 σv (2) mÿ = σv + mg ( ) (3.24) σ = 0

65 (3) ẏ = v (3.24) m v = σv + mg (3.25) v = σ mg (v m σ ) V = v mg σ (3.26) V = σ m V (3.27) V V = σ m V V dt = σ m dt log V = σ m t + C V = ±e σ m t+c (C ) ±e C C V = Ce σ m t (3.28) (3.26) v = Ce σ m t + mg σ ( ) (3.29) v v 0 = mg σ v 3.17 m σ v 0 v mg σ v = Ce m σ t + mg σ C C = 0 v = mg σ (4) 3.18 v = ẏ v 3.18 v O y t 3.18 σv mg

66 58 3 mÿ = σv mg (3.30) ÿ = σ mg (v + m σ ) (3.31) V = v + mg σ (3.32) (3.27) V (3.28) (3.32) v = Ce σ m t mg σ ( ) (3.33) v v 0 = mg σ

67 59 4 [6] [ ] [ ] 4.1 [ ] ( René Descartes, , ) ( ) [ ] F, v ( v) 2 = F, v = F 4.1 m F O m F x mẍ = F (4.1) F t 1 t 2 = t 1 + t v = ẋ t dt F F dt (4.1) dt m vdt = F dt

68 60 4 dt F dt F F dt t 1 t 2 t 1 t 2 = t 1 + t ( 4.2) t2 t 1 m vdt = mv 2 mv 1 = t2 t 1 t2 F dt t 1 F dt. (4.2) v 1 = v(t 1 ), v 2 = v(t 2 ) (F dt) = t 1 + t F O F F dt t 1 t t + dt t 2 dt 4.2 ( ) mv ( ) (F dt) ( ) (impulse) mv (momentum) (mẍ = F ) (F = 0) mv F (4.2) mv 2 mv 1 = F (t 2 t 1 ) F t = F t (4.3) (4.3) MKS t [] = [ ] = [kg m/s] [ ] = [ ] = [kg m/s] [ 4.1] (1) (2) (3) [ ] t

69 F F ( 4.3) F t M m x M, x m v M = ẋ M, v m = ẋ m 4.3 { Mẍ M = F mẍ m = F (4.4) (t = 0 (t = t) t 0 t 0 Mẍ M dt mẍ m dt = O F x M x m x 4.3 Free-Body Diagrams = t 0 t 0 F dt F dt F (4.5) { M v M ( t) M v M (0) m v m ( t) m v m (0) = F t = F t (4.6) ((1) ) ((2) ) (M > m) ((3) ) F ( 4.1) t 1 t 2 x(t 1 ) x(t 2 ) = x(t 1 ) + x v = ẋ F x dx F F dx (4.1) dx m vdx = F dx

70 62 4 dx F F F dx dt F F dx F F dx x 1 = x(t 1 ) x 2 = x(t 2 ) t 1 t 2 = t 1 + t ( O x 1 x x + dxx 2 dx 4.4 x 4.4) x2 x2 mẍdx = F dx (4.7) x 1 x 1 dx v = ẋ dx dt dx = ẋdt = vdt x2 t2 x 1 mẍdx = t 1 m vvdt = 1 2 mv2 t 2 t 1 = 1 2 mv mv2 1. (4.8) t2 [ ] I = vvdt t 1 t2 I = vvdt t 1 = vv t 2 t1 = v 2 t 2 t1 I I = 1 2 v2 t 2 t 1 t2 t 1 v vdt v 1 = v(t 1 ) = ẋ(t 1 ) v 2 = v(t 2 ) = ẋ(t 2 ) d dt v2 = 2 vv [ ] (4.7) 1 2 mv2 2 1 x2 2 mv2 1 = F dx (4.9) x mv2 ( ) (F dx) ( ) 1 2 mv2 (kinetic energy) (F dx) (work) (mẍ = F ) [ ] 1 2 mv2 = (Gustave Gaspard Coriolis , ) (work) 1829 Calcul de l Effet des Machines (Calculation of the Effect of Machines) F [ ] (F = 0) 1 2 mv2 (t) (F 0) 0 0 [ ] [ ] 0

71 F (4.9) 1 2 mv mv2 1 = F (x 2 x 1 ) 1 2 mv mv2 1 = F x (4.10) F x (4.10) MKS [ ] = [ 2 ] = [kg m 2 /s 2 ] [ ] = [ ] = [kg m 2 /s 2 ] [J](, Joule [ ] ) [ 4.1] F F [ ] 5.1 [ 4.2] 4.1 F m (1) t 2 = t 1 + t [s] x 2 v 2 x 1, v 1 (2) t 1 t 2 (1). (3) F t. (4) (2) (3) F [6]

72 64 4 [ 4.2] 1kg g = 9.8m/s (1) 1 (2) 1 (3) 10 m [ ] (1) t[s] v(t) mv(1) mv(0) = mg 1[s] 1 0 v(1) = v(0) g 1[s] = 9.8[m/s] (4.11) 1 9.8m/s( 9.8m/s) (2) t x(t), 1 2 mv2 (1) 1 2 mv2 (0) = mg {x(1) x(0)} = mgx(1) (4.11) x(1s) x(1) = 1 { v 2 (1) v 2 (0) } 2g 1 = 2 9.8[m/s 2 ] (9.8[m/s])2 = 4.9m (4.12) [m] (3) 10m v mv mv2 (0) = mg ( 10[m] 0[m]) mg 10[m] = 98 [N] v 10 v 2 10 = 2g 10[m] = 196[m 2 /s 2 ] v 10 = 196[m 2 /s 2 ] = (7 2) 2 [m/s] 14[m/s] ( )

73 [ 4.3] m t = 0 θ F 1 F 2 t x l (1) (2) t F 1, F 2 (3) t (4) [ ] (1) ( ) x y N?? { mẍ = F 1 cos θ F 2 mÿ = N + F 1 sin θ mg 0 t t mẍdt = 0 t mÿdt = 0 { mẋ( t) mẋ(0) mẏ( t) mẏ(0) t 0 t 0 (4.13) y F 2 y (F 1 cos θ F 2 )dt x F 2 x (N + F 1 sin θ mg)dt = (F 1 cos θ F 2 ) t = (N + F sin θ mg) t N mg F 1 θ F 1 sin θ F θ F 1 cos θ (4.14) y = ẏ(t) = 0 (4.14) 0 (F 1 cos θ F 2 ) t (2) x (4.13) l 0 mẍdx = = l 0 l 0 (F 1 cos θ F 2 )dx F 1 cos θdx + l 0 ( F 2 )dx

74 66 4 F 1 F mẋ2 ( t) 1 2 mẋ2 (0) = F 1 cos θ l + ( F 2 l) (4.15) (4.8) F 1 F 2 F 1 cos θ l F 2 l F F (3) (4.15) mg 0 F 0 (4) (4.15) F 1 cos θ l + ( F 2 l) 4.3 * m x, F (t) mẍ = F (t) (4.16)

75 4.3 * t 1 t 2 F (4.16) t2 t2 mẍdt = t 1 mv(t 2 ) mv(t 1 ) = t 1 t2 F (t)dt t 1 F (t)dt (4.17) v = ẋ mv 1 F mv(t 2 ) mv(t 1 ) = F t (4.18) t = t 2 t 1 (4.3) x 1 x 2 x 2 x 2 x 1 mẍ dx = x 1 F (t) dx (4.19) x 2 x 1 mẍ dx = t2 t 1 mẍ dx dt dt = 1 2 mv mv2 1 (4.20) v 1 = v(t 1 ), v 2 = v(t 2 ) (4.19) 1 2 mv2 2 1 x 2 2 mv2 1 = F (t) dx (4.21) x 1 F (t) W

76 68 4 F (4.17) (4.21) F 1 2 mv2 (t 2 ) 1 2 mv2 (t 1 ) = F x (4.22) x = x 2 x 1 F θ F cos θ x ( ) 4.6 (4.22) F x = F x cos θ (4.23) θ F x F cos θ F ( 4.6) (4.21) dx dt dx = v dt W W = = x(t 2) x(t 1 ) t2 F (t) dx t 1 F (t) vdt (4.24) [ 4.3] (4.20) x = (x, y, z), dx = (dx, dy, dz) 4.4 ( ) 4.4.1

77 y ( ) () 4.7 m y O 4.7 mg mÿ = mg (4.25) y = y 0, y = h U(h), y = h y = y 0 ( y = h y = y 0 ), U(h) = y0 h ( mg)dy = mg(h y 0 ) (4.26) (y 0 = 0) U(h) = 0 h ( mg)dy = mgh (4.27) [ 4.4: ] U(y) U(y) = mgy [ ] y 1 = y(t 1 ) y 2 = y(t 2 ) (4.25) 1 2 mv mv2 1 = y2 y 1 ( mg)dy v 1 = ẏ(t 1 ), v 2 = ẏ(t 2 ), (4.26) U(h) 1 2 mv mv2 1 = = y0 y 1 ( mg)dy + y0 y 1 ( mg)dy = U(y 1 ) U(y 2 ) y2 y 0 y0 y 2 ( mg)dy ( mg)dy

78 mv2 1 + U(y 1 ) = 1 2 mv2 2 + U(y 2 ) (4.28) [ ] (y = y 1 y = y 2 ) [ ] (mechanical energy) [ 4.5] ( (4.25)) (1) t = 0, t (2) t ( ) [ 4.4] m h x m l θ h θ O (1) l (2) h h h (3) l [ ] (1) 4.8 mẍ = mg sin θ (4.29)

79 x = l x = 0 0 l ( mg sin θ)dx = mg sin θ x 0 l = mgl sin θ ( ) [ ] mg sin θ l W x N mg sin θ θ mg 4.8 W = mg sin θ l = mgl sin θ ( ) (4.30) (2) l cos θ = h (4.30) mgl sin θ = mgh (4.31) ( (4.30) θ = π/2 ) (3) (4.29) x = l x = 0 () 1 2 mv2 l 1 2 mv2 0 = mgh v 0 v 0 = 0 v l l v = 2gh ( ) (4.32) 1 2 mv2 0 + mgh = 1 2 mv2 l + mg 0 ( ) v l

80 72 4 y y = h y = 0 y = h y 1 y 0 ( 4.9) y 1 y 0 h mg [ ] 4.5 y1 y0 y0 ( mg)dy + ( mg)dy = ( mg)dy h y 1 h 4.9 y y 0, 2 3 (4.4.4 ) (conservative force) [ ] [ ] [ ] 4.6 [ ] 4.5 [ ] 4.7 (nonconservative force) * m x 1 x 2 W 12 g x 2 W 12 = mg dx (4.32) x 1 dx θ x 2 W 12 = mg dx cos θ x 1 x 2 y 1 y 2 dy dy = dx cos θ (4.33) y ( 4.10) x 1 θ dx dy = dx cos(π θ) = dx cos θ mg W 12 = y2 mg( dy) = mg(y 1 y 2 ) y 1 (4.34) 4.10

81 U(y) x 0 y 0 W 12 x 2 W 12 = mg dx x 1 x 0 = x 1 x 0 mg dx x 2 mg dx = U(y 1 ) U(y 2 ) (4.35) y U(y) = mgy 4.5 F (x) F (x) U U(x) = x 0 x F (x) dx = x F (x) dx x 0 (4.36) x [ 4.6] k m k O m x x (1) x m (2) x (elastic potential energy) (3) l (4) x 1 x 3 x 2 (x 1 < x 2 < x 3 )

82 [ 4.7] 2.3 M A r m B r = r = r = θ B A (1) B A r 4.11 r + a r O (2) B a A r + a A A (3) r = 0 [ ] (Joseph-Louis Lagrange, ) (George Green, , ) (wikipedia(ja) ) (wikipedia(ja) ) * 4.5 (4.36) U F (x) = U(x) (4.37) F U(x) F (potential) [ ] F U(x) U(x) F U(x) + C (C: ) C (potential energy) [ 4.8] x = (x, y, z), F = (f x, f y, f z ), dx = (dx, dy, dz) (4.36) (x, y, z) (4.37) 4.1 F (1) U(y) = mgy (y ) (2) U(r) = 1 r (r = (x, y, z) )

83 [ 4.5] 4.4 x F m l F (1) h O θ (2) l F (3) l [ ] (1) 4.12 x mẍ = mg sin θ F (4.38) (2) (4.38) x = l x = 0 ( 4.4 ) 1 2 mv2 l 1 2 mv2 0 = mgh + F l. (4.39) ( ) ( ) mv2 l + mg 0 2 mv2 0 + mgh = F l. (4.40) F mg N θ F (3) v 0 = 0 (4.39) ( v = 2 gh + F l ) m ( ) (4.40)

84 * 3 m F C F x 1 = x(t 1 ) x 2 = x(t 2 ) x 1 x 2 mẍ = F C + F (4.41) x 2 x 2 x 2 x 1 mẍ dx = x 1 F C dx + x 1 F dx (4.42) F C U { } 1 1 x 2 2 mv2 2 + U(x 2 ) 2 mv2 1 + U(x 1 ) = F dx (4.43) x 1 v 1 = ẋ(t 1 ), v 2 = ẋ(t 2 ) U(x) F F 4.7 [ ] 5.2 [ ], ( )

85 [ 4.6] m v 0 l µ g [ ] (1) F, N (2) F m, µ (3) F (4) l v 0 (5) µ = km, (1) x, y mẍ = F (4.44) mÿ = N mg (4.45) (2) ÿ = 0 (4.45) N = mg (4.46) F = µn = µmg (4.47) (3) (4.44) x = 0 x = l l 0 mẍdx = l 0 ( F )dx 1 2 m mv2 0 = F l 1 2 mv2 0 = F l (4.48) l mv2 0 F l (4) (4.47) (4.48) l = v2 0 2µg (4.49) l m

86 78 4 (5) v = 72km/h, µ = 0.5, g = 9.8m/s 2 l (4.49) l = v2 0 2µg (72km/h) 2 = m/s 2 = ( m/( s)) 2 9.8m/s 2 40m ( ), 1,, (20m ) [ 4.9] m x 1 x 3 x 2 (x 1 < x 2 < x 3 ) x 1 x 2 x 3 x µ g

87 A B A? B [ ] m A, m B A, B v pre A m A v pre A, vpre B + m Bv pre B vpost = m Av post A A, vpost B + m Bv post B (5.1) A,B [ ] (p.59) (p.16) m A v A (t) + m B v B (t) = C (C:) (5.2)

88 80 5 [ 5.1] 5.1 m A, m B A, B A, B v A (t), v B (t) t A B F (t) (1) (2) (5.2)(5.1) [ ] (1) A, B { m A ẍ A (t) m B ẍ B (t) = F (t) = F (t) (5.3) F (t) 0 F = 0 (2) 2 (5.3) m A ẍ A (t) + m B ẍ B (t) = 0 d dt (m Av A (t) + m B v B (t)) = 0 (5.4) (5.2) m A v A (t) + m B v B (t) = C (C : ) (5.5) (5.1) 2 (5.3) 2 [ 5.2] M ( M) v ( m m) x xm xm O (1) V M, m, v (2) [ ]?

89 (1) M 0 + mv = (M + m)v (5.6) V = m v ( ) (5.7) M + m (1) V (2) (m M) (3) (m M) v (2) 1 2 (M + m)v mv2 = 1 ( m (M + m) 2 = 1 mm 2 M + m ) mv2 M + m v2 (5.8) (inelastic collision) (elastic collision) [ 5.3] 2 A, B B v A A,B? () A,B m A, m B [ ] A,B v A, v B. m A v = m A v A + m B v B (5.9) 1 2 m Av 2 = 1 2 m Av 2 A m Bv 2 B. (5.10)

90 82 5 (5.9) v A = v m B m A v B (5.10) v A (5.9) v B 2 { v A = v v A = m A m B v v B = 0, m A + m B v B = 2m A v m A + m B ( ) m A = m B { v A = 0 v B = v A B A [ 5.4] m 2 B v A A 30 A,B [ ] A x A y y A,B v A, v B 1 2 mv2 = 1 2 mv2 A mv2 B, (5.11), v A = v A, v B = v B y v v A v B θ x v 2 = v 2 A + v 2 B (5.12). mv = mv A + mv B v = v A + v B (5.13)

91 v = (v, 0) 2 v A v B v (5.2) v A θ v A v v A = (v A cos 30, v A sin 30 ) = ( 3 2 v A, 1 2 v A) (5.14) 2 [ 1] (5.13) v B 5.2 v B = v v A (5.15) (5.14) v B = (v 3 2 v A, 1 2 v A) (5.16) (5.12) v A 2 v A = 0, 3 2 v (5.17) (5.14), (5.16) v A, v B 2 { v A = (0, 0) v B = (v, 0), v A = v B = ( ) v, 4 v ( ) v, 4 v ( ) [ 2] (5.13) v B v B = (v v A ) (v v A ) (5.12) v 2 = v 2 A + v 2 B + 2v A v B (5.18) v A v B = 0 (5.19) 2 v A v B [ ] ( 5.2) [ ]va v B (5.12) v B v A ( (5.14)) v B = ( 1 2 v B, 3 2 v B) (5.20) (5.14) (5.13) v A = 3v B (5.21)

92 84 5 v A > 0 ( (5.14) ) v B > 0 (5.14),(5.20) (5.12) v B = v/2 (5.20) v B v A = ( v, 4 v) v B = ( 1 ( ) 3 4 v, 4 v) N N m 1,m 2,...,m N v 1,v 2,v 3,...,v N N m 1 v 1 + m 2 v 2 + m N v N = C (C: ) 5.1 (1) (2) 5.2 [ ] [ ] 0, 5.3 (Photo from http: //en.wikipedia.org/wiki/image: Galileo_Thermometer_closeup.jpg)

93 [ ] [ ] 1714 [ ] 1738 ( [ ] ) * [ ] [ ] ( 5.4) [ ] 5.4 (Photo from Joule%27s_Apparatus_%28Harper%27s_Scan% 29.png) [ ] [ ] (Daniel Fahrenheit, ) [ ] Daniel Bernouli, , [ ] (Robert Boyle, ), 1662 [ ] (Japmes Prescott Joule, , ) ( ) (p.30) (p.74) [ ] (0 [ ] Julius Robert von Mayer, *1 (James Clerk Maxwell, ) (p.30)

94 86 5 [ ] Hermann Ludwig Ferdinand von Helmholtz, [ ] (Johannes Diderik van der Waals, , ) 1873 [ ] 1847 [ ] 1910 [ ] [ ] Robert Brown , [ ] Theodor Svedberg, , 1926 [ ] (Brownian motion) (1827) [ ] (1905) 5.5. (Zweistein 2006, Wikimedia Commons ) 1905 [ ] [ 5.1]? 1 2 m v 2 T [ ] ( ) 0.012kg 12 1 ([mol]) SI 1 2 m v 2 = 3 2 kt k = [J/K] 1 mol [ ] N A *2 *2 1mol 0.012kg 12 ( Avogadro, Lorenzo Romano Amedeo Carlo, , ) 1811

95 N Am v 2 = 3 2 RT R = kn A = [JK 1 mol 1 ] 27 C 300 K [ ] N A 14 g A B A B FA A f 5.6 F A, F B ( 5.6) A B x A, x B A B f { m A x A m B x B = F A + f = F B f f FB B (5.22) [ ] [K] 0 ( 0.01C ) (William Thomson, ) m A ẍ A + m B ẍ B = F A + F B (5.23) A B (m A + m B )Ẍ = F A + F B (5.24) A B X x A, x B? (5.23) (5.24) X = m Ax A + m B x B m A + m B (5.25) X A B (center of mass) (center of gravity) X M m A + m B (5.24) MẌ = F A + F B (5.26) F A = F B = 0, MẌ = 0.

96 88 5 MẊ = C (C ) [ 5.5] 5.2 m [ ] (1) x M, x m X (2) M, m, v (1) X (5.25) x M xm m xm O X = Mx M + mx m M + m (5.27) (2) (5.27) Ẋ = Mẋ M + mẋ m M + m (5.28) ẋ m = v Ẋ = m M + m v (5.29) N x 1, x 2,, x N X = m N 1x 1 + m 2 x m N x N i=1 = m ix i m 1 + m m N M M = m 1 + m m N = N m i (5.30) i=1

97 F 1, F 2, N MẌ = F 1 + F F N = F i (5.31) [ ] (rigid body) [ ] 6 i=1 [ ] [ ] [ 5.2] (5.31)

98 90 5

99 y 1 1 θ 1 (radian [ ] [rad] ) 1 O 1 x (1 1[deg] ) (SI ) [ ] (radian) radius [ 6.1] θ θ [deg] θ [rad] ( 1 y P r P r θ O x O OP = r OP θ xy x 6.2 (polar coordinate system) θ r r ( 1 θ [rad]= 2π 360 θ

100 92 6 (radius) r r (r, θ) (x, y) { x = r cos θ y = r sin θ θ θ 2 θ [ 6.1] m r ω y (x, y) t = 0 x xy xy r O r ωt x r = (x, y) = (r cos ωt, r sin ωt) (6.1) (1) ṙ (2) r a = r a ω b v (3) F F a ω b v (4) F (5) r ṙ

101 [ ] (1) (6.1) v v = ṙ = ( rω sin ωt, rω cos ωt) (6.2) y v F r v = v = rω O x r v = (6.3) ( 6.3) (2) (6.2) r = v = ( rω 2 cos ωt, rω 2 sin ωt) = ω 2 r (6.4) r = rω 2 (6.5) (6.2) v ( ω ) 2 r = r (6.6) r (3) (6.4) m m r = mω 2 r (6.7) F ( 6.3) F = mrω 2 = mv2 r (6.8) (centripetal force) (4) F ( ) (6.4) (6.3) F v = mω 2 r ṙ = 0 (6.9)

102 94 6 F v (5) r r = (r cos θ(t), sin θ(t)) (6.10) ṙ = ( r θ sin θ, θ cos θ) (6.11) r ṙ = (r cos θ, sin θ) ( r θ sin θ, θ cos θ) = 0 [ 6.2] l l (1) (2) v 0 (3) JR 360km km m JR km 600km [ ] (1) ( 6.4) (2) v N mg N mg F F = mv2 l/2 = 2mv2 l (6.12) 6.4

103 F N [ ] F = N + mg (6.13) (6.12) (6.13) [ ] N = 2mv2 l mg (6.14) N N 0 v v lg 2 v = 1 2 mv2 0 = mgl mv2 v 0 = 2gl + v 2 (6.15) lg 2 v 0 = 2gl + lg 2 5 = lg ( ) (6.16) 2 l (3) (6.16) l l = 2 v0 2 5 g (6.17) v 0 = 360 km/h = 100 m/s, g = 9.8 m/s 2 l = 2 (100 m/s) m/s 2 400m v 0 = 600 km/h l = 400 ( ) m 1111 m 360

104 [ 6.3] l m θ g O θ l (1) T m [ ] (2) x y (3) θ << 1 sin θ θ θ (4) (1) 6.5 T (2) { mẍ mÿ = T sin θ = mg T cos θ (6.18) (3) (x, y) = (l sin θ, l cos θ) { ẋ = l θ cos θ ẏ = l θ sin θ { ẍ = l( θ cos θ θ 2 sin θ) ÿ = l( θ sin θ θ 2 cos θ) (6.19) (6.20) θ T T sin θ 6.5 T cos θ mg (6.18) { ml( θ cos θ θ 2 sin θ) ml( θ sin θ θ 2 cos θ) = T sin θ = mg T cos θ ( cos θ) ( sin θ) ml θ = mg sin θ (6.21) θ 1 sin θ θ ml θ = mgθ θ = g l θ (6.22)

105 θ = A sin(ωt + ϕ), (A, ω : ) (6.23) θ = ω 2 A sin(ωt + ϕ) = ω 2 θ ω 2 θ = g l θ g ω = l (6.23) ( ) g θ = A sin l t + ϕ ( ) (6.24) A, A ϕ l T = 2π/ω = 2π g (θ 1) (p.16) (4) 6.5 T mg cos θ (6.21) ( sin θ) + ( cos θ) ml θ 2 = T mg cos θ (6.25) 6.2 ml θ 2 (6.24) ( ) 2 ml θ g g 2 = ml A l cos( l t + ϕ) ( ) g = mga 2 cos 2 l t + ϕ ( ) [ 6.2] (1) (2) 0 (3) 6.4

106 98 6 [ 6.3] M, R, G ( 2 (1) (2) [ ] 6.5 [ 6.4] R M m r, ω F F = m(r r)ω 2 = Mrω 2 (6.26) r, m M, R, ω F = G Mm R 2 (6.27) [ ] 27.3 (2π/ω) G M R 2.3 ( 2 M = kg, R = m, G = m 3 /s 2 kg v 1 v 1 GM/R = 7.90 km/s, v 2 v 2 2GM/R = 11.2 km/s

107 [ ] [ ] [ 6.5] 89 40,000km km 38.4 km [ ] (Hipparchus, BC190- BC125 ) () [ ] [ ] [ 6.6] [ ] (p.16) 10 [ ] (p.48) [ ],,1962,p [ 6.7] kg 6.6 (p.27) 3 1

108 100 6 [ 6.4] m F v v v v r F mr v = 0 (6.28) r r r = r [ ] F v v t r O mv (t + t) mv (t) = 0 (6.29) mrv (t + t) mrv (t) = 0 (6.30) mrv (angular momentum) t t 0 mrv (t + t) mrv (t) t mrv (t) l(t) = 0 (6.31) d dt (mrv ) = 0 (6.32) dl dt = 0 (6.33) v t 6.6 r + r r = v t t r = v t S r F Planet S = 1 2 rv t (6.34) Sun 6.6 ( )

109 t 0 ds dt = 1 2 rv (6.35) (6.35) d 2 S dt 2 = 0 (6.36) d 2 S dt 2 = 1 d 2 dt (rv ) (6.37) ( (6.32)) 0 (6.36)

110 102 6

111 [ 7.1] r m F r ϕ θ F t r θ O θ F r ϕ 7.1 (1) F W F = F, r, θ (2) t K θ(t), θ(t + t) (3) K = W mr 2 θ = F r sin ϕ (7.1)

112 104 7 [ ] (1) r(t) r r = r θ O F F sin ϕ ( 7.2) F W W = (F sin ϕ) (r θ) = F r θ sin ϕ (1) (2) F F sin ϕ r θ 7.2 ϕ (3) K = W K = 1 2 m(r θ(t + t)) m(r θ(t)) 2 (2) t 1 2 m(r θ(t + t)) m(r θ(t)) 2 = F r θ sin ϕ 1 ( θ(t + t)) 2 ( θ(t)) 2 2 mr2 = F r θ t t sin ϕ t t 0 (7.1) 1 d 2 mr2 dt ( θ) 2 = F r dθ dt sin ϕ 1 2 mr2 2 θ θ = F r θ sin ϕ mr 2 θ = F r sin ϕ (7.1) mr 2 (moment of inertia) F r sin ϕ (torque) (moment of force) 7.2 r F sin ϕ (7.1) I = mr 2, τ = F r sin ϕ I θ = τ (7.2)

113 r m θ, g ( 1 (1) (2) (3) θ m (7.1) t t t+ t mr 2 θ(t + t) mr 2 θ(t) = F r sin ϕdt (7.3) mr 2 θ (angular momentum) τ = F r sin ϕ t mr 2 θ(t + t) mr 2 θ(t) = F r sin ϕ t (7.4) mr 2 θ(t) l(t) l(t + t) l(t) = τ t (7.5) 0 (7.5) t t 0 l(t + t) l(t) lim = τ t 0 t l(t) = τ (7.6) 7.2 ( 1 (1) ml 2 (2) mgl sin θ (3) ml 2 θ = mgl sin θ

114 * (7.1) r F τ = r F τ F τ F τ ( ) [ 7.1] 7.1 p = mṙ ṗ = F (7.7) r r ṗ = r F (7.8) (7.1) [ ] l = r ṗ l = τ (7.9) l = r p [ 7.2] l = r p mr 2 θ m i N ( 7.3) P i (i = 1,..., N) m i, O r i O θ O OP i ϕ i r i O 7.3 (7.2) τ i, (i = 1,..., N τ ) N m i ri 2 d 2 dt 2 (θ + ϕ N τ i) = τ i (7.10) i i ϕ i θ

115 ϕ i N m i ri 2 θ N τ = τ i (7.11) i i I = N m i ri 2 (7.12) i I I θ = τ (7.13) τ [ 7.3] M I, I COM r COM I = I COM + MrCOM 2 (7.14) 7.3 l m M ( 2 (1) (2) [ 7.4] T T = 1 2 I θ 2 (7.15) ( 2 (1)I = m( l 2 )2 + M( l 2 )2 (2){m( l 2 )2 + M( l 2 )2 } θ = Mg sin θ l l + mg sin θ 2 2

116 108 7 l, m ( 7.4(a)) ρ ρ = m (7.16) l x x + dx ρdx I ( 7.5) O (a) (b) 7.4 x x + dx I = x 2 ρdx (7.17) x [0, l] I t 7.5 ρdx I t = l (7.16) ρl = m 0 x 2 ρdx = 1 3 l3 ρ = 1 3 ml2 (7.18) I c ( 7.4(b)) I c = l 2 l 2 x 2 ρdx = 1 12 ml2 (I t > I c ) I = ρ(x 2 + y 2 )ds (7.19) S ds S ρ (1) (2)

117 (Photo by E.Muybridge, 1887) ( 7.7) F (x,y) = + (x,y) y x θ F φ θ F φ 7.7 [ 7.2] 7.7 l F F ϕ I [ ] { mẍ = F mÿ = 0 (7.20)

118 110 7 I θ = l F sin ϕ (7.21) ( ) = mrω 2 = m v2 r ( ) (centrifugal force) m r ω v [ 7.5] 280km (1)? (2) (3) [ ] [ ] ( ) ( ) [ ]

119 ? (Coriolis effect, ) [ ] [ 7.6] (1) m ( ) r, r r t ω ω a (2) ( ) ( ) t 0 2mω dr dt [ ] p.62 [ 7.7] [ 7.8] ω ω t (1)? (2) 2mωv

120 第 7 章 剛体の運動 112 [解説] コリオリの力はこれまでの設 問から類推できるように 回転座標系 上で運動する物体に対して働くみか けの力であって その向きは運動の方 向と直交しており 大きさは 2mωv となる 地球上ではこのコリオリの 力が気象や大洋の流れに影響を及ぼ している その代表例の一つが台風 など強い低気圧による渦であり そ の渦の向きは北半球と南半球では逆 になる (図 7.8) 図 7.8 アイスランドに発生した低気圧 (Photo by NASA org/wiki/coriolis_force)

121 113 [1] S.. ( )., [2] D. L., J. R.. ()., [3] A., I.. ( )., [4]. 3., [5] R. P., R. B., M. L.. ( )., [6].., 2001.

122 114

123 115 Symbols [J] [kgw] [mol] [N] [rad] A acceleration aether Amontons, Guillaume Aristotle Avogadro, Lorenzo Romano Amedeo Carlo B Bernouli, Daniel Boyle, Roboert Brahe, Tycho Brown, Robert Brownian motion C Cavendish, Henry , 85 center of gravity of mass centrifugal force centripetal force collision elastic inelastic conservative force Copernicus, Nicolaus Coriolis effect Coriolis,Gustave Gaspard D da Vinci, Leonardo de Coulomb, Charles Augustin Descartes, René differentiation displacement distance dynamics forward inverse E Einstein, Albert , 86 elastic collision elastic potential energy equation of motion equivalence principle Eratosthenes ether F Fahrenheit, Daniel feet Fooke, Robert force forward dynamics Free-Body Diagrams frictional force G galilean invariance transformation Galilei, Galileo , 15 Galilei, Vincenzo gravitational acceleration gravitational constant of universe Green, George , 85 ground reaction force H Helmholtz, Hermann von Hipparchus Huygens, Christian Huygens, Constantijn I impulse inch inelastic collision integral definite indefinite integration inverse dynamics J Joule Joule, Japmes Prescott , 85 K Kepler, Johannes kinetic energy kinetic friction L Lagrange, Joseph-Louis Law of acceleration of inertia of reciprocal actions Leibniz, Gottfried Wilhelm M mass , 28 gravitational inertia material point Maxwell,James Clerk Mayer, Julius Robert von mechanical energy MKS moment of force of inertia momentum , 60 angular , 105 linear N Newton s first law of motion s second law of motion s Third law of motion Newton, Issac i Newtonian mechanics i nonconservative force normal force P polar coordinate system position potential energy Prinkipia i, 26 R radian radius rigid body S scalar SI speed static friction Stevin, Simon Svedberg, Theodor T tensile strength tension Thomson, William torque U universal gravitation V van der Waals, Johannes Diderik Varignon, Pierre

124 116 velocity viscosity W weight work , , , , , 105, , , , , , , , , , , , , , 17, , , , , , , i, 3, i , , 26, 27, , , i, , , 27, i , ,

215 11 13 1 2 1.1....................... 2 1.2.................... 2 1.3..................... 2 1.4...................... 3 1.5............... 3 1.6........................... 4 1.7.................. 4

More information

I ( ) 2019

I ( ) 2019 I ( ) 2019 i 1 I,, III,, 1,,,, III,,,, (1 ) (,,, ), :...,, : NHK... NHK, (YouTube ),!!, manaba http://pen.envr.tsukuba.ac.jp/lec/physics/,, Richard Feynman Lectures on Physics Addison-Wesley,,,, x χ,

More information

1 1.1 [ 1] velocity [/s] 8 4 (1) MKS? (2) MKS? 1.2 [ 2] (1) (42.195k) k 2 (2) (3) k/hr [ 3] t = 0

1 1.1 [ 1] velocity [/s] 8 4 (1) MKS? (2) MKS? 1.2 [ 2] (1) (42.195k) k 2 (2) (3) k/hr [ 3] t = 0 : 2016 4 1 1 2 1.1......................................... 2 1.2................................... 2 2 2 2.1........................................ 2 2.2......................................... 3 2.3.........................................

More information

1 [ 1] (1) MKS? (2) MKS? [ 2] (1) (42.195k) k 2 (2) (3) k/hr [ 3] t = 0 10 ( 1 velocity [/s] 8 4 O

1 [ 1] (1) MKS? (2) MKS? [ 2] (1) (42.195k) k 2 (2) (3) k/hr [ 3] t = 0 10 ( 1 velocity [/s] 8 4 O : 2014 4 10 1 2 2 3 2.1...................................... 3 2.2....................................... 4 2.3....................................... 4 2.4................................ 5 2.5 Free-Body

More information

2 Chapter 4 (f4a). 2. (f4cone) ( θ) () g M. 2. (f4b) T M L P a θ (f4eki) ρ H A a g. v ( ) 2. H(t) ( )

2 Chapter 4 (f4a). 2. (f4cone) ( θ) () g M. 2. (f4b) T M L P a θ (f4eki) ρ H A a g. v ( ) 2. H(t) ( ) http://astr-www.kj.yamagata-u.ac.jp/~shibata f4a f4b 2 f4cone f4eki f4end 4 f5meanfp f6coin () f6a f7a f7b f7d f8a f8b f9a f9b f9c f9kep f0a f0bt version feqmo fvec4 fvec fvec6 fvec2 fvec3 f3a (-D) f3b

More information

I 1

I 1 I 1 1 1.1 1. 3 m = 3 1 7 µm. cm = 1 4 km 3. 1 m = 1 1 5 cm 4. 5 cm 3 = 5 1 15 km 3 5. 1 = 36 6. 1 = 8.64 1 4 7. 1 = 3.15 1 7 1 =3 1 7 1 3 π 1. 1. 1 m + 1 cm = 1.1 m. 1 hr + 64 sec = 1 4 sec 3. 3. 1 5 kg

More information

数学の基礎訓練I

数学の基礎訓練I I 9 6 13 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 3 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

I

I I 6 4 10 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

1.1 ft t 2 ft = t 2 ft+ t = t+ t 2 1.1 d t 2 t + t 2 t 2 = lim t 0 t = lim t 0 = lim t 0 t 2 + 2t t + t 2 t 2 t + t 2 t 2t t + t 2 t 2t + t = lim t 0

1.1 ft t 2 ft = t 2 ft+ t = t+ t 2 1.1 d t 2 t + t 2 t 2 = lim t 0 t = lim t 0 = lim t 0 t 2 + 2t t + t 2 t 2 t + t 2 t 2t t + t 2 t 2t + t = lim t 0 A c 2008 by Kuniaki Nakamitsu 1 1.1 t 2 sin t, cos t t ft t t vt t xt t + t xt + t xt + t xt t vt = xt + t xt t t t vt xt + t xt vt = lim t 0 t lim t 0 t 0 vt = dxt ft dft dft ft + t ft = lim t 0 t 1.1

More information

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d A 2. x F (t) =f sin ωt x(0) = ẋ(0) = 0 ω θ sin θ θ 3! θ3 v = f mω cos ωt x = f mω (t sin ωt) ω t 0 = f ( cos ωt) mω x ma2-2 t ω x f (t mω ω (ωt ) 6 (ωt)3 = f 6m ωt3 2.2 u ( v w) = v ( w u) = w ( u v) ma22-9

More information

Gmech08.dvi

Gmech08.dvi 51 5 5.1 5.1.1 P r P z θ P P P z e r e, z ) r, θ, ) 5.1 z r e θ,, z r, θ, = r sin θ cos = r sin θ sin 5.1) e θ e z = r cos θ r, θ, 5.1: 0 r

More information

i 1687 1 ii 300 iii why how how 2016 1 1 2017 1 v 1 1 1.1........................................ 1 1.2................................. 1 1.3........................................ 2 1.4....................................

More information

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) 4 4 ) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) a b a b = 6i j 4 b c b c 9) a b = 4 a b) c = 7

More information

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d m v = mg + kv m v = mg k v v m v = mg + kv α = mg k v = α e rt + e rt m v = mg + kv v mg + kv = m v α + v = k m v (v α (v + α = k m ˆ ( v α ˆ αk v = m v + α ln v α v + α = αk m t + C v α v + α = e αk m

More information

sec13.dvi

sec13.dvi 13 13.1 O r F R = m d 2 r dt 2 m r m = F = m r M M d2 R dt 2 = m d 2 r dt 2 = F = F (13.1) F O L = r p = m r ṙ dl dt = m ṙ ṙ + m r r = r (m r ) = r F N. (13.2) N N = R F 13.2 O ˆn ω L O r u u = ω r 1 1:

More information

( ) 2017 2 23 : 1998 1 23 ii All Rights Reserved (c) Yoichi OKABE 1998-present. ( ) ( ) Web iii iv ( ) (G) 1998 1 23 : 1998 12 30 : TeX 2007 1 27 : 2011 9 26 : 2012 4 15 : 2012 5 6 : 2015 4 25 : v 1 1

More information

2 1 x 1.1: v mg x (t) = v(t) mv (t) = mg 0 x(0) = x 0 v(0) = v 0 x(t) = x 0 + v 0 t 1 2 gt2 v(t) = v 0 gt t x = x 0 + v2 0 2g v2 2g 1.1 (x, v) θ

2 1 x 1.1: v mg x (t) = v(t) mv (t) = mg 0 x(0) = x 0 v(0) = v 0 x(t) = x 0 + v 0 t 1 2 gt2 v(t) = v 0 gt t x = x 0 + v2 0 2g v2 2g 1.1 (x, v) θ 1 1 1.1 (Isaac Newton, 1642 1727) 1. : 2. ( ) F = ma 3. ; F a 2 t x(t) v(t) = x (t) v (t) = x (t) F 3 3 3 3 3 3 6 1 2 6 12 1 3 1 2 m 2 1 x 1.1: v mg x (t) = v(t) mv (t) = mg 0 x(0) = x 0 v(0) = v 0 x(t)

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

dynamics-solution2.dvi

dynamics-solution2.dvi 1 1. (1) a + b = i +3i + k () a b =5i 5j +3k (3) a b =1 (4) a b = 7i j +1k. a = 14 l =/ 14, m=1/ 14, n=3/ 14 3. 4. 5. df (t) d [a(t)e(t)] =ti +9t j +4k, = d a(t) d[a(t)e(t)] e(t)+ da(t) d f (t) =i +18tj

More information

m d2 x = kx αẋ α > 0 (3.5 dt2 ( de dt = d dt ( 1 2 mẋ kx2 = mẍẋ + kxẋ = (mẍ + kxẋ = αẋẋ = αẋ 2 < 0 (3.6 Joule Joule 1843 Joule ( A B (> A ( 3-2

m d2 x = kx αẋ α > 0 (3.5 dt2 ( de dt = d dt ( 1 2 mẋ kx2 = mẍẋ + kxẋ = (mẍ + kxẋ = αẋẋ = αẋ 2 < 0 (3.6 Joule Joule 1843 Joule ( A B (> A ( 3-2 3 3.1 ( 1 m d2 x(t dt 2 = kx(t k = (3.1 d 2 x dt 2 = ω2 x, ω = x(t = 0, ẋ(0 = v 0 k m (3.2 x = v 0 ω sin ωt (ẋ = v 0 cos ωt (3.3 E = 1 2 mẋ2 + 1 2 kx2 = 1 2 mv2 0 cos 2 ωt + 1 2 k v2 0 ω 2 sin2 ωt = 1

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1.

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1. 1.1 1. 1.3.1..3.4 3.1 3. 3.3 4.1 4. 4.3 5.1 5. 5.3 6.1 6. 6.3 7.1 7. 7.3 1 1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N

More information

C:/KENAR/0p1.dvi

C:/KENAR/0p1.dvi 2{3. 53 2{3 [ ] 4 2 1 2 10,15 m 10,10 m 2 2 54 2 III 1{I U 2.4 U r (2.16 F U F =, du dt du dr > 0 du dr < 0 O r 0 r 2.4: 1 m =1:00 10 kg 1:20 10 kgf 8:0 kgf g =9:8 m=s 2 (a) x N mg 2.5: N 2{3. 55 (b) x

More information

K E N Z OU

K E N Z OU K E N Z OU 11 1 1 1.1..................................... 1.1.1............................ 1.1..................................................................................... 4 1.........................................

More information

23 7 28 i i 1 1 1.1................................... 2 1.2............................... 3 1.2.1.................................... 3 1.2.2............................... 4 1.2.3 SI..............................

More information

最新耐震構造解析 ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 3 版 1 刷発行時のものです.

最新耐震構造解析 ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 3 版 1 刷発行時のものです. 最新耐震構造解析 ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/052093 このサンプルページの内容は, 第 3 版 1 刷発行時のものです. i 3 10 3 2000 2007 26 8 2 SI SI 20 1996 2000 SI 15 3 ii 1 56 6

More information

08-Note2-web

08-Note2-web r(t) t r(t) O v(t) = dr(t) dt a(t) = dv(t) dt = d2 r(t) dt 2 r(t), v(t), a(t) t dr(t) dt r(t) =(x(t),y(t),z(t)) = d 2 r(t) dt 2 = ( dx(t) dt ( d 2 x(t) dt 2, dy(t), dz(t) dt dt ), d2 y(t) dt 2, d2 z(t)

More information

Gmech08.dvi

Gmech08.dvi 145 13 13.1 13.1.1 0 m mg S 13.1 F 13.1 F /m S F F 13.1 F mg S F F mg 13.1: m d2 r 2 = F + F = 0 (13.1) 146 13 F = F (13.2) S S S S S P r S P r r = r 0 + r (13.3) r 0 S S m d2 r 2 = F (13.4) (13.3) d 2

More information

/Volumes/NO NAME/gakujututosho/chap1.tex i

/Volumes/NO NAME/gakujututosho/chap1.tex i 2012 4 10 /Volumes/NO NAME/gakujututosho/chap1.tex i iii 1 7 1.1............................... 7 2 11 2.1........................................... 11 2.2................................... 18 2.3...................................

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

77

77 O r r r, F F r,r r = r r F = F (. ) r = r r 76 77 d r = F d r = F (. ) F + F = 0 d ( ) r + r = 0 (. 3) M = + MR = r + r (. 4) P G P MX = + MY = + MZ = z + z PG / PG = / M d R = 0 (. 5) 78 79 d r = F d

More information

B 1 B.1.......................... 1 B.1.1................. 1 B.1.2................. 2 B.2........................... 5 B.2.1.......................... 5 B.2.2.................. 6 B.2.3..................

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

d (K + U) = v [ma F(r)] = (2.4.4) t = t r(t ) = r t 1 r(t 1 ) = r 1 U(r 1 ) U(r ) = t1 t du t1 = t F(r(t)) dr(t) r1 = F dr (2.4.5) r F 2 F ( F) r A r

d (K + U) = v [ma F(r)] = (2.4.4) t = t r(t ) = r t 1 r(t 1 ) = r 1 U(r 1 ) U(r ) = t1 t du t1 = t F(r(t)) dr(t) r1 = F dr (2.4.5) r F 2 F ( F) r A r 2.4 ( ) U(r) ( ) ( ) U F(r) = x, U y, U = U(r) (2.4.1) z 2 1 K = mv 2 /2 dk = d ( ) 1 2 mv2 = mv dv = v (ma) (2.4.2) ( ) U(r(t)) r(t) r(t) + dr(t) du du = U(r(t) + dr(t)) U(r(t)) = U x = U(r(t)) dr(t)

More information

2 g g = GM R 2 = 980 cm s ;1 M m potential energy E r E = ; GMm r (1.4) potential = E m = ;GM r (1.5) r F E F = ; de dr (1.6) g g = ; d dr (1.7) g g g

2 g g = GM R 2 = 980 cm s ;1 M m potential energy E r E = ; GMm r (1.4) potential = E m = ;GM r (1.5) r F E F = ; de dr (1.6) g g = ; d dr (1.7) g g g 1 1 (gravitation) 1.1 m F a ma = F (1.1) F a m F 1.1 m F a (1.1) m a F m F a m a F F a m 0 0 1.2 (universal gravitation) (potential) M m gravitational force F r F = ; GMm r 2 (1.2) G = 6:67 10 ;8 dyn cm

More information

Untitled

Untitled http://www.ike-dyn.ritsumei.ac.jp/ hyoo/dynamics.html 1 (i) (ii) 2 (i) (ii) (*) [1] 2 1 3 1.1................................ 3 1.2..................................... 3 2 4 2.1....................................

More information

A 99% MS-Free Presentation

A 99% MS-Free Presentation A 99% MS-Free Presentation 2 Galactic Dynamics (Binney & Tremaine 1987, 2008) Dynamics of Galaxies (Bertin 2000) Dynamical Evolution of Globular Clusters (Spitzer 1987) The Gravitational Million-Body Problem

More information

flMŠÍ−w−î‚b

flMŠÍ−w−î‚b 23 6 30 i 2 1980 2001 1979 K. 1971 ii 1992 iii 1 1 2 5 2.1 : : : : : : : : : : : : : : : : : : : : : : : : : : 5 2.2 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 8 2.3 : : : : : : : : :

More information

() (, y) E(, y) () E(, y) (3) q ( ) () E(, y) = k q q (, y) () E(, y) = k r r (3).3 [.7 ] f y = f y () f(, y) = y () f(, y) = tan y y ( ) () f y = f y

() (, y) E(, y) () E(, y) (3) q ( ) () E(, y) = k q q (, y) () E(, y) = k r r (3).3 [.7 ] f y = f y () f(, y) = y () f(, y) = tan y y ( ) () f y = f y 5. [. ] z = f(, y) () z = 3 4 y + y + 3y () z = y (3) z = sin( y) (4) z = cos y (5) z = 4y (6) z = tan y (7) z = log( + y ) (8) z = tan y + + y ( ) () z = 3 8y + y z y = 4 + + 6y () z = y z y = (3) z =

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

keisoku01.dvi

keisoku01.dvi 2.,, Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 4 Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 5 Mon, 2006, 401, SAGA, JAPAN Dept.

More information

/Volumes/NO NAME/gakujututosho/chap1.tex i

/Volumes/NO NAME/gakujututosho/chap1.tex i 2010 4 8 /Volumes/NO NAME/gakujututosho/chap1.tex i iii 1 5 1.1............................... 5 2 9 2.1........................................... 9 2.2................................... 16 2.3...................................

More information

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z I 1 m 2 l k 2 x = 0 x 1 x 1 2 x 2 g x x 2 x 1 m k m 1-1. L x 1, x 2, ẋ 1, ẋ 2 ẋ 1 x = 0 1-2. 2 Q = x 1 + x 2 2 q = x 2 x 1 l L Q, q, Q, q M = 2m µ = m 2 1-3. Q q 1-4. 2 x 2 = h 1 x 1 t = 0 2 1 t x 1 (t)

More information

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq 49 2 I II 2.1 3 e e = 1.602 10 19 A s (2.1 50 2 I SI MKSA 2.1.1 r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = 3 10 8 m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq F = k r

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

OHP.dvi

OHP.dvi t 0, X X t x t 0 t u u = x X (1) t t 0 u X x O 1 1 t 0 =0 X X +dx t x(x,t) x(x +dx,t). dx dx = x(x +dx,t) x(x,t) (2) dx, dx = F dx (3). F (deformation gradient tensor) t F t 0 dx dx X x O 2 2 F. (det F

More information

( ) ± = 2018

( ) ± = 2018 30 ( 3 ) ( ) 2018 ( ) ± = 2018 (PDF ), PDF PDF. PDF, ( ), ( ),,,,., PDF,,. , 7., 14 (SSH).,,,.,,,.,., 1.. 2.,,. 3.,,. 4...,, 14 16, 17 21, 22 26, 27( ), 28 32 SSH,,,, ( 7 9 ), ( 14 16 SSH ), ( 17 21, 22

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

数値計算:常微分方程式

数値計算:常微分方程式 ( ) 1 / 82 1 2 3 4 5 6 ( ) 2 / 82 ( ) 3 / 82 C θ l y m O x mg λ ( ) 4 / 82 θ t C J = ml 2 C mgl sin θ θ C J θ = mgl sin θ = θ ( ) 5 / 82 ω = θ J ω = mgl sin θ ω J = ml 2 θ = ω, ω = g l sin θ = θ ω ( )

More information

[1.1] r 1 =10e j(ωt+π/4), r 2 =5e j(ωt+π/3), r 3 =3e j(ωt+π/6) ~r = ~r 1 + ~r 2 + ~r 3 = re j(ωt+φ) =(10e π 4 j +5e π 3 j +3e π 6 j )e jωt

[1.1] r 1 =10e j(ωt+π/4), r 2 =5e j(ωt+π/3), r 3 =3e j(ωt+π/6) ~r = ~r 1 + ~r 2 + ~r 3 = re j(ωt+φ) =(10e π 4 j +5e π 3 j +3e π 6 j )e jωt 3.4.7 [.] =e j(t+/4), =5e j(t+/3), 3 =3e j(t+/6) ~ = ~ + ~ + ~ 3 = e j(t+φ) =(e 4 j +5e 3 j +3e 6 j )e jt = e jφ e jt cos φ =cos 4 +5cos 3 +3cos 6 =.69 sin φ =sin 4 +5sin 3 +3sin 6 =.9 =.69 +.9 =7.74 [.]

More information

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz 2 Rutherford 2. Rutherford N. Bohr Rutherford 859 Kirchhoff Bunsen 86 Maxwell Maxwell 885 Balmer λ Balmer λ = 364.56 n 2 n 2 4 Lyman, Paschen 3 nm, n =3, 4, 5, 4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n

More information

* 1 2014 7 8 *1 iii 1. Newton 1 1.1 Newton........................... 1 1.2............................. 4 1.3................................. 5 2. 9 2.1......................... 9 2.2........................

More information

( ) 24 1 ( 26 8 19 ) i 0.1 1 (2012 05 30 ) 1 (), 2 () 1,,, III, C III, C, 1, 2,,, ( III, C ),, 1,,, http://ryuiki.agbi.tsukuba.ac.jp/lec/12-physics/ E104),,,,,, 75 3,,,, 0.2, 1,,,,,,,,,,, 2,,, 1000 ii,

More information

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b) 5 partial differentiation (total) differentiation 5. z = f(x, y) (a, b) A = lim h 0 f(a + h, b) f(a, b) h............................................................... ( ) f(x, y) (a, b) x A (a, b) x

More information

x ( ) x dx = ax

x ( ) x dx = ax x ( ) x dx = ax 1 dx = a x log x = at + c x(t) = e at C (C = e c ) a > 0 t a < 0 t 0 (at + b ) h dx = lim x(t + h) x(t) h 0 h x(t + h) x(t) h x(t) t x(t + h) x(t) ax(t) h x(t + h) x(t) + ahx(t) 0, h, 2h,

More information

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 -

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 - M3............................................................................................ 3.3................................................... 3 6........................................... 6..........................................

More information

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π 4 4.1 4.1.1 A = f() = f() = a f (a) = f() (a, f(a)) = f() (a, f(a)) f(a) = f 0 (a)( a) 4.1 (4, ) = f() = f () = 1 = f (4) = 1 4 4 (4, ) = 1 ( 4) 4 = 1 4 + 1 17 18 4 4.1 A (1) = 4 A( 1, 4) 1 A 4 () = tan

More information

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2 9 E B 9.1 9.1.1 Ampère Ampère Ampère s law B S µ 0 B ds = µ 0 j ds (9.1) S rot B = µ 0 j (9.2) S Ampère Biot-Savart oulomb Gauss Ampère rot B 0 Ampère µ 0 9.1 (a) (b) I B ds = µ 0 I. I 1 I 2 B ds = µ 0

More information

( ) ,

( ) , II 2007 4 0. 0 1 0 2 ( ) 0 3 1 2 3 4, - 5 6 7 1 1 1 1 1) 2) 3) 4) ( ) () H 2.79 10 10 He 2.72 10 9 C 1.01 10 7 N 3.13 10 6 O 2.38 10 7 Ne 3.44 10 6 Mg 1.076 10 6 Si 1 10 6 S 5.15 10 5 Ar 1.01 10 5 Fe 9.00

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π . 4cm 6 cm 4cm cm 8 cm λ()=a [kg/m] A 4cm A 4cm cm h h Y a G.38h a b () y = h.38h G b h X () S() = π() a,b, h,π V = ρ M = ρv G = M h S() 3 d a,b, h 4 G = 5 h a b a b = 6 ω() s v m θ() m v () θ() ω() dθ()

More information

ẍ = kx, (k > ) (.) x x(t) = A cos(ωt + α) (.). d/ = D. d dt x + k ( x = D + k ) ( ) ( ) k k x = D + i D i x =... ( ) k D + i x = or ( ) k D i x =.. k.

ẍ = kx, (k > ) (.) x x(t) = A cos(ωt + α) (.). d/ = D. d dt x + k ( x = D + k ) ( ) ( ) k k x = D + i D i x =... ( ) k D + i x = or ( ) k D i x =.. k. K E N Z OU 8 9 8. F = kx x 3 678 ẍ = kx, (k > ) (.) x x(t) = A cos(ωt + α) (.). d/ = D. d dt x + k ( x = D + k ) ( ) ( ) k k x = D + i D i x =... ( ) k D + i x = or ( ) k D i x =.. k. D = ±i dt = ±iωx,

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k 63 3 Section 3.1 g 3.1 3.1: : 64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () 3 9.8 m/s 2 3.2 3.2: : a) b) 5 15 4 1 1. 1 3 14. 1 3 kg/m 3 2 3.3 1 3 5.8 1 3 kg/m 3 3 2.65 1 3 kg/m 3 4 6 m 3.1. 65 5

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

2 1 17 1.1 1.1.1 1650

2 1 17 1.1 1.1.1 1650 1 3 5 1 1 2 0 0 1 2 I II III J. 2 1 17 1.1 1.1.1 1650 1.1 3 3 6 10 3 5 1 3/5 1 2 + 1 10 ( = 6 ) 10 1/10 2000 19 17 60 2 1 1 3 10 25 33221 73 13111 0. 31 11 11 60 11/60 2 111111 3 60 + 3 332221 27 x y xy

More information

2009 2 26 1 3 1.1.................................................. 3 1.2..................................................... 3 1.3...................................................... 3 1.4.....................................................

More information

QMI_10.dvi

QMI_10.dvi ... black body radiation black body black body radiation Gustav Kirchhoff 859 895 W. Wien O.R. Lummer cavity radiation ν ν +dν f T (ν) f T (ν)dν = 8πν2 c 3 kt dν (Rayleigh Jeans) (.) f T (ν) spectral energy

More information

1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition) A = {x; P (x)} P (x) x x a A a A Remark. (i) {2, 0, 0,

1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition) A = {x; P (x)} P (x) x x a A a A Remark. (i) {2, 0, 0, 2005 4 1 1 2 2 6 3 8 4 11 5 14 6 18 7 20 8 22 9 24 10 26 11 27 http://matcmadison.edu/alehnen/weblogic/logset.htm 1 1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition)

More information

(C) Kazutaka Takahashi 2018

(C) Kazutaka Takahashi 2018 2018 9 23 (C) Kazutaka Takahashi 2018 1 1 1 2015 1 2017 2018 2018 9 i 1 1 1.1...................................... 1 1.2................................... 3 1.3..........................................

More information

曲面のパラメタ表示と接線ベクトル

曲面のパラメタ表示と接線ベクトル L11(2011-07-06 Wed) :Time-stamp: 2011-07-06 Wed 13:08 JST hig 1,,. 2. http://hig3.net () (L11) 2011-07-06 Wed 1 / 18 ( ) 1 V = (xy2 ) x + (2y) y = y 2 + 2. 2 V = 4y., D V ds = 2 2 ( ) 4 x 2 4y dy dx =

More information

1 nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC

1   nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC 1 http://www.gem.aoyama.ac.jp/ nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC r 1 A B B C C A (1),(2),, (8) A, B, C A,B,C 2 1 ABC

More information

all.dvi

all.dvi 5,, Euclid.,..,... Euclid,.,.,, e i (i =,, ). 6 x a x e e e x.:,,. a,,. a a = a e + a e + a e = {e, e, e } a (.) = a i e i = a i e i (.) i= {a,a,a } T ( T ),.,,,,. (.),.,...,,. a 0 0 a = a 0 + a + a 0

More information

4................................. 4................................. 4 6................................. 6................................. 9.................................................... 3..3..........................

More information

IA

IA IA 31 4 11 1 1 4 1.1 Planck.............................. 4 1. Bohr.................................... 5 1.3..................................... 6 8.1................................... 8....................................

More information

24.15章.微分方程式

24.15章.微分方程式 m d y dt = F m d y = mg dt V y = dy dt d y dt = d dy dt dt = dv y dt dv y dt = g dv y dt = g dt dt dv y = g dt V y ( t) = gt + C V y ( ) = V y ( ) = C = V y t ( ) = gt V y ( t) = dy dt = gt dy = g t dt

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

17 ( :52) α ω 53 (2015 ) 2 α ω 55 (2017 ) 2 1) ) ) 2 2 4) (α β) A ) 6) A (5) 1)

17 ( :52) α ω 53 (2015 ) 2 α ω 55 (2017 ) 2 1) ) ) 2 2 4) (α β) A ) 6) A (5) 1) 3 3 1 α ω 53 (2015 ) 2 α ω 55 (2017 ) 2 1) 2000 2) 5 2 3 4 2 3 5 3) 2 2 4) (α β) 2 3 4 5 20 A 12 20 5 5 5) 6) 5 20 12 5 A (5) 1) Évariste Galois(1811-1832) 2) Joseph-Louis Lagrange(1736-1813) 18 3),Niels

More information

mugensho.dvi

mugensho.dvi 1 1 f (t) lim t a f (t) = 0 f (t) t a 1.1 (1) lim(t 1) 2 = 0 t 1 (t 1) 2 t 1 (2) lim(t 1) 3 = 0 t 1 (t 1) 3 t 1 2 f (t), g(t) t a lim t a f (t) g(t) g(t) f (t) = o(g(t)) (t a) = 0 f (t) (t 1) 3 1.2 lim

More information

K E N Z U 2012 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.2................................... 4 1.2.1..................................... 4 1.2.2.................................... 5................................

More information

Gmech08.dvi

Gmech08.dvi 63 6 6.1 6.1.1 v = v 0 =v 0x,v 0y, 0) t =0 x 0,y 0, 0) t x x 0 + v 0x t v x v 0x = y = y 0 + v 0y t, v = v y = v 0y 6.1) z 0 0 v z yv z zv y zv x xv z xv y yv x = 0 0 x 0 v 0y y 0 v 0x 6.) 6.) 6.1) 6.)

More information

K E N Z U 01 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.................................... 4 1..1..................................... 4 1...................................... 5................................

More information

δ ij δ ij ˆx ˆx ŷ ŷ ẑ ẑ 0, ˆx ŷ ŷ ˆx ẑ, ŷ ẑ ẑ ŷ ẑ, ẑ ˆx ˆx ẑ ŷ, a b a x ˆx + a y ŷ + a z ẑ b x ˆx + b

δ ij δ ij ˆx ˆx ŷ ŷ ẑ ẑ 0, ˆx ŷ ŷ ˆx ẑ, ŷ ẑ ẑ ŷ ẑ, ẑ ˆx ˆx ẑ ŷ, a b a x ˆx + a y ŷ + a z ẑ b x ˆx + b 23 2 2.1 n n r x, y, z ˆx ŷ ẑ 1 a a x ˆx + a y ŷ + a z ẑ 2.1.1 3 a iˆx i. 2.1.2 i1 i j k e x e y e z 3 a b a i b i i 1, 2, 3 x y z ˆx i ˆx j δ ij, 2.1.3 n a b a i b i a i b i a x b x + a y b y + a z b

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

振動と波動

振動と波動 Report JS0.5 J Simplicity February 4, 2012 1 J Simplicity HOME http://www.jsimplicity.com/ Preface 2 Report 2 Contents I 5 1 6 1.1..................................... 6 1.2 1 1:................ 7 1.3

More information

1: 3.3 1/8000 1/ m m/s v = 2kT/m = 2RT/M k R 8.31 J/(K mole) M 18 g 1 5 a v t πa 2 vt kg (

1: 3.3 1/8000 1/ m m/s v = 2kT/m = 2RT/M k R 8.31 J/(K mole) M 18 g 1 5 a v t πa 2 vt kg ( 1905 1 1.1 0.05 mm 1 µm 2 1 1 2004 21 2004 7 21 2005 web 2 [1, 2] 1 1: 3.3 1/8000 1/30 3 10 10 m 3 500 m/s 4 1 10 19 5 6 7 1.2 3 4 v = 2kT/m = 2RT/M k R 8.31 J/(K mole) M 18 g 1 5 a v t πa 2 vt 6 6 10

More information

( ) ( )

( ) ( ) 20 21 2 8 1 2 2 3 21 3 22 3 23 4 24 5 25 5 26 6 27 8 28 ( ) 9 3 10 31 10 32 ( ) 12 4 13 41 0 13 42 14 43 0 15 44 17 5 18 6 18 1 1 2 2 1 2 1 0 2 0 3 0 4 0 2 2 21 t (x(t) y(t)) 2 x(t) y(t) γ(t) (x(t) y(t))

More information

B ver B

B ver B B ver. 2017.02.24 B Contents 1 11 1.1....................... 11 1.1.1............. 11 1.1.2.......................... 12 1.2............................. 14 1.2.1................ 14 1.2.2.......................

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

建築構造力学 I ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 3 版 1 刷発行時のものです.

建築構造力学 I ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 3 版 1 刷発行時のものです. 建築構造力学 I ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/050043 このサンプルページの内容は, 第 3 版 1 刷発行時のものです. i 3 1 38 2 15 2 1 2 2 1 2 2 1977 2007 2015 10 ii F P = mα g =

More information

DE-resume

DE-resume - 2011, http://c-faculty.chuo-u.ac.jp/ nishioka/ 2 11 21131 : 4 1 x y(x, y (x,y (x,,y (n, (1.1 F (x, y, y,y,,y (n =0. (1.1 n. (1.1 y(x. y(x (1.1. 1 1 1 1.1... 2 1.2... 9 1.3 1... 26 2 2 34 2.1,... 35 2.2

More information

(a) (b) 1: (a) ( ) (b) ( ) : ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( 2 ) 2 2

(a) (b) 1: (a) ( ) (b) ( ) : ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( 2 ) 2 2 (2) 1 1 4 ( beresit ) ( ) ( ) ( ) 1 Makio Uwaha. E-mail:uwaha@nagoya-u.jp; http://slab.phys.nagoya-u.ac.jp/uwaha/ 1 (a) (b) 1: (a) ( ) (b) ( ) : ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( 2 ) 2 2 20 [ ]

More information

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb r 1 r 2 r 1 r 2 2 Coulomb Gauss Coulomb 2.1 Coulomb 1 2 r 1 r 2 1 2 F 12 2 1 F 21 F 12 = F 21 = 1 4πε 0 1 2 r 1 r 2 2 r 1 r 2 r 1 r 2 (2.1) Coulomb ε 0 = 107 4πc 2 =8.854 187 817 10 12 C 2 N 1 m 2 (2.2)

More information

(u(x)v(x)) = u (x)v(x) + u(x)v (x) ( ) u(x) = u (x)v(x) u(x)v (x) v(x) v(x) 2 y = g(t), t = f(x) y = g(f(x)) dy dx dy dx = dy dt dt dx., y, f, g y = f (g(x))g (x). ( (f(g(x)). ). [ ] y = e ax+b (a, b )

More information