(Stellar pulsation) 1 ( ) (radial pulsation) (radial oscillation) (δ Cep) 15 km/s ( ) Luminosity Teff 4 R2 ( nonradial pulsation nonradial oscillation

Size: px
Start display at page:

Download "(Stellar pulsation) 1 ( ) (radial pulsation) (radial oscillation) (δ Cep) 15 km/s ( ) Luminosity Teff 4 R2 ( nonradial pulsation nonradial oscillation"

Transcription

1 (Stellar pulsation) 1 ( ) (radial pulsation) (radial oscillation) (δ Cep) 15 km/s ( ) Luminosity Teff 4 R2 ( nonradial pulsation nonradial oscillation) 1

2 (Gautschy 2008) HR 100 Mira, Semi-regular RCB stars (R Coroni Borealis type stars) ( ) α Cygni variables Cepheids RR Lyrae Core-Helium-Burning stage β Cephei stars, SPB (slowly pulsating B) stars, δ Sct, γ Dor, roap (rapidly oscillating Ap) stars sdbv (subdwarf B variables) Helium-Burning stage sdbv (1990 ) GW Vir DBV DAV GW Vir DBV DB 2

3 DAV DA 5 (Helioseismology ) CoRoT Kepler (Solar-like oscillations) Type T eff (K) Period range Amplitude(mag) Population Mira, Semi-regular d 10 I, II RCB stars d? α Cyg stars d 0.1 I, II Cepheids d I, II RR Lyrae d II β Cephei stars hr I SPB stars d I δ Sct hr I γ Dor d 0.1 I roap stars min 0.02 I sdbv (short) s 0.01 II sdbv (long) hr 0.01 II DAV, DBV 10 4, I, II GW Vir stars s 0.1 I, II Sun min I radial pulsations nonradial pulsations nonradial oscillations radial pulsations nonradial pulsations radial pulsations nonradial pulsations stellar pulsations 3

4 2 Radial pulsations ( ) ( Radial pulsations) coupling time-dependent 2.1 Basic equations Radial pulsations Lagrange r M r (M r Lagrange ) t M r r(m r, t) [ r(m r, t)/ t] Mr [ 2 r(m r, t)/ t 2 ] Mr Basic equations ( ) 1 2 r = P GM r (2.1.1) 4πr 2 t 2 M r 4πr 4 M r r M r = 1 4πr 2 ρ (2.1.2) T = L r 3κ (2.1.3) M r (4πr 2 ) 2 4acT 3 L r = ɛ n T S M r t (2.1.4) (2.1.1) (2.1.2) (2.1.3) L r r (2.1.4) (S entropy ) computer ( ) M r r(m r, t) equilibrium value r 0 (M r ) ξ(m r, t) r(m r, t) = r 0 (M r ) + ξ(m r, t) (2.1.5) f(m r, t) equilibrium value f 0 (M r ) f(m r, t) = f 0 (M r ) + f(m r, t) (2.1.6) f f M r fix (Lagrangian variation) ( ) f(t, Mr ) M r = ( f(t, M r) + f 0 (M r )) M r df 0(M r ) dm r = f(t, M r) M r 4

5 (2.1.5) (2.1.6) (2.1.1) (2.1.2) ξ /r 1 f /f ξ = P + 4 GM r ξ 4πr 2 t 2 M r 4πr 4 r ξ = 1 ( 2 ξ M r 4πr 2 ρ r + ρ ) ρ T = T M r M r ( Lr L r L r = ɛ n T S M r t 4 ξ r + κ κ 3 T T ) (2.1.7) ξ 2.2 Adiabatic radial pulsations timescale (thermal timescale) ( ) P P = Γ ρ ln P 1 ρ ; Γ 1 ln ρ S (2.2.8) (2.2.7) ξ = P + 4 ξ 4πr 2 M r r ξ 1 = M r 4πr 2 ρ GM r 4πr 4 ( 2 ξ r 1 Γ 1 P P r 0 M r ) (2.2.9) dm r = 4πr0ρ 2 0 dr 0 M r r 0 ( 0 ) explicit time-dependence ξ(t, r) = e iσt ξ(r); f(t, r) = e iσt f(r) (2.2.10) real parts σ real part imaginary part 5

6 ( σ ) (2.2.9) 1 d P ρ dr dξ dr = σ 2 ξ + 4 ξ GM r r r 2 = 2 ξ r 1 P Γ 1 P (2.2.11) adiabatic radial pulsations σ 2 linear purturbation analyses Boundary conditions ξ = 0 at r = 0 (2.2.12) P 0 (2.2.11) 1 P d( P/P ) + P ) 1 dp (σ ρ dr P ρ dr = 2 r 3 GMr + 4 ξ GM r r 3 d( P/P ) dr = d ln P dr [ )] P (σ P + 2 r 3 ξ + 4 GM r r d ln P/dr = ρgm/p r 2 pressure scale height H p H p P/P (r = R) (2.2.13) P P ) (σ 2 R3 ξ GM + 4 R at r = R (2.2.13) Linear Adiabatic Wave Equation (2.2.11) P ξ [ ] ( 1 d Γ1 P d(r 2 ξ) + σ 2 + 4GM ) r ξ = 0 (2.2.14) ρ dr r 2 dr r 3 adiabatic radial pulsations linear adiabatic wave equation Operator L L r2 ρ ( d Γ1 P dr r 2 6 ) d 4GM r (2.2.15) dr r 3

7 u(r) (2.2.14) u r 2 ξ (2.2.16) Lu = σ 2 u (2.2.17) Sturm-Liouville weight ρ/r 2 Hermitian R 0 u Lu ρ R r dr = ulu ρ 2 r dr 2 σ 2 j k u j u k R 0 u ju k ρ r 2 dr = 1 4π M 0 0 ξ j ξ k dm r = 0 if j k (dm r = 4πρr 2 dr) {u j } complete set linear combination σ 2 > 0 σ r = R ( e iσt ξ(r) ) = ξ(r) cos(σt) (2.2.18) standing waves σ σ 0 (fundamental pulsation) ξ 0 node( ) σ (overtone pulsations) nodes σ 2 < 0 σ σ 2 < Some examples ξ/r =constant fundamental mode σ 2 0 (2.2.11) P/P = 3Γ 1ξ/r (2.2.11) Γ 1 3Γ ( 1 dp ξ ρ dr r = σ GM ) r ξ r 3 dp/dr = ρgm r /r 2 [ σ0 2 (3Γ 1 4) GM ] r ξ = 0 r 3 w M r r 3 = w M R 3 (2.2.19) 7

8 w σ 2 0 (3Γ 1 4) wgm R 3 (2.2.20) Γ 1 < 4/3 σ 0 < 0 dynamical instability Virial total energy Γ 1 < 4/3 total energy σ (2.2.20) Π 0 Π 0 = 2π σ 0 2π/ (3Γ 1 4)wGM/R 3 1 ρ (2.2.21) free-fall time R 3 /GM internal energy E i GM 2 R 2E i C v T M c 2 sm R 3 /GM R c s (2.2.22) c s (2.2.21) Period-mean density pulsation constant Q Π = Q ρ / ρ (2.2.23) Q 0.04 days Q pulsation constant days Q (polytrope) ξ/r ξ/r Fundamental mode ξ/r first overtone mode ξ/r = 0 (node) n = 3 4 polytrope mode σ 0 /(GM/R 3 ) n = 3 n = 4 polytrope σ (polytropic index n ) σ 2 /(GM/R 3 ) Mode n = 3 n = 4 Fundamental st Overtone nd Overtone

9 (stochastic excitation) ( ) self-excitation 2.3 Hermitian σ 2 σ 2 > 0 (2.3.7) iσ Hermitian σ σ = σ r + iσ i e iσt = e σit e iσrt σ timescale (driving) (damping) entropy 9

10 P dv > 0 (2.3.24) (2.3.24) ; i.e., M 0 [ P dv ] dm r > 0 driving damping entropy local thermal timescale P-V enntropy P dv 0 local thermal timescale thermal balance P-V entropy Pulsation period Local thermal timescale (2.3.24) (2.3.24) epsilon-mechanism kappa-mechanism opacity-mechanism opacity Kappa-mechanism block ( F ) < 0 F = ρdl r /dm r T M r = dt ( Lr dm r L r 4 ξ r + κ ) κ 3 T T kappa-mechanism ( κ T + d dr κ ρ Γ ) > 0

11 Γ 3 1 = (d ln T/d ln ρ) ad kappamechanism drivinig opacity peak opacity (radiative damping) Opacity peaks T 10 4 K T K He T K driving zone local thermal timescale local thermal timescale opacity peak He + opacity peak + H He peak HR δ Scuti RR Lyrae (T eff < K) T K β Cephei SPB Epsilon-mechanism equilibrium internal energy equilibrium (2.3.24) driving epsilon-mechanism epsilon-mechanism epsilon-mechanism epsilon-mechanism 10 2 M 11

12 Strange-mode instability: Thermal time M/L L/M 10 4 thermal time P rad P gas strangemode instability Strange modes (β P gas /P 1) T eff Strange mode strange modes Strange modes ; L/M > 10 4 P gas + P rad P rad = at 4 /3 dp gas dr = GM rρ r 2 L 3 rad 4πr = 4acT dt 2 3κρ dr = c dp rad κρ dr ( 1 κl ) rad 4πcGM r ( = gρ 1 ) κ L rad /L M/M L/M > 10 4 dp gas /dr > 0 density inversion strange mode 12

13 Thermal time (2.1.7) entropy perturbation ( S/ t) Mr 0 (ɛ n = 0) L r /L r 0 P rad T 4 P rad /P rad = 4 T/T L r /L r 0 (2.1.7) L L = κ T 4 P rad P rad ρ κ ρ ρ c d P rad κρl dr 0 β 1 P P rad d P dr ρ ( P ρ) P ρ Strange-mode instability Strange-mode instability L/M HR Instability boundary Stochastic excitation: excitation mechanism Stochastic excitation ( ) characteristic timescale radial nonradial pulsations Stochastic excitation ( 1m/s) 5 stochastic excitation CoRoT,Kepler stochastic excitation : opacity peak kappa-mechanism Strange-mode instability luminosity stochastic excitation 13

14 2.4 Nonlinear pulsations (2.4.1) (2.4.4) thermal timescale Thermal timescale dynamical timescale ( L/M > 10 4 L /M ) Luminosity helium star L/M thermal time sine-curve dynamical timescale luminosity ( ) 14

15 Mira Mira ( sine-curve self-consistent ) shock waves (Höfner & Dorfi 1997, A&A, 319, 648) ( ) Shock wave dust formation ( ) (Willson 2000, Ann.Rev.A.Ap, 38, 573) 15

16 (P-L relation) Π - Π <ρ> 1/2 Π = C R 3 /M (2.5.1) R M C Cepheids core helium burning stagen - (mass-luminosity) L = f L (M) (2.5.2) Cepheids HR (Cepheid instability strip) (T eff ) L = f T (T eff ) (2.5.3) L = 4πR 2 σt 4 eff (2.5.3) L = f R (R) (2.5.4) (2.5.2) (2.5.4) (2.5.1) Π L bolometric correction Period-luminosity relation HR 5M 20M He-burning He-burning 16

17 - Turner et al (2011) M V = ± (2.786 ± 0.075) log P M B = ± (2.386 ± 0.098) log P Sandage et al. (2004) line ( ) - - (PLC) - HR Period changes of Cepheids M 1/2 R 3/2 O C ( ) P n+const. (P n ) E(n) E(n) + const. n 0 ( P 0 + P dt ) dφ φ dφ = P 0 + n2 2 P 0P = P 0 + t2 P 2 P 17

18 O C (φ 0 φ 1 dt/dφ = P ) ( ) 1st crossing He- 2nd 3rd crossings core He burning HR 2nd crossing ( ) P < 0 3rd crossing P > 0 1st crossing He burning 18

19 2.6 Period Luminosity relations of Red Variables Microlensing project OGLE LMC SMC Red variables Period - Luminosity (Kmagnitute) relations (Ita et al 2003). F G Fundamental mode First overtone mode Cepheid P L relations C C Mira variables P L relations P L relations semi-regular variables Mira variables Period - Luminosity relation Mira variables Period-luminosity relation Cepheids Mira variables AGB luminosity 19

20 Mira variables Mira variable luminosity Mira variable mass luminosity mass radius Mira variables Period-luminosity relation 3 Nonradial Pulsations 3.1 Basic equations ρ t ( t + u ψ Poisson + (ρu) = 0 (3.1.1) ) u = 1 P ψ (3.1.2) ρ 2 ψ = 4πGρ (3.1.3) Nonradial pulsations nonradial pulsations 20

21 linear perturbations equilibrium Eulerian perturbations ξ(t, r 0 ) r(t, r 0 ) r 0 f f(t, r) f 0 (r) = f(t, r) f 0 (r 0 ) + f 0 (r 0 ) f 0 (r) = f ξ f 0 (3.1.4) f Eulerian perturbation f Lagrangian perturbation Eulerian perturbation equilibrium ξ Lagrangian perturbation (u 0 = 0) u = u = dξ dt = ξ t (3.1.1) (3.1.3) Eulerian perturbation ( ) ρ t + ξ ρ 0 = 0 (3.1.5) t 2 ξ t = 1 P + ρ dp 0 e 2 ρ 0 ρ 2 r 0 dr ψ (3.1.6) 2 ψ = 4πGρ (3.1.7) Eulerian perturbations ψ nonradial pulsations Cowling approximation Radial pulsations ξ(t, r) = e iσt ξ(r); f (t, r) = e iσt f (r) (3.1.8) displacement vector ξ(r) radial component horizontal component ξ(r) = ξ r (r)e r + ξ h ; ξ h = ξ θ e θ + ξ φ e φ (3.1.9) ξ θ ξ φ θ ξ φ components (3.1.5) (3.1.6) ρ + 1 r 2 r (r2 ρξ r ) + ρ r h ξ h = 0 (3.1.10) σ 2 ρξ r = P r gρ (3.1.11) ξ h = 1 σ 2 ρr hp (3.1.12) 21

22 g GM r /r 2 horizontal differential operator h h = e θ θ + e φ sin θ φ h ξ h = 1 sin θ θ (sin θξ θ) + 1 ξ φ sin θ φ (3.1.13) (3.1.12) (3.1.11) radial pulsation nonradial pulsations p-modes (pressure modes) g-modes (gravity modes) (3.1.10) (3.1.12) Lagrangian perturbations (3.1.6) Eulerian perturbations P P + ξ d ln P r dr = Γ 1 ( ρ ρ + ξ r ) d ln ρ dr Brunt-Väisälä frequency N ( 1 N 2 d ln P g d ln ρ ) Γ 1 dr dr ( = g g c 2 s d ln ρ ) dr (3.1.14) ρ ρ = P Γ 1 P + N 2 (3.1.14) c s adiabatic sound speed c s ( ln P/ ln ρ) s = Γ 1 P/ρ (3.1.12) (3.1.10) ξ h g ξ r (3.1.15) ρ dρ r 2 r (r2 ξ r ) + ξ r dr + ρ + 1 σ 2 r 2 2 hp = 0 (3.1.16) 2 h = 1 sin θ ( sin θ ) + 1 θ θ sin 2 θ (3.1.11) (3.1.16) ρ ( 1 (r 2 ξ r ) h r 2 r σ 2 r 2 = g ξ c 2 r 1 s ρ 22 c 2 s 2 φ 2 (3.1.17) ) P (3.1.18)

23 P r = (σ2 N 2 )ρξ r g P c 2 s (3.1.19) ξ r P (r, θ, φ) explicit 2 h Y m l (θ, φ) N lm P m l (cos θ)e imφ 2 hyl m (θ, φ) = l(l + 1)Yl m (θ, φ) (3.1.20) ξ r = ξ nl (r)y m l (θ, φ), P = η nl (r)y m l (θ, φ) (3.1.21) (3.1.18) (3.1.19) 1 d(r 2 ξ nl ) r 2 dr = g c 2 s ξ nl + ( ) l(l + 1)c 2 s ηnl 1 σ 2 r 2 c 2 sρ (3.1.22) dη nl dr = (σ2 N 2 )ρξ nl g η nl c 2 s (3.1.23) (3.1.21) (3.1.12) displacement (ξ θ, ξ φ ) (ξ θ, ξ φ ) = η ( ) nl Y m l σ 2 ρr θ, 1 Y sin θ φ l ( ) m ( l) l m l = m sectoral modes Radial pulsations (3.1.22) (3.1.23) Hermitian J.P. Cox 1980, 23

24 Theory of Stellar Pulsation adiabatic nonradial pulsations σ 2 m explicit σ 2 m frequency 2l + 1 (3.1.22) (3.1.23) ξ r 2 ξ nl exp ( r 0 g c 2 s ) dr ; η η ( r ) nl ρ exp N 2 0 g dr d ξ dr = h(r)r2 c 2 s [ r ( N 2 h(r) exp 0 g g c 2 s Lamb frequency L l (3.1.24) ( ) L 2 l σ 1 η (3.1.25) 2 d η dr = 1 h(r)r 2 (σ2 N 2 ) ξ (3.1.26) ) ] dr L 2 l l(l + 1)c2 s r 2 (3.1.27) 3.2 Local analysis (3.2.25) (3.2.26) local analysis ξ, η exp(ik r r) (3.2.28) ξ η factor k 2 r = 1 c 2 sσ 2 (σ2 N 2 )(σ 2 L 2 l) (3.2.29) k r radial wave number ξ exp[i(σt + k r r)]y m l k 2 r > 0 radial propagate local propagate σ 2 > N 2 and σ 2 > L 2 l = p modes σ 2 < N 2 and σ 2 < L 2 l = g modes p modes high-frequency oscillations radial pulsations (l = 0) g modes low-frequency oscillations 24

25 wave number k h total wavenumber k k 2 h = l(l + 1) r 2 = L 2 l/c 2 s (3.2.30) (3.2.29) k 2 = k 2 r + k 2 h σ 4 σ 2 (N 2 + k 2 c 2 s) + N 2 k 2 hc 2 s = 0 ( ) k h = 0 radial pulations (l = 0) ( ) σ 2 = c 2 sk 2 r + N 2 g modes σ 2 = 0 k h L 2 l N 2 p modes σ 2 > L 2 l (3.2.29) σ 2 = c 2 s(kr 2 + kh 2 ) p modes wave number frequency g modes σ 2 < N 2 L 2 l (3.2.29) σ 2 N 2 k 2 h/(k 2 r + k 2 h) (3.2.30) g mode oscillations frequency k h k r Brunt Väisälä frequency N k r frequency σ k h 25

26 3.3 Global oscillations r2 r 1 k r dr = π(n + α) (3.3.31) n α r 1 r 2 propagation zone (kr 2 > 0) frequencies frequencies Nonradial pulsations p modes g modes l radial pulsations l units k r radial fix l g modes p modes frequency l fix radial p modes frequencies g modes p modes σ 2 > N 2, L 2 l k r real ( ) nodes g modes σ 2 < N 2, L 2 l k r real g modes nodes 26

27 3.3.1 High-order p modes High-order p-modes (3.3.31) ν nl = σ nl 2π (Tassoul 1980) ν ν = ( R 2 0 (n + l α ) ν (3.3.32) ) 1 dr GM (3.3.33) c s R 3 c 2 s = Γ 1 p/ρ p 3 ρ dm GMr r = dm r r ν global parameters M R (3.3.32) l high-order p modes radial order n ν n 0 ν n 1 2, ν n 1 ν n 1 3 small separation ν δν nl ν nl ν n 1 l+2 (4l + 6) 4π 2 ν nl R 0 dc s dr dr r (3.3.34) ν small separation δν nl 27

28 Aerts et al. (2010) (a,b) l 3 (l = 0 l = 2 l = 1 l = 3 ) l large separation ν ν = 135µHz Echellediagram ( ν ν ) l (3.3.32) 28

29 p- mode large separation ν small separation δ 02 ( X c ) small separation δ 02 ν δ 02 (X c ) High-order g modes High radial order g-modes k r N l(l + 1)/(rσ) (3.3.31) Π = 2π σ 2π2 n l(l + 1) ( r2 r 1 σ l(l + 1) nπ r2 r 1 ) 1 N r dr Π N dr (3.3.35) r 2π 2 l(l + 1) ( r2 r 1 ) 1 N r dr (3.3.36) g-modes ( ) 29

30 ( 1.5M ) Brunt-Väisälä frequency N X c g-modes ( X c ) X c Brunt-Väisälä frequency N (X c ) Kepler γ Dor KIC ( KIC ) 3.4 Solar-like Oscillations (l 3) 30

31 power-spectra amplitude (ν max ) (large separation ν) ν = ( ± 0.04)µHz MR 3 (or ν max = (3120 ± 5)µHz MR 2 (T eff /5777) 1/2 (or ) ν M/M = ν (R/R ) 3 ν max ν max = M/M (R/R ) 2 T eff /T eff T eff ν ν max Kepler (subgiants) R luminosity, L = 4πR 2 σt 4 eff HR plot timescale large separation 3.5 CoRoT Kepler p-mode g-mode (mixed modes) ) 31

32 Brunt-Väisäla frequencyn ( ) radial modes p g-mode gmodes p-mode p-modes g-modes mixed modes high order (n 1) p-modes g-modes ν p (n + l2 ) l(l + 1) + ɛ ν l(l + 1)D, ν g N n ν p-modes large-separation ( 0.5 c s /R; soundtravel time ) N Brunt-Väisälä frequency (g-modes P g N ) ν p ν g N ν g mixed modes ν p ( ) mode inertia I I = 4π R 0 [ξ 2 r + l(l + 1)ξ 2 h]ρr 2 dr (σ 2 I/2 ) ν g inertia ν p ν g ν p inertia 32

33 ( ) Stochastic excitation inertia I ν p ν g Kepler power spectra ν p ν g l ν p large separation ν M/R 3 8µHz HR ν p ν g g-mode P g 1/ N 53s 96s Kepler ν P g P g H-burning shell He Red giant branch P g He-flash core-he Red 33

34 Clump He- P g red giant branch HR ( ) 4 (Rotational splittings) σ Ω ( ) ( ) O(Ω 2 ) linearized momentum equation (σ 0 + σ 1 ) 2 ξ 2m(σ 0 + σ 1 )Ωξ + 2i(σ 0 + σ 1 )Ω ξ = 1 p + ρ dp 0 e ρ 0 ρ 2 r 0 dr ψ (4.0.37) σ 0 σ 1 ( ) ( ) ( ) σ 2 0ξ σ 1 σ 1 ξ = mωξ + iω ξ (4.0.38) ξ σ 1 ξ ξρdv = m Ωξ ξρdv + i ξ (Ω ξ)ρdv (4.0.39) ξ (Ω ξ) = Ω sin θξ rξ φ Ω cos θξ θξ φ + Ω cos θξ φξ θ Ω sin θξ φξ r = 2imΩξ r (r)ξ h (r)yl m Yl m imωξ h (r) 2 cos θ sin θ ( Y m l θ Y l m + Y m l Y m l ) θ (4.0.40) m Ω m Ω r (4.0.39) σ 1 [ξr 2 + l(l + 1)ξh]ρr 2 2 dr = m Ω(r)[ξr 2 + l(l + 1)ξh 2 2ξ r ξ h ξh]ρr 2 2 dr (4.0.41) K(r) K(r) [ξ2 r + l(l + 1)ξh 2 2ξ rξ h ξ h 2]ρr2 [ξ 2 r + l(l + 1)ξh 2]ρr2 dr (4.0.42) 34

35 σ 1 σ 1 = m Ω(r)K(r)dr (4.0.43) σ m ( ) m m l (n, l) m 2l + 1 rotational splitting K(r) (n, l) rotational splittings p-modes g-modes p-modes rotational splittings g-modes splittings l = 1 (dipole) g-modes rotational splittings ( ) (KIC ) (triplets) p-mode g-mode rotational kernel K(r) g-mode p-mode weight (uniform rotation) C nl (2ξr ξ h + ξ 2 h ) ρr2 dr [ξ 2 r + l(l + 1)ξ 2 h ]ρr2 dr (4.0.44) σ 1 = mω (1 C nl ) (4.0.45) C nl Ledoux mωc nl co-rotating High-order g-modes ξ h ξ r C nl 1/[l(l + 1)] high-order p-modes ξ h ξ r C nl red-giants Kepler CoRoT l = 1 rotational splittings core envelope 35

36 KIC dipole (l = 1) rotational splitting large separation ν splittings ( ) rotational splittings splittings maximum dipole modes (l = 1) rotational splitting = (1 C)Ω/(2π) C ( dipole high-order g modes C 0.5) KIC (Goupil et al 2013) (Core-He burning stage) He-burning 36

37 (Aerts 2015) ( log g > 4 log g ) (core) (envelope) 5 20 ( ) (r 2 Ω) = 4π (ρr 4 ΩU r ) + t M P 5 M P M P [ (4πρr 3 ) 2 D Ω ] M P 37

38 1µHz 38

総研大恒星進化概要.dvi

総研大恒星進化概要.dvi The Structure and Evolution of Stars I. Basic Equations. M r r =4πr2 ρ () P r = GM rρ. r 2 (2) r: M r : P and ρ: G: M r Lagrange r = M r 4πr 2 rho ( ) P = GM r M r 4πr. 4 (2 ) s(ρ, P ) s(ρ, P ) r L r T

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

Contents 1 Jeans (

Contents 1 Jeans ( Contents 1 Jeans 2 1.1....................................... 2 1.2................................. 2 1.3............................... 3 2 3 2.1 ( )................................ 4 2.2 WKB........................

More information

vol5-honma (LSR: Local Standard of Rest) 2.1 LSR R 0 LSR Θ 0 (Galactic Constant) 1985 (IAU: International Astronomical Union) R 0 =8.5

vol5-honma (LSR: Local Standard of Rest) 2.1 LSR R 0 LSR Θ 0 (Galactic Constant) 1985 (IAU: International Astronomical Union) R 0 =8.5 2.2 1 2.2 2.2.1 (LSR: Local Standard of Rest) 2.1 LSR R 0 LSR Θ 0 (Galactic Constant) 1985 (IAU: International Astronomical Union) R 0 =8.5 kpc, Θ 0 = 220 km s 1. (2.1) R 0 7kpc 8kpc Θ 0 180 km s 1 270

More information

Mott散乱によるParity対称性の破れを検証

Mott散乱によるParity対称性の破れを検証 Mott Parity P2 Mott target Mott Parity Parity Γ = 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 t P P ),,, ( 3 2 1 0 1 γ γ γ γ γ γ ν ν µ µ = = Γ 1 : : : Γ P P P P x x P ν ν µ µ vector axial vector ν ν µ µ γ γ Γ ν γ

More information

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

II ( ) (7/31) II (  [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re II 29 7 29-7-27 ( ) (7/31) II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I Euler Navier

More information

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論 email: takahash@sci.u-hyogo.ac.jp May 14, 2009 Outline 1. 2. 3. 4. 5. 6. 2 / 262 Today s Lecture: Mode-mode Coupling Theory 100 / 262 Part I Effects of Non-linear Mode-Mode Coupling Effects of Non-linear

More information

1 ( ) Einstein, Robertson-Walker metric, R µν R 2 g µν + Λg µν = 8πG c 4 T µν, (1) ( ds 2 = c 2 dt 2 + a(t) 2 dr 2 ) + 1 Kr 2 r2 dω 2, (2) (ȧ ) 2 H 2

1 ( ) Einstein, Robertson-Walker metric, R µν R 2 g µν + Λg µν = 8πG c 4 T µν, (1) ( ds 2 = c 2 dt 2 + a(t) 2 dr 2 ) + 1 Kr 2 r2 dω 2, (2) (ȧ ) 2 H 2 1 ( ) Einstein, Robertson-Walker metric, R µν R 2 g µν + Λg µν = 8πG c 4 T µν, (1) ( ds 2 = c 2 dt 2 + a(t) 2 dr 2 ) + 1 Kr 2 r2 dω 2, (2) (ȧ ) 2 H 2 = 8πG a 3c 2 ρ Kc2 a 2 + Λc2 3 (3), ä a = 4πG Λc2 (ρ

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

( ) ,

( ) , II 2007 4 0. 0 1 0 2 ( ) 0 3 1 2 3 4, - 5 6 7 1 1 1 1 1) 2) 3) 4) ( ) () H 2.79 10 10 He 2.72 10 9 C 1.01 10 7 N 3.13 10 6 O 2.38 10 7 Ne 3.44 10 6 Mg 1.076 10 6 Si 1 10 6 S 5.15 10 5 Ar 1.01 10 5 Fe 9.00

More information

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0 79 4 4.1 4.1.1 x i (t) x j (t) O O r 0 + r r r 0 x i (0) r 0 x i (0) 4.1 L. van. Hove 1954 space-time correlation function V N 4.1 ρ 0 = N/V i t 80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t

More information

4/15 No.

4/15 No. 4/15 No. 1 4/15 No. 4/15 No. 3 Particle of mass m moving in a potential V(r) V(r) m i ψ t = m ψ(r,t)+v(r)ψ(r,t) ψ(r,t) = ϕ(r)e iωt ψ(r,t) Wave function steady state m ϕ(r)+v(r)ϕ(r) = εϕ(r) Eigenvalue problem

More information

untitled

untitled MRR Physical Basis( 1.8.4) METEK MRR 1 MRR 1.1 MRR 24GHz FM-CW(frequency module continuous wave) 30 r+ r f+ f 1.2 1 4 MRR 24GHz 1.3 50mW 1 rf- (waveguide) (horn) 60cm ( monostatic radar) (continuous wave)

More information

2007 5 iii 1 1 1.1.................... 1 2 5 2.1 (shear stress) (shear strain)...... 5 2.1.1...................... 6 2.1.2.................... 6 2.2....................... 7 2.2.1........................

More information

Formation process of regular satellites on the circumplanetary disk Hidetaka Okada Department of Earth Sciences, Undergraduate school of Scie

Formation process of regular satellites on the circumplanetary disk Hidetaka Okada Department of Earth Sciences, Undergraduate school of Scie Formation process of regular satellites on the circumplanetary disk Hidetaka Okada 22060172 Department of Earth Sciences, Undergraduate school of Science, Hokkaido University Planetary and Space Group

More information

QMI_09.dvi

QMI_09.dvi 25 3 19 Erwin Schrödinger 1925 3.1 3.1.1 3.1.2 σ τ 2 2 ux, t) = ux, t) 3.1) 2 x2 ux, t) σ τ 2 u/ 2 m p E E = p2 3.2) E ν ω E = hν = hω. 3.3) k p k = p h. 3.4) 26 3 hω = E = p2 = h2 k 2 ψkx ωt) ψ 3.5) h

More information

QMI_10.dvi

QMI_10.dvi 25 3 19 Erwin Schrödinger 1925 3.1 3.1.1 σ τ x u u x t ux, t) u 3.1 t x P ux, t) Q θ P Q Δx x + Δx Q P ux + Δx, t) Q θ P u+δu x u x σ τ P x) Q x+δx) P Q x 3.1: θ P θ Q P Q equation of motion P τ Q τ σδx

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

gr09.dvi

gr09.dvi .1, θ, ϕ d = A, t dt + B, t dtd + C, t d + D, t dθ +in θdϕ.1.1 t { = f1,t t = f,t { D, t = B, t =.1. t A, tdt e φ,t dt, C, td e λ,t d.1.3,t, t d = e φ,t dt + e λ,t d + dθ +in θdϕ.1.4 { = f1,t t = f,t {

More information

KENZOU Karman) x

KENZOU Karman) x KENZO 8 8 31 8 1 3 4 5 6 Karman) 7 3 8 x 8 1 1.1.............................. 3 1............................................. 5 1.3................................... 5 1.4 /.........................

More information

02-量子力学の復習

02-量子力学の復習 4/17 No. 1 4/17 No. 2 4/17 No. 3 Particle of mass m moving in a potential V(r) V(r) m i ψ t = 2 2m 2 ψ(r,t)+v(r)ψ(r,t) ψ(r,t) Wave function ψ(r,t) = ϕ(r)e iωt steady state 2 2m 2 ϕ(r)+v(r)ϕ(r) = εϕ(r)

More information

数学の基礎訓練I

数学の基礎訓練I I 9 6 13 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 3 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n 003...............................3 Debye................. 3.4................ 3 3 3 3. Larmor Cyclotron... 3 3................ 4 3.3.......... 4 3.3............ 4 3.3...... 4 3.3.3............ 5 3.4.........

More information

I

I I 6 4 10 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

http://www.ike-dyn.ritsumei.ac.jp/ hyoo/wave.html 1 1, 5 3 1.1 1..................................... 3 1.2 5.1................................... 4 1.3.......................... 5 1.4 5.2, 5.3....................

More information

基礎数学I

基礎数学I I & II ii ii........... 22................. 25 12............... 28.................. 28.................... 31............. 32.................. 34 3 1 9.................... 1....................... 1............

More information

ver.1 / c /(13)

ver.1 / c /(13) 1 -- 11 1 c 2010 1/(13) 1 -- 11 -- 1 1--1 1--1--1 2009 3 t R x R n 1 ẋ = f(t, x) f = ( f 1,, f n ) f x(t) = ϕ(x 0, t) x(0) = x 0 n f f t 1--1--2 2009 3 q = (q 1,..., q m ), p = (p 1,..., p m ) x = (q,

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

H.Haken Synergetics 2nd (1978)

H.Haken Synergetics 2nd (1978) 27 3 27 ) Ising Landau Synergetics Fokker-Planck F-P Landau F-P Gizburg-Landau G-L G-L Bénard/ Hopfield H.Haken Synergetics 2nd (1978) (1) Ising m T T C 1: m h Hamiltonian H = J ij S i S j h i S

More information

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence Hanbury-Brown Twiss (ver. 2.) 25 4 4 1 2 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 4 3 Hanbury-Brown Twiss ( ) 5 3.1............................................

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

B 1 B.1.......................... 1 B.1.1................. 1 B.1.2................. 2 B.2........................... 5 B.2.1.......................... 5 B.2.2.................. 6 B.2.3..................

More information

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x Compton Scattering Beaming exp [i k x ωt] k λ k π/λ ω πν k ω/c k x ωt ω k α c, k k x ωt η αβ k α x β diag + ++ x β ct, x O O x O O v k α k α β, γ k γ k βk, k γ k + βk k γ k k, k γ k + βk 3 k k 4 k 3 k

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

輻射の量子論、選択則、禁制線、許容線

輻射の量子論、選択則、禁制線、許容線 Radiative Processes in Astrophysics 005/8/1 http://wwwxray.ess.sci.osaka- u.ac.jp/~hayasida Semi-Classical Theory of Radiative Transitions r r 1/ 4 H = ( cp ea) m c + + eφ nonrelativistic limit, Coulomb

More information

215 11 13 1 2 1.1....................... 2 1.2.................... 2 1.3..................... 2 1.4...................... 3 1.5............... 3 1.6........................... 4 1.7.................. 4

More information

A 99% MS-Free Presentation

A 99% MS-Free Presentation A 99% MS-Free Presentation 2 Galactic Dynamics (Binney & Tremaine 1987, 2008) Dynamics of Galaxies (Bertin 2000) Dynamical Evolution of Globular Clusters (Spitzer 1987) The Gravitational Million-Body Problem

More information

H+He H+He M > 10 M He He Wolf-Rayet Minit = 13 ~ 100 M, Zinit = 0.0001 ~ 0.02 CNO SN 2007bi (Type Ic) progenitor Minit > 100 M, Zinit = 0.004 WO star? Core collapse Rotating star model Saio, Nomoto, and

More information

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ II p = mv p x > h/4π λ = h p m v Ψ 2 Ψ Ψ Ψ 2 0 x P'(x) m d 2 x = mω 2 x = kx = F(x) dt 2 x = cos(ωt + φ) mω 2 = k ω = m k v = dx = -ωsin(ωt + φ) dt = d 2 x dt 2 0 y v θ P(x,y) θ = ωt + φ ν = ω [Hz] 2π

More information

4 19

4 19 I / 19 8 1 4 19 : : f(e, J), f(e) Phase mixing Landau Damping, violent relaxation : 2 2 : ( ) http://antwrp.gsfc.nasa.gov/apod/ap950917.html ( ) http://www-astro.physics.ox.ac.uk/~wjs/apm_grey.gif

More information

2000年度『数学展望 I』講義録

2000年度『数学展望 I』講義録 2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

液晶の物理1:連続体理論(弾性,粘性)

液晶の物理1:連続体理論(弾性,粘性) The Physics of Liquid Crystals P. G. de Gennes and J. Prost (Oxford University Press, 1993) Liquid crystals are beautiful and mysterious; I am fond of them for both reasons. My hope is that some readers

More information

(5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b)

(5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b) (5) 74 Re, bondar laer (Prandtl) Re z ω z = x (5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b) (5) 76 l V x ) 1/ 1 ( 1 1 1 δ δ = x Re x p V x t V l l (1-1) 1/ 1 δ δ δ δ = x Re p V x t V

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j = 72 Maxwell. Maxwell e r ( =,,N Maxwell rot E + B t = 0 rot H D t = j dv D = ρ dv B = 0 D = ɛ 0 E H = μ 0 B ρ( r = j( r = N e δ( r r = N e r δ( r r = : 2005 ( 2006.8.22 73 207 ρ t +dv j =0 r m m r = e E(

More information

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) 4 4 ) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) a b a b = 6i j 4 b c b c 9) a b = 4 a b) c = 7

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) = 1 9 8 1 1 1 ; 1 11 16 C. H. Scholz, The Mechanics of Earthquakes and Faulting 1. 1.1 1.1.1 : - σ = σ t sin πr a λ dσ dr a = E a = π λ σ πr a t cos λ 1 r a/λ 1 cos 1 E: σ t = Eλ πa a λ E/π γ : λ/ 3 γ =

More information

0406_total.pdf

0406_total.pdf 59 7 7.1 σ-ω σ-ω σ ω σ = σ(r), ω µ = δ µ,0 ω(r) (6-4) (iγ µ µ m U(r) γ 0 V (r))ψ(x) = 0 (7-1) U(r) = g σ σ(r), V (r) = g ω ω(r) σ(r) ω(r) (6-3) ( 2 + m 2 σ)σ(r) = g σ ψψ (7-2) ( 2 + m 2 ω)ω(r) = g ω ψγ

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1.

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1. 1.1 1. 1.3.1..3.4 3.1 3. 3.3 4.1 4. 4.3 5.1 5. 5.3 6.1 6. 6.3 7.1 7. 7.3 1 1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1 4 1 1.1 ( ) 5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1 da n i n da n i n + 3 A ni n n=1 3 n=1

More information

global global mass region (matter ) & (I) M3Y semi-microscopic int. Ref.: H. N., P. R. C68, ( 03) N. P. A722, 117c ( 03) Proc. of NENS03 (to be

global global mass region (matter ) & (I) M3Y semi-microscopic int. Ref.: H. N., P. R. C68, ( 03) N. P. A722, 117c ( 03) Proc. of NENS03 (to be Gogny hard core spin-isospin property @ RCNP (Mar. 22 24, 2004) Collaborator: M. Sato (Chiba U, ) ( ) global global mass region (matter ) & (I) M3Y semi-microscopic int. Ref.: H. N., P. R. C68, 014316

More information

* 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) *

* 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) * * 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) *1 2004 1 1 ( ) ( ) 1.1 140 MeV 1.2 ( ) ( ) 1.3 2.6 10 8 s 7.6 10 17 s? Λ 2.5 10 10 s 6 10 24 s 1.4 ( m

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z I 1 m 2 l k 2 x = 0 x 1 x 1 2 x 2 g x x 2 x 1 m k m 1-1. L x 1, x 2, ẋ 1, ẋ 2 ẋ 1 x = 0 1-2. 2 Q = x 1 + x 2 2 q = x 2 x 1 l L Q, q, Q, q M = 2m µ = m 2 1-3. Q q 1-4. 2 x 2 = h 1 x 1 t = 0 2 1 t x 1 (t)

More information

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2 1 6 6.1 (??) (P = ρ rad /3) ρ rad T 4 d(ρv ) + PdV = 0 (6.1) dρ rad ρ rad + 4 da a = 0 (6.2) dt T + da a = 0 T 1 a (6.3) ( ) n ρ m = n (m + 12 ) m v2 = n (m + 32 ) T, P = nt (6.4) (6.1) d [(nm + 32 ] )a

More information

PDF

PDF 1 1 1 1-1 1 1-9 1-3 1-1 13-17 -3 6-4 6 3 3-1 35 3-37 3-3 38 4 4-1 39 4- Fe C TEM 41 4-3 C TEM 44 4-4 Fe TEM 46 4-5 5 4-6 5 5 51 6 5 1 1-1 1991 1,1 multiwall nanotube 1993 singlewall nanotube ( 1,) sp 7.4eV

More information

2 Chapter 4 (f4a). 2. (f4cone) ( θ) () g M. 2. (f4b) T M L P a θ (f4eki) ρ H A a g. v ( ) 2. H(t) ( )

2 Chapter 4 (f4a). 2. (f4cone) ( θ) () g M. 2. (f4b) T M L P a θ (f4eki) ρ H A a g. v ( ) 2. H(t) ( ) http://astr-www.kj.yamagata-u.ac.jp/~shibata f4a f4b 2 f4cone f4eki f4end 4 f5meanfp f6coin () f6a f7a f7b f7d f8a f8b f9a f9b f9c f9kep f0a f0bt version feqmo fvec4 fvec fvec6 fvec2 fvec3 f3a (-D) f3b

More information

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional 19 σ = P/A o σ B Maximum tensile strength σ 0. 0.% 0.% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional limit ε p = 0.% ε e = σ 0. /E plastic strain ε = ε e

More information

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds 127 3 II 3.1 3.1.1 Φ(t) ϕ em = dφ dt (3.1) B( r) Φ = { B( r) n( r)}ds (3.2) S S n( r) Φ 128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

85 4

85 4 85 4 86 Copright c 005 Kumanekosha 4.1 ( ) ( t ) t, t 4.1.1 t Step! (Step 1) (, 0) (Step ) ±V t (, t) I Check! P P V t π 54 t = 0 + V (, t) π θ : = θ : π ) θ = π ± sin ± cos t = 0 (, 0) = sin π V + t +V

More information

2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP

2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP 1. 1 213 1 6 1 3 1: ( ) 2: 3: SF 1 2 3 1: 3 2 A m 2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP

More information

0.1 I I : 0.2 I

0.1 I I : 0.2 I 1, 14 12 4 1 : 1 436 (445-6585), E-mail : sxiida@sci.toyama-u.ac.jp 0.1 I I 1. 2. 3. + 10 11 4. 12 1: 0.2 I + 0.3 2 1 109 1 14 3,4 0.6 ( 10 10, 2 11 10, 12/6( ) 3 12 4, 4 14 4 ) 0.6.1 I 1. 2. 3. 0.4 (1)

More information

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [ 3 3. 3.. H H = H + V (t), V (t) = gµ B α B e e iωt i t Ψ(t) = [H + V (t)]ψ(t) Φ(t) Ψ(t) = e iht Φ(t) H e iht Φ(t) + ie iht t Φ(t) = [H + V (t)]e iht Φ(t) Φ(t) i t Φ(t) = V H(t)Φ(t), V H (t) = e iht V (t)e

More information

ssp2_fixed.dvi

ssp2_fixed.dvi 13 12 30 2 1 3 1.1... 3 1.2... 4 1.3 Bravais... 4 1.4 Miller... 4 2 X 5 2.1 Bragg... 5 2.2... 5 2.3... 7 3 Brillouin 13 3.1... 13 3.2 Brillouin... 13 3.3 Brillouin... 14 3.4 Bloch... 16 3.5 Bloch... 17

More information

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2 filename=mathformula58.tex ax + bx + c =, x = b ± b 4ac, (.) a x + x = b a, x x = c a, (.) ax + b x + c =, x = b ± b ac. a (.3). sin(a ± B) = sin A cos B ± cos A sin B, (.) cos(a ± B) = cos A cos B sin

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co 16 I ( ) (1) I-1 I-2 I-3 (2) I-1 ( ) (100 ) 2l x x = 0 y t y(x, t) y(±l, t) = 0 m T g y(x, t) l y(x, t) c = 2 y(x, t) c 2 2 y(x, t) = g (A) t 2 x 2 T/m (1) y 0 (x) y 0 (x) = g c 2 (l2 x 2 ) (B) (2) (1)

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

Gmech08.dvi

Gmech08.dvi 51 5 5.1 5.1.1 P r P z θ P P P z e r e, z ) r, θ, ) 5.1 z r e θ,, z r, θ, = r sin θ cos = r sin θ sin 5.1) e θ e z = r cos θ r, θ, 5.1: 0 r

More information

A

A A04-164 2008 2 13 1 4 1.1.......................................... 4 1.2..................................... 4 1.3..................................... 4 1.4..................................... 5 2

More information

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint ( 9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) 2. 2.1 Ĥ ψ n (r) ω n Schrödinger Ĥ ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ + Ĥint (t)] ψ (r, t), (2) Ĥ int (t) = eˆxe cos ωt ˆdE cos ωt, (3)

More information

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d m v = mg + kv m v = mg k v v m v = mg + kv α = mg k v = α e rt + e rt m v = mg + kv v mg + kv = m v α + v = k m v (v α (v + α = k m ˆ ( v α ˆ αk v = m v + α ln v α v + α = αk m t + C v α v + α = e αk m

More information

Gravothermal Catastrophe & Quasi-equilibrium Structure in N-body Systems

Gravothermal Catastrophe & Quasi-equilibrium Structure  in N-body Systems 2004/3/1 3 N 1 Antonov Problem & Quasi-equilibrium State in N-body N Systems A. Taruya (RESCEU, Univ.Tokyo) M. Sakagami (Kyoto Univ.) 2 Antonov problem N-body study of quasi-attractivity M15 T Antonov

More information

,., 5., ,. 2.2,., x z. y,.,,,. du dt + α p x = 0 dw dt + α p z + g = 0 α dp dt + pγ dα dt = 0 α V dα dt = 0 (2.2.1), γ = c p /c

,., 5., ,. 2.2,., x z. y,.,,,. du dt + α p x = 0 dw dt + α p z + g = 0 α dp dt + pγ dα dt = 0 α V dα dt = 0 (2.2.1), γ = c p /c 29 2 1 2.1 2.1.1.,., 5.,. 2.1.1,. 2.2,., x z. y,.,,,. du dt + α p x = 0 dw dt + α p z + g = 0 α dp dt + pγ dα dt = 0 α V dα dt = 0 (2.2.1), γ = c p /c v., V = (u, w), = ( / x, / z). 30 2.1.1: 31., U p(z),

More information

D v D F v/d F v D F η v D (3.2) (a) F=0 (b) v=const. D F v Newtonian fluid σ ė σ = ηė (2.2) ė kl σ ij = D ijkl ė kl D ijkl (2.14) ė ij (3.3) µ η visco

D v D F v/d F v D F η v D (3.2) (a) F=0 (b) v=const. D F v Newtonian fluid σ ė σ = ηė (2.2) ė kl σ ij = D ijkl ė kl D ijkl (2.14) ė ij (3.3) µ η visco post glacial rebound 3.1 Viscosity and Newtonian fluid f i = kx i σ ij e kl ideal fluid (1.9) irreversible process e ij u k strain rate tensor (3.1) v i u i / t e ij v F 23 D v D F v/d F v D F η v D (3.2)

More information

chap03.dvi

chap03.dvi 99 3 (Coriolis) cm m (free surface wave) 3.1 Φ 2.5 (2.25) Φ 100 3 r =(x, y, z) x y z F (x, y, z, t) =0 ( DF ) Dt = t + Φ F =0 onf =0. (3.1) n = F/ F (3.1) F n Φ = Φ n = 1 F F t Vn on F = 0 (3.2) Φ (3.1)

More information

QMII_10.dvi

QMII_10.dvi 65 1 1.1 1.1.1 1.1 H H () = E (), (1.1) H ν () = E ν () ν (). (1.) () () = δ, (1.3) μ () ν () = δ(μ ν). (1.4) E E ν () E () H 1.1: H α(t) = c (t) () + dνc ν (t) ν (), (1.5) H () () + dν ν () ν () = 1 (1.6)

More information

63 3.2,.,.,. (2.6.38a), (2.6.38b), V + V V + Φ + fk V = 0 (3.2.1)., Φ = gh, f.,. (2.6.40), Φ + V Φ + Φ V = 0 (3.2.2). T = L/C (3.2.3), C. C V, T = L/V

63 3.2,.,.,. (2.6.38a), (2.6.38b), V + V V + Φ + fk V = 0 (3.2.1)., Φ = gh, f.,. (2.6.40), Φ + V Φ + Φ V = 0 (3.2.2). T = L/C (3.2.3), C. C V, T = L/V 62 3 3.1,,.,. J. Charney, 1948., Burger(1958) Phillips(1963),.,. L : ( 1/4) T : ( 1/4) V :,. v x u x V L, etc, u V T,,.,., ( )., 2.1.1. 63 3.2,.,.,. (2.6.38a), (2.6.38b), V + V V + Φ + fk V = 0 (3.2.1).,

More information

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: sin 6 5 ζ a, b Z: Q: R: C: 3 3 7 4 sin 6 5 ζ 9 6 6............................... 6............................... 6.3......................... 4 7 6 8 8 9 3 33 a, b a bc c b a a b 5 3 5 3 5 5 3 a a a a p > p p p, 3,

More information

振動と波動

振動と波動 Report JS0.5 J Simplicity February 4, 2012 1 J Simplicity HOME http://www.jsimplicity.com/ Preface 2 Report 2 Contents I 5 1 6 1.1..................................... 6 1.2 1 1:................ 7 1.3

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

Microsoft Word - 11問題表紙(選択).docx

Microsoft Word - 11問題表紙(選択).docx A B A.70g/cm 3 B.74g/cm 3 B C 70at% %A C B at% 80at% %B 350 C γ δ y=00 x-y ρ l S ρ C p k C p ρ C p T ρ l t l S S ξ S t = ( k T ) ξ ( ) S = ( k T) ( ) t y ξ S ξ / t S v T T / t = v T / y 00 x v S dy dx

More information

CMP Technical Report No. 4 Department of Computational Nanomaterials Design ISIR, Osaka University 2 2................................. 2.2......................... 2 3 3 3................................

More information

* 1 2014 7 8 *1 iii 1. Newton 1 1.1 Newton........................... 1 1.2............................. 4 1.3................................. 5 2. 9 2.1......................... 9 2.2........................

More information

( )

( ) 7..-8..8.......................................................................... 4.................................... 3...................................... 3..3.................................. 4.3....................................

More information

最新耐震構造解析 ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 3 版 1 刷発行時のものです.

最新耐震構造解析 ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 3 版 1 刷発行時のものです. 最新耐震構造解析 ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/052093 このサンプルページの内容は, 第 3 版 1 刷発行時のものです. i 3 10 3 2000 2007 26 8 2 SI SI 20 1996 2000 SI 15 3 ii 1 56 6

More information

q quark L left-handed lepton. λ Gell-Mann SU(3), a = 8 σ Pauli, i =, 2, 3 U() T a T i 2 Ỹ = 60 traceless tr Ỹ 2 = 2 notation. 2 off-diagonal matrices

q quark L left-handed lepton. λ Gell-Mann SU(3), a = 8 σ Pauli, i =, 2, 3 U() T a T i 2 Ỹ = 60 traceless tr Ỹ 2 = 2 notation. 2 off-diagonal matrices Grand Unification M.Dine, Supersymmetry And String Theory: Beyond the Standard Model 6 2009 2 24 by Standard Model Coupling constant θ-parameter 8 Charge quantization. hypercharge charge Gauge group. simple

More information

/ 18 12 4 ( ) ( ) : : f(e, J), f(e) Phase mixing Landau Damping, violent relaxation : 2 2 : ? m i d 2 x i dt 2 = j i f ij (1) x i m i i f ij j i f ij G f ij = Gm i m j x j x i x j x i 3, (2) ( ) 2 (

More information