e ::= c op(e 1,..., e n ) if e 1 then e 2 else e 3 let x = e 1 in e 2 x let rec x y 1... y n = e 1 in e 2 e e 1... e n (e 1,..., e n ) let (x 1,..., x

Size: px
Start display at page:

Download "e ::= c op(e 1,..., e n ) if e 1 then e 2 else e 3 let x = e 1 in e 2 x let rec x y 1... y n = e 1 in e 2 e e 1... e n (e 1,..., e n ) let (x 1,..., x"

Transcription

1 e ::= c op(e 1,..., e n ) if e 1 then e 2 else e 3 let x = e 1 in e 2 x let rec x y 1... y n = e 1 in e 2 e e 1... e n (e 1,..., e n ) let (x 1,..., x n ) = e 1 in e 2 Array.create e 1 e 2 e 1.(e 2 ) e 1.(e 2 ) e 3 1: MinCaml τ ::= π τ 1... τ n τ τ 1... τ n τ array α 2: MinCaml 1

2 c π Γ c : π Γ e 1 : π 1... Γ e n : π n op π 1,..., π n π Γ op(e 1,..., e n ) : π Γ e 1 : bool Γ e 2 : τ Γ e 3 : τ Γ if e 1 then e 2 else e 3 : τ Γ e 1 : τ 1 Γ, x : τ 1 e 2 : τ 2 Γ let x = e 1 in e 2 : τ 2 Γ(x) = τ Γ x : τ Γ, x : τ 1... τ n τ, y 1 : τ 1,..., y n : τ n e 1 : τ Γ, x : τ 1... τ n τ e 2 : τ Γ let rec x y 1... y n = e 1 in e 2 : τ Γ e : τ 1... τ n τ Γ e 1 : τ 1... Γ e n : τ n Γ e e 1... e n : τ Γ e 1 : τ 1... Γ e n : τ n Γ e 1 : τ 1... τ n Γ, x 1 : τ 1,..., x n : τ n e 2 : τ Γ (e 1,..., e n ) : τ 1... τ n Γ let (x 1,..., x n ) = e 1 in e 2 : τ Γ e 1 : int Γ e 2 : τ Γ Array.create e 1 e 2 : τ array Γ e 1 : τ array Γ e 1.(e 2 ) : τ Γ e 2 : int Γ e 1 : τ array Γ e 2 : int Γ e 3 : τ Γ e 1.(e 2 ) e 3 : unit 3: MinCaml e ::= c op(x 1,..., x n ) if x = y then e 1 else e 2 if x y then e 1 else e 2 let x = e 1 in e 2 x let rec x y 1... y n = e 1 in e 2 x y 1... y n (x 1,..., x n ) let (x 1,..., x n ) = y in e x.(y) x.(y) z 4: MinCaml K 2

3 K : Syntax.t KNormal.t K(c) = c K(not(e)) = K(if e then false else true) K(e 1 = e 2 ) = K(if e 1 = e 2 then true else false) K(e 1 e 2 ) = K(if e 1 e 2 then true else false) K(op(e 1,..., e n )) = let x 1 = K(e 1 ) in... let x n = K(e n ) in op(x 1,..., x n ) op K(if not e 1 then e 2 else e 3 ) = K(if e 1 then e 3 else e 2 ) K(if e 1 = e 2 then e 3 else e 4 ) = let x = K(e 1 ) in let y = K(e 2 ) in if x = y then K(e 3 ) else K(e 4 ) K(if e 1 e 2 then e 3 else e 4 ) = let x = K(e 1 ) in let y = K(e 2 ) in if x y then K(e 3 ) else K(e 4 ) K(if e 1 then e 2 else e 3 ) = K(if e 1 = false then e 3 else e 2 ) e 1 K(let x = e 1 in e 2 ) = let x = K(e 1 ) in K(e 2 ) K(x) = x K(let rec x y 1... y n = e 1 in e 2 ) = let rec x y 1... y n = K(e 1 ) in K(e 2 ) K(e e 1... e n ) = let x = K(e) in let y 1 = K(e 1 ) in... let y n = K(e n ) in x y 1... y n K(e 1,..., e n ) = let x 1 = K(e 1 ) in... let x n = K(e n ) in (x 1,..., x n ) K(let (x 1,..., x n ) = e 1 in e 2 ) = let y = K(e 1 ) in let (x 1,..., x n ) = y in K(e 2 ) K(Array.create e 1 e 2 ) = let x = K(e 1 ) in let y = K(e 2 ) in create array x y K(e 1.(e 2 )) = let x = K(e 1 ) in let y = K(e 2 ) in x.(y) K(e 1.(e 2 ) e 3 ) = let x = K(e 1 ) in let y = K(e 2 ) in let z = K(e 3 ) in x.(y) z 5: K insert let (fresh) 3

4 α : Id.t M.t KNormal.t KNormal.t α ε (c) = c α ε (op(x 1,..., x n )) = op(ε(x 1 ),..., ε(x n )) α ε (if x = y then e 1 else e 2 ) = if ε(x) = ε(y) then α ε (e 1 ) else α ε (e 2 ) α ε (if x y then e 1 else e 2 ) = if ε(x) ε(y) then α ε (e 1 ) else α ε (e 2 ) α ε (let x = e 1 in e 2 ) = let x = α ε (e 1 ) in α ε,x x (e 2 ) α ε (x) = ε(x) α ε (let rec x y 1... y n = e 1 in e 2 ) = let rec x y 1... y n = α ε,x x,y 1 y 1,...,y n y n (e 1) in α ε,x x (e 2 ) α ε (x y 1... y n ) = ε(x) ε(y 1 )... ε(y n ) α ε ((x 1,..., x n )) = (ε(x 1 ),..., ε(x n )) α ε (let (x 1,..., x n ) = y in e) = let (x 1,..., x n) = ε(y) in α ε,x1 x (e) 1,...,xn x n α ε (x.(y)) = ε(x).(ε(y)) α ε (x.(y) z) = ε(x).(ε(y)) ε(z) 6: α ε α α x fresh β : Id.t M.t KNormal.t KNormal.t β ε (c) = c β ε (op(x 1,..., x n )) = op(ε(x 1 ),..., ε(x n )) β ε (if x = y then e 1 else e 2 ) = if ε(x) = ε(y) then β ε (e 1 ) else β ε (e 2 ) β ε (if x y then e 1 else e 2 ) = if ε(x) ε(y) then β ε (e 1 ) else β ε (e 2 ) β ε (let x = e 1 in e 2 ) = β ε,x y (e 2 ) β ε (e 1 ) y β ε (let x = e 1 in e 2 ) = let x = β ε (e 1 ) in β ε (e 2 ) β ε (e 1 ) β ε (x) = ε(x) β ε (let rec x y 1... y n = e 1 in e 2 ) = let rec x y 1... y n = β ε (e 1 ) in β ε (e 2 ) β ε (x y 1... y n ) = ε(x) ε(y 1 )... ε(y n ) β ε ((x 1,..., x n )) = (ε(x 1 ),..., ε(x n )) β ε (let (x 1,..., x n ) = y in e) = let (x 1,..., x n ) = ε(y) in β ε (e) β ε (x.(y)) = ε(x).(ε(y)) β ε (x.(y) z) = ε(x).(ε(y)) ε(z) 7: β ε β β ε(x) ε(x) = x 4

5 A : KNormal.t KNormal.t A(c) = c A(op(x 1,..., x n )) = op(x 1,..., x n ) A(if x = y then e 1 else e 2 ) = if x = y then A(e 1 ) else A(e 2 ) A(if x y then e 1 else e 2 ) = if x y then A(e 1 ) else A(e 2 ) A(let x = e 1 in e 2 ) = let... in let x = e 1 in A(e 2 ) A(x) = x A(e 1 ) = let... in e 1 let... in 0 let e 1 let A(let rec x y 1... y n = e 1 in e 2 ) = let rec x y 1... y n = A(e 1 ) in A(e 2 ) A(x y 1... y n ) = x y 1... y n A((x 1,..., x n )) = (x 1,..., x n ) A(let (x 1,..., x n ) = y in e) = let (x 1,..., x n ) = y in A(e) A(x.(y)) = x.(y) A(x.(y) z) = x.(y) z 8: let 5

6 I : (Id.t list KNormal.t) M.t KNormal.t KNormal.t I ε (c) = c I ε (op(x 1,..., x n )) = op(x 1,..., x n ) I ε (if x = y then e 1 else e 2 ) = if x = y then I ε (e 1 ) else I ε (e 2 ) I ε (if x y then e 1 else e 2 ) = if x y then I ε (e 1 ) else I ε (e 2 ) I ε (let x = e 1 in e 2 ) = let x = I ε (e 1 ) in I ε (e 2 ) I ε (x) = x I ε (let rec x y 1... y n = e 1 in e 2 ) = ε = ε, x ((y 1,..., y n ), e 1 ) let rec x y 1... y n = I ε (e 1 ) in I ε (e 2 ) size(e 1 ) th I ε (let rec x y 1... y n = e 1 in e 2 ) = let rec x y 1... y n = I ε (e 1 ) in I ε (e 2 ) size(e 1 ) > th I ε (x y 1... y n ) = α y1 z 1,...,y n z n (e) ε(x) = ((z 1,..., z n ), e) I ε (x y 1... y n ) = x y 1... y n ε(x) I ε ((x 1,..., x n )) = (x 1,..., x n ) I ε (let (x 1,..., x n ) = y in e) = let (x 1,..., x n ) = y in I ε (e) I ε (x.(y)) = x.(y) I ε (x.(y) z) = x.(y) z size(c) = 1 size(op(x 1,..., x n )) = 1 size(if x = y then e 1 else e 2 ) = 1 + size(e 1 ) + size(e 2 ) size(if x y then e 1 else e 2 ) = 1 + size(e 1 ) + size(e 2 ) size(let x = e 1 in e 2 ) = 1 + size(e 1 ) + size(e 2 ) size(x) = 1 size(let rec x y 1... y n = e 1 in e 2 ) = 1 + size(e 1 ) + size(e 2 ) size(x y 1... y n ) = 1 size((x 1,..., x n )) = 1 size(let (x 1,..., x n ) = y in e) = 1 + size(e) size(x.(y)) = 1 size(x.(y) z) = 1 9: ε th 6

7 F : KNormal.t M.t KNormal.t KNormal.t F ε (c) = c F ε (op(x 1,..., x n )) = c op(ε(x 1 ),..., ε(x n )) = c F ε (op(x 1,..., x n )) = op(x 1,..., x n ) F ε (if x = y then e 1 else e 2 ) = F ε (e 1 ) ε(x) ε(y) F ε (if x = y then e 1 else e 2 ) = F ε (e 2 ) ε(x) ε(y) F ε (if x = y then e 1 else e 2 ) = if x = y then F ε (e 1 ) else F ε (e 2 ) F ε (if x y then e 1 else e 2 ) = F ε (e 1 ) ε(x) ε(y) ε(x) ε(y) F ε (if x y then e 1 else e 2 ) = F ε (e 2 ) ε(x) ε(y) ε(x) > ε(y) F ε (if x y then e 1 else e 2 ) = if x y then F ε (e 1 ) else F ε (e 2 ) F ε (let x = e 1 in e 2 ) = e 1 = F ε (e 1 ) F ε (x) = x let x = e 1 in F ε,x e 1 (e 2 ) F ε (let rec x y 1... y n = e 1 in e 2 ) = let rec x y 1... y n = F ε (e 1 ) in F ε (e 2 ) F ε (x y 1... y n ) = x y 1... y n F ε ((x 1,..., x n )) = (x 1,..., x n ) F ε (let (x 1,..., x n ) = y in e) = let x 1 = y 1 in... let x n = y n in F ε (e) F ε (let (x 1,..., x n ) = y in e) = let (x 1,..., x n ) = y in F ε (e) F ε (x.(y)) = x.(y) F ε (x.(y) z) = x.(y) z ε(y) = (y 1,..., y n ) 10: ε 7

8 E : KNormal.t KNormal.t E(c) = c E(op(x 1,..., x n )) = op(x 1,..., x n ) E(if x = y then e 1 else e 2 ) = if x = y then E(e 1 ) else E(e 2 ) E(if x y then e 1 else e 2 ) = if x y then E(e 1 ) else E(e 2 ) E(let x = e 1 in e 2 ) = E(e 2 ) effect(e(e 1 )) = false x FV (E(e 2 )) E(let x = e 1 in e 2 ) = let x = E(e 1 ) in E(e 2 ) E(x) = x E(let rec x y 1... y n = e 1 in e 2 ) = E(e 2 ) x FV (E(e 2 )) E(let rec x y 1... y n = e 1 in e 2 ) = let rec x y 1... y n = E(e 1 ) in E(e 2 ) E(x y 1... y n ) = x y 1... y n E((x 1,..., x n )) = (x 1,..., x n ) E(let (x 1,..., x n ) = y in e) = E(e) {x 1,..., x n } FV (E(e)) = E(let (x 1,..., x n ) = y in e) = let (x 1,..., x n ) = y in E(e) E(x.(y)) = x.(y) E(x.(y) z) = x.(y) z effect : KNormal.t bool effect(c) = false effect(op(x 1,..., x n )) = false effect(if x = y then e 1 else e 2 ) = effect(e 1 ) effect(e 2 ) effect(if x y then e 1 else e 2 ) = effect(e 1 ) effect(e 2 ) effect(let x = e 1 in e 2 ) = effect(e 1 ) effect(e 2 ) effect(x) = false effect(let rec x y 1... y n = e 1 in e 2 ) = effect(e 2 ) effect(x y 1... y n ) = true effect((x 1,..., x n )) = false effect(let (x 1,..., x n ) = y in e) = effect(e) effect(x.(y)) = false effect(x.(y) z) = true 11: (1/2) 8

9 FV : KNormal.t S.t FV (c) = FV (op(x 1,..., x n )) = {x 1,..., x n } FV (if x = y then e 1 else e 2 ) = {x, y} FV (e 1 ) FV (e 2 ) FV (if x y then e 1 else e 2 ) = {x, y} FV (e 1 ) FV (e 2 ) FV (let x = e 1 in e 2 ) = FV (e 1 ) (FV (e 2 ) \ {x}) FV (x) = {x} FV (let rec x y 1... y n = e 1 in e 2 ) = ((FV (e 1 ) \ {y 1,..., y n }) FV (e 2 )) \ {x} FV (x y 1... y n ) = {x, y 1,..., y n } FV ((x 1,..., x n )) = {x 1,..., x n } FV (let (x 1,..., x n ) = y in e) = {y} (FV (e) \ {x 1,..., x n }) FV (x.(y)) = {x, y} FV (x.(y) z) = {x, y, z} 12: (2/2) P ::= ({D 1,..., D n }, e) D ::= L x (y 1,..., y m )(z 1,..., z n ) = e e ::= c op(x 1,..., x n ) if x = y then e 1 else e 2 if x y then e 1 else e 2 let x = e 1 in e 2 x make closure x = (L x, (y 1,..., y n )) in e apply closure(x, y 1,..., y n ) apply direct(l x, y 1,..., y n ) (x 1,..., x n ) let (x 1,..., x n ) = y in e x.(y) x.(y) z (known function call) 13: 9

10 C : KNormal.t Closure.t C(c) = c C(op(x 1,..., x n )) = op(x 1,..., x n ) C(if x = y then e 1 else e 2 ) = if x = y then C(e 1 ) else C(e 2 ) C(if x y then e 1 else e 2 ) = if x y then C(e 1 ) else C(e 2 ) C(let x = e 1 in e 2 ) = let x = C(e 1 ) in C(e 2 ) C(x) = x C(let rec x y 1... y n = e 1 in e 2 ) = D L x (y 1,..., y n )(z 1,..., z m ) = e 1 make closure x = (L x, (z 1,..., z m )) in e 2 e 1 = C(e 1 ), e 2 = C(e 2 ), FV (e 1) \ {x, y 1,..., y n } = {z 1,..., z m } C(x y 1... y n ) = apply closure(x, y 1,..., y n ) C((x 1,..., x n )) = (x 1,..., x n ) C(let (x 1,..., x n ) = y in e) = let (x 1,..., x n ) = y in C(e) C(x.(y)) = x.(y) C(x.(y) z) = x.(y) z FV : Closure.t S.t FV (c) = FV (op(x 1,..., x n )) = {x 1,..., x n } FV (if x = y then e 1 else e 2 ) = {x, y} FV (e 1 ) FV (e 2 ) FV (if x y then e 1 else e 2 ) = {x, y} FV (e 1 ) FV (e 2 ) FV (let x = e 1 in e 2 ) = FV (e 1 ) (FV (e 2 ) \ {x}) FV (x) = {x} FV (make closure x = (L x, (y 1,..., y n )) in e) = {y 1,..., y n } (FV (e) \ {x}) FV (apply closure(x, y 1,..., y n )) = {x, y 1,..., y n } FV (apply direct(l x, y 1,..., y n )) = {y 1,..., y n } FV ((x 1,..., x n )) = {x 1,..., x n } FV (let (x 1,..., x n ) = y in e) = {y} (FV (e) \ {x 1,..., x n }) FV (x.(y)) = {x, y} FV (x.(y) z) = {x, y, z} 14: Closure C(e) D 10

11 C : S.t KNormal.t Closure.t C s (let rec x y 1... y n = e 1 in e 2 ) = D L x (y 1,..., y n )() = e 1 make closure x = (L x, ()) in e 2 e 1 = C s (e 1 ), e 2 = C s (e 2 ), s = s {x}, FV (e 1) \ {y 1,..., y n } = C s (let rec x y 1... y n = e 1 in e 2 ) = D L x (y 1,..., y n )(z 1,..., z m ) = e 1 make closure x = (L x, (z 1,..., z m )) in e 2 e 1 = C s (e 1 ), e 2 = C s (e 2 ), FV (e 1) \ {y 1,..., y n }, FV (e 1) \ {x, y 1,..., y n } = {z 1,..., z m } C s (x y 1... y n ) = apply closure(x, y 1,..., y n ) x s C s (x y 1... y n ) = apply direct(l x, y 1,..., y n ) x s 15: Closure C s (e) s C : S.t KNormal.t Closure.t C s (let rec x y 1... y n = e 1 in e 2 ) = D L x (y 1,..., y n )() = e 1 make closure x = (L x, ()) in e 2 e 1 = C s (e 1 ), e 2 = C s (e 2 ), s = s {x}, FV (e 1) \ {y 1,..., y n } = x FV (e 2) C s (let rec x y 1... y n = e 1 in e 2 ) = D L x (y 1,..., y n )() = e 1 e 2 e 1 = C s (e 1 ), e 2 = C s (e 2 ), s = s {x}, FV (e 1) \ {y 1,..., y n } = x FV (e 2) C s (let rec x y 1... y n = e 1 in e 2 ) = D L x (y 1,..., y n )(z 1,..., z m ) = e 1 make closure x = (L x, (z 1,..., z m )) in e 2 e 1 = C s (e 1 ), e 2 = C s (e 2 ), FV (e 1) \ {y 1,..., y n } =, FV (e 1) \ {x, y 1,..., y n } = {z 1,..., z m } C s (x y 1... y n ) = apply closure(x, y 1,..., y n ) x s C s (x y 1... y n ) = apply direct(l x, y 1,..., y n ) x s 16: Closure C s (e) 11

12 P ::= ({D 1,..., D n }, E) D ::= L x (y 1,..., y n ) = E E ::= x e; E e e ::= c L x op(x 1,..., x n ) if x = y then E 1 else E 2 if x y then E 1 else E 2 x apply closure(x, y 1,..., y n ) apply direct(l x, y 1,..., y n ) x.(y) x.(y) z save(x, y) restore(y) mov x y y 17: 12

13 V : Closure.prog SparcAsm.prog V(({D 1,..., D n }, e)) = ({V(D 1 ),..., V(D n )}, V(e)) V : Closure.fundef SparcAsm.fundef V(L x (y 1,..., y n )(z 1,..., z n ) = e) = L x (y 1,..., y n ) = z 1 R 0.(4);... ; z n R 0.(4n); V(e) V : Closure.t SparcAsm.t V(c) = c V(op(x 1,..., x n )) = op(x 1,..., x n ) V(if x = y then e 1 else e 2 ) = if x = y then V(e 1 ) else V(e 2 ) V(if x y then e 1 else e 2 ) = if x y then V(e 1 ) else V(e 2 ) V(let x = e 1 in e 2 ) = x V(e 1 ); V(e 2 ) V(x) = x V(make closure x = (L x, (y 1,..., y n )) in e) = x R hp ; R hp R hp + 4(n + 1); z L x ; x.(0) z; x.(4) y 1 ;... ; x.(4n) y n ; V(e) V(apply closure(x, y 1,..., y n )) = apply closure(x, y 1,..., y n ) V(apply direct(l x, y 1,..., y n )) = apply direct(l x, y 1,..., y n ) V((x 1,..., x n )) = y R hp ; R hp R hp + 4n; y.(0) x 1 ;... ; y.(4(n 1)) x n ; y V(let (x 1,..., x n ) = y in e) = {x 1,..., x n } FV (e) = {x i1,..., x im } x i1 y.(4(i 1 1));... ; x im y.(4(i m 1)); V(e) V(x.(y)) = y 4 y; x.(y ) V(x.(y) z) = y 4 y; x.(y ) z 18: V(P ), V(D) V(e) fresh R hp e 1 ; e 2 x x e 1 ; e 2 x E 1 ; E 2 E 1 = (x 1 e 1 ;... ; x n e n ; e) x 1 e 1 ;... ; x n e n ; x e; E 2 13

14 FV : S.t SparcAsm.t S.t FV s (x e; E) = s = FV s (E) \ {x} FV s (e) FV s (e) = FV s (e) FV : S.t SparcAsm.exp S.t FV s (c) = s FV s (L x ) = s FV s (op(x 1,..., x n )) = {x 1,..., x n } s FV s (if x = y then E 1 else E 2 ) = {x, y} FV s (E 1 ) FV s (E 2 ) FV s (if x y then E 1 else E 2 ) = {x, y} FV s (E 1 ) FV s (E 2 ) FV s (x) = {x} s FV s (apply closure(x, y 1,..., y n )) = {x, y 1,..., y n } s FV s (apply direct(l x, y 1,..., y n )) = {y 1,..., y n } s FV s (x.(y)) = {x, y} s FV s (x.(y) z) = {x, y, z} s FV s (save(x, y)) = {x} s FV s (restore(y)) = s 19: E e FV s (E) FV s (e) s E e FV (E) FV (E) 14

15 R : SparcAsm.prog SparcAsm.prog R(({D 1,..., D n }, E)) = ({R(D 1 ),..., R(D n )}, R (E, x, ())) x fresh R : SparcAsm.fundef SparcAsm.fundef R(L x (y 1,..., y n ) = E) = L x (R 1,..., R n ) = R x R0,y 1 R 1,...,y n R n (E, R 0, R 0 ) R : Id.t M.t SparcAsm.t Id.t SparcAsm.t SparcAsm.t Id.t M.t R ε ((x e; E), z dest, E cont ) = E cont = (z dest E; E cont ), R ε (e, x, E cont) = (E, ε ), r {ε (y) y FV (E cont)}, R ε,x r(e, z dest, E cont ) = (E, ε ) ((r E ; E ), ε ) x R ε ((r e; E), z dest, E cont ) = E cont = (z dest E; E cont ), R ε (e, r, E cont) = (E, ε ), R ε (E, z dest, E cont ) = (E, ε ) ((r E ; E ), ε ) R ε (e, x, E cont ) = R ε (e, x, E cont ) 20: R(P ), R(D) R ε (E, z dest, E cont ) ε z dest E E cont E R ε (E, x, E cont ) E E ε [ regalloc.notarget-nospill.ml ] 15

16 R : Id.t M.t SparcAsm.exp Id.t SparcAsm.t SparcAsm.t Id.t M.t R ε (c, z dest, E cont ) = (c, ε) R ε (L x, z dest, E cont ) = (L x, ε) R ε (op(x 1,..., x n ), z dest, E cont ) = (op(ε(x 1 ),..., ε(x n )), ε) R ε (if x = y then E 1 else E 2, z dest, E cont ) = R ε (E 1, z dest, E cont ) = (E 1, ε 1 ), R ε (E 2, z dest, E cont ) = (E 2, ε 2 ), ε = {z r ε 1 (z) = ε 2 (z) = r}, {z 1,..., z n } = (FV (E cont ) \ {z dest } \ dom(ε )) dom(ε) ((save(ε(z 1 ), z 1 );... ; save(ε(z n ), z n ); if ε(x) ε(y) then E 1 else E 2), ε ) R ε (if x y then E 1 else E 2, z dest, E cont ) = R ε (x, z dest, E cont ) = (ε(x), ε) R ε (apply closure(x, y 1,..., y n ), z dest, E cont ) = {z 1,..., z n } = (FV (E cont ) \ {z dest }) dom(ε) ((save(ε(z 1 ), z 1 );... ; save(ε(z n ), z n ); apply closure(ε(x), ε(y 1 ),..., ε(y n ))), ) R ε (apply direct(l x, y 1,..., y n ), z dest, E cont ) = R ε (x.(y), z dest, E cont ) = (ε(x).(ε(y)), ε) R ε (x.(y) z, z dest, E cont ) = (ε(x).(ε(y)) ε(z), ε) R ε (save(x, y), z dest, E cont ) = (save(ε(x), y), ε) R ε (restore(y), z dest, E cont ) = (restore(y), ε) 21: R ε (e, z dest, E cont ) R ε (e) x ε(x) R ε (e) = R ε (x restore(x); e) r ε(r) = r [ regalloc.notarget-nospill.ml ] 16

17 T : Id.t SparcAsm.t Id.t bool S.t T x ((y e; E), z dest ) = T x (e, y) = (c 1, s 1 ) c 1 (true, s 1 ) T x (E, z dest ) = (c 2, s 2 ) (c 2, s 1 s 2 ) T x (e, z dest ) = T x (e, z dest ) T : Id.t SparcAsm.exp Id.t bool S.t T x (x, z dest ) = (false, {z dest }) T x (if y = z then E 1 else E 2, z dest ) = T x (E 1, z dest ) = (c 1, s 1 ), T x (E 2, z dest ) = (c 2, s 2 ) (c 1 c 2, s 1 s 2 ) T x (if y z then E 1 else E 2, z dest ) = T x (apply closure(y 0, y 1,..., y n ), z dest ) = (true, {R i x = y i }) T x (apply direct(l y, y 1,..., y n ), z dest ) = T x (e, z dest ) = (false, ) 22: x r targeting T x (E, z dest ) T x (e, z dest ) E e c x s x T x (E cont, z dest ) = (c, s) r s [ regalloc.target-nospill.ml ] R : Id.t M.t SparcAsm.t Id.t SparcAsm.t SparcAsm.t Id.t M.t R ε ((x e; E), z dest, E cont ) = E cont = (z dest E; E cont ), R ε (e, x, E cont) = (E, ε ), y FV (E cont), R ε \{y ε (y)},x ε (y)(e, z dest, E cont ) = (E, ε ) { ((save(ε(y), y); ε (y) E ; E ), ε ) y dom(ε) ((ε (y) E ; E ), ε ) y dom(ε) x r {ε (y) y FV (E cont)} r 23: spilling R ε (E, z dest, E cont ) [ regalloc.target-latespill.ml ] 17

18 S : SparcAsm.prog string S(({D 1,..., D n }, E)) =.section ".text" S(D 1 )... S(D n ).global min_caml_start min_caml_start: save %sp, -112, %sp S(E, %g0) ret restore S : SparcAsm.fundef string S(L x (y 1,..., y n ) = E) = x: S(E, R 0 ) retl nop S : SparcAsm.t Id.t string S((x e; E), z dest ) = S(e, x) S(E, z dest ) S(e, z dest ) = S(e, z dest ) 24: S(P ), S(D) S(E, z dest ) 18

19 S : SparcAsm.exp Id.t string S(c, z dest ) = set c, z dest S(L x, z dest ) = set L x, z dest S(op(x 1,..., x n ), z dest ) = op x 1,..., x n, z dest S(if x = y then E 1 else E 2, z dest ) = cmp x, y bne b 1 nop S(E 1, z dest ) b b 2 nop b 1 : S(E 2, z dest ) b 2 : S(if x y then E 1 else E 2, z dest ) = S(x, z dest ) = mov x, z dest S(apply closure(x, y 1,..., y n ), z dest ) = shuffle((x, y 1,..., y n ), (R 0, R 1,..., R n )) st R ra, [R st + 4#ε] ld [R 0 ], R n+1 call R n+1 add R st, 4(#ε + 1), R st! delay slot sub R st, 4(#ε + 1), R st ld [R st + 4#ε], R ra mov R 0, z dest S(apply direct(l x, y 1,..., y n ), z dest ) = shuffle((y 1,..., y n ), (R 1,..., R n )) st R ra, [R st + 4#ε] call x add R st, 4(#ε + 1), R st! delay slot sub R st, 4(#ε + 1), R st ld [R st + 4#ε], R ra mov R 0, z dest S(x.(y), z dest ) = ld [x + y], z dest S(x.(y) z, z dest ) = st z, [x + y] S(save(x, y), z dest ) = y dom(ε) ε y 4#ε st x, [R st + ε(y)] S(restore(y), z dest ) = ld [R st + ε(y)], z dest 25: S(e, z dest ) ε #ε ε shuffle((x 1,..., x n ), (r 1,..., r n )) x 1,..., x n r 1,..., r n 19

20 S : S.t SparcAsm.t Id.t S.t string S s ((x e; E), z dest ) = S s (e, x) = (s, S), S s (E, z dest ) = (s, S ) (s, SS ) S s (e, z dest ) = S s (e, z dest ) S : S.t SparcAsm.exp Id.t S.t string S s (if x = y then E 1 else E 2, z dest ) = S s (E 1, z dest ) = (s 1, S 1 ), S s (E 2, z dest ) = (s 2, S 2 ) (s 1 s 2, cmp x, y bne b 1 nop S 1 b b 2 nop b 1 : S 2 b 2 :) S s (if x y then E 1 else E 2, z dest ) = S s (save(x, y), z dest ) = (s, nop) y s S s (save(x, y), z dest ) = y dom(ε) ε y 4#ε (s {y}, st x, [R st + ε(y)]) y s S s (e, z dest ) = (s, ) 26: save S s (E, z dest ) S s (e, z dest ) s save S(E, z dest ) S (E, z dest ) = (s, S) S 20

21 S : SparcAsm.fundef string S(L x (y 1,..., y n ) = E) = S (E, tail) = (s, S) x: S S : S.t SparcAsm.exp Id.t S.t string S s (if x = y then E 1 else E 2, tail) = S s (E 1, tail) = (s 1, S 1 ), S s (E 2, tail) = (s 2, S 2 ) (, cmp x, y bne b nop S 1 b: S 2 ) S s (if x y then E 1 else E 2, tail) = S s (apply closure(x, y 1,..., y n ), tail) = (, S s (apply direct(l x, y 1,..., y n ), tail) = (, shuffle((x, y 1,..., y n ), (R 0, R 1,..., R n )) ld [R 0 ], R n+1 jmp R n+1 nop) shuffle((y 1,..., y n ), (R 1,..., R n )) b x nop) S s (e, tail) = S s (e, R 0 ) = (s, S) (, S retl nop) 27: S s (D) S s (e, z dest ) z dest = tail 21

untitled

untitled PPL 2006 MinCaml (myth) vs. vs. vs. Haskell (www.haskell.org) ML (www.standardml.org, caml.inria.fr) Standard ML (SML), Objective Caml (OCaml) Scheme (www.schemers.org) low level GCC C GCJ Java

More information

ax 2 + bx + c = n 8 (n ) a n x n + a n 1 x n a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 4

ax 2 + bx + c = n 8 (n ) a n x n + a n 1 x n a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 4 20 20.0 ( ) 8 y = ax 2 + bx + c 443 ax 2 + bx + c = 0 20.1 20.1.1 n 8 (n ) a n x n + a n 1 x n 1 + + a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 444 ( a, b, c, d

More information

1. A0 A B A0 A : A1,...,A5 B : B1,...,B

1. A0 A B A0 A : A1,...,A5 B : B1,...,B 1. A0 A B A0 A : A1,...,A5 B : B1,...,B12 2. 3. 4. 5. A0 A B f : A B 4 (i) f (ii) f (iii) C 2 g, h: C A f g = f h g = h (iv) C 2 g, h: B C g f = h f g = h 4 (1) (i) (iii) (2) (iii) (i) (3) (ii) (iv) (4)

More information

Copyright c 2006 Zhenjiang Hu, All Right Reserved.

Copyright c 2006 Zhenjiang Hu, All Right Reserved. 1 2006 Copyright c 2006 Zhenjiang Hu, All Right Reserved. 2 ( ) 3 (T 1, T 2 ) T 1 T 2 (17.3, 3) :: (Float, Int) (3, 6) :: (Int, Int) (True, (+)) :: (Bool, Int Int Int) 4 (, ) (, ) :: a b (a, b) (,) x y

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 ( 1 1.1 (1) (1 + x) + (1 + y) = 0 () x + y = 0 (3) xy = x (4) x(y + 3) + y(y + 3) = 0 (5) (a + y ) = x ax a (6) x y 1 + y x 1 = 0 (7) cos x + sin x cos y = 0 (8) = tan y tan x (9) = (y 1) tan x (10) (1 +

More information

A

A A 2563 15 4 21 1 3 1.1................................................ 3 1.2............................................. 3 2 3 2.1......................................... 3 2.2............................................

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

発達障害研修講座(1)

発達障害研修講座(1) 1. 2. 3. 4. 5. 6. 7. T 1. 2. 3. 4. 5. 6. 7. (1) (2) SST NPO LD SC http://www.ed.niigata-u.ac.jp/~nagasawa/challenge(2009).htm (1) (2) MT ST SST SST (2009) SS Human Sexuality) http://www.ed.niigata-u.ac.jp/~nagasawa/

More information

ML λ λ 1 λ 1.1 λ λ λ e (λ ) ::= x ( ) λx.e (λ ) e 1 e 2 ( ) ML λx.e Objective Caml fun x -> e x e let 1

ML λ λ 1 λ 1.1 λ λ λ e (λ ) ::= x ( ) λx.e (λ ) e 1 e 2 ( ) ML λx.e Objective Caml fun x -> e x e let 1 2005 sumii@ecei.tohoku.ac.jp 2005 6 24 ML λ λ 1 λ 1.1 λ λ λ e (λ ) ::= x ( ) λx.e (λ ) e 1 e 2 ( ) ML λx.e Objective Caml fun x -> e x e let 1 let λ 1 let x = e1 in e2 (λx.e 2 )e 1 e 1 x e 2 λ 3 λx.(λy.e)

More information

平成 28 年度 ( 第 38 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 ~8 28 月年 48 日開催月 1 日 semantics FB 1 x, y, z,... FB 1. FB (Boolean) Functional

平成 28 年度 ( 第 38 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 ~8 28 月年 48 日開催月 1 日 semantics FB 1 x, y, z,... FB 1. FB (Boolean) Functional 1 1.1 semantics F 1 x, y, z,... F 1. F 38 2016 9 1 (oolean) Functional 2. T F F 3. P F (not P ) F 4. P 1 P 2 F (P 1 and P 2 ) F 5. x P 1 P 2 F (let x be P 1 in P 2 ) F 6. F syntax F (let x be (T and y)

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

1. A0 A B A0 A : A1,...,A5 B : B1,...,B

1. A0 A B A0 A : A1,...,A5 B : B1,...,B 1. A0 A B A0 A : A1,...,A5 B : B1,...,B12 2. 3. 4. 5. A0 A, B Z Z m, n Z m n m, n A m, n B m=n (1) A, B (2) A B = A B = Z/ π : Z Z/ (3) A B Z/ (4) Z/ A, B (5) f : Z Z f(n) = n f = g π g : Z/ Z A, B (6)

More information

untitled

untitled 1 ( 12 11 44 7 20 10 10 1 1 ( ( 2 10 46 11 10 10 5 8 3 2 6 9 47 2 3 48 4 2 2 ( 97 12 ) 97 12 -Spencer modulus moduli (modulus of elasticity) modulus (le) module modulus module 4 b θ a q φ p 1: 3 (le) module

More information

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,,

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,, 01 10 18 ( ) 1 6 6 1 8 8 1 6 1 0 0 0 0 1 Table 1: 10 0 8 180 1 1 1. ( : 60 60 ) : 1. 1 e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1,

More information

1. A0 A B A0 A : A1,...,A5 B : B1,...,B12 2. 5 3. 4. 5. A0 (1) A, B A B f K K A ϕ 1, ϕ 2 f ϕ 1 = f ϕ 2 ϕ 1 = ϕ 2 (2) N A 1, A 2, A 3,... N A n X N n X N, A n N n=1 1 A1 d (d 2) A (, k A k = O), A O. f

More information

2.2 ( y = y(x ( (x 0, y 0 y (x 0 (y 0 = y(x 0 y = y(x ( y (x 0 = F (x 0, y(x 0 = F (x 0, y 0 (x 0, y 0 ( (x 0, y 0 F (x 0, y 0 xy (x, y (, F (x, y ( (

2.2 ( y = y(x ( (x 0, y 0 y (x 0 (y 0 = y(x 0 y = y(x ( y (x 0 = F (x 0, y(x 0 = F (x 0, y 0 (x 0, y 0 ( (x 0, y 0 F (x 0, y 0 xy (x, y (, F (x, y ( ( (. x y y x f y = f(x y x y = y(x y x y dx = d dx y(x = y (x = f (x y = y(x x ( (differential equation ( + y 2 dx + xy = 0 dx = xy + y 2 2 2 x y 2 F (x, y = xy + y 2 y = y(x x x xy(x = F (x, y(x + y(x 2

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

70 : 20 : A B (20 ) (30 ) 50 1

70 : 20 : A B (20 ) (30 ) 50 1 70 : 0 : A B (0 ) (30 ) 50 1 1 4 1.1................................................ 5 1. A............................................... 6 1.3 B............................................... 7 8.1 A...............................................

More information

O1-1 O1-2 O1-3 O1-4 O1-5 O1-6

O1-1 O1-2 O1-3 O1-4 O1-5 O1-6 O1-1 O1-2 O1-3 O1-4 O1-5 O1-6 O1-7 O1-8 O1-9 O1-10 O1-11 O1-12 O1-13 O1-14 O1-15 O1-16 O1-17 O1-18 O1-19 O1-20 O1-21 O1-22 O1-23 O1-24 O1-25 O1-26 O1-27 O1-28 O1-29 O1-30 O1-31 O1-32 O1-33 O1-34 O1-35

More information

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2 1 1.1 R(x) = 0 y + P (x)y + Q(x)y = R(x)...(1) y + P (x)y + Q(x)y = 0...(2) 1 2 u(x) v(x) c 1 u(x)+ c 2 v(x) = 0 c 1 = c 2 = 0 c 1 = c 2 = 0 2 0 2 u(x) v(x) u(x) u (x) W (u, v)(x) = v(x) v (x) 0 1 1.2

More information

A S- hara/lectures/lectures-j.html r A = A 5 : 5 = max{ A, } A A A A B A, B A A A %

A S-   hara/lectures/lectures-j.html r A = A 5 : 5 = max{ A, } A A A A B A, B A A A % A S- http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html r A S- 3.4.5. 9 phone: 9-8-444, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office

More information

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B 9 7 A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B x x B } B C y C y + x B y C x C C x C y B = A

More information

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g( 06 5.. ( y = x x y 5 y 5 = (x y = x + ( y = x + y = x y.. ( Y = C + I = 50 + 0.5Y + 50 r r = 00 0.5Y ( L = M Y r = 00 r = 0.5Y 50 (3 00 0.5Y = 0.5Y 50 Y = 50, r = 5 .3. (x, x = (, u = = 4 (, x x = 4 x,

More information

1 911 9001030 9:00 A B C D E F G H I J K L M 1A0900 1B0900 1C0900 1D0900 1E0900 1F0900 1G0900 1H0900 1I0900 1J0900 1K0900 1L0900 1M0900 9:15 1A0915 1B0915 1C0915 1D0915 1E0915 1F0915 1G0915 1H0915 1I0915

More information

さくらの個別指導 ( さくら教育研究所 ) 1 φ = φ 1 : φ [ ] a [ ] 1 a : b a b b(a + b) b a 2 a 2 = b(a + b). b 2 ( a b ) 2 = a b a/b X 2 X 1 = 0 a/b > 0 2 a

さくらの個別指導 ( さくら教育研究所 ) 1 φ = φ 1 : φ [ ] a [ ] 1 a : b a b b(a + b) b a 2 a 2 = b(a + b). b 2 ( a b ) 2 = a b a/b X 2 X 1 = 0 a/b > 0 2 a φ + 5 2 φ : φ [ ] a [ ] a : b a b b(a + b) b a 2 a 2 b(a + b). b 2 ( a b ) 2 a b + a/b X 2 X 0 a/b > 0 2 a b + 5 2 φ φ : 2 5 5 [ ] [ ] x x x : x : x x : x x : x x 2 x 2 x 0 x ± 5 2 x x φ : φ 2 : φ ( )

More information

さくらの個別指導 ( さくら教育研究所 ) A 2 P Q 3 R S T R S T P Q ( ) ( ) m n m n m n n n

さくらの個別指導 ( さくら教育研究所 ) A 2 P Q 3 R S T R S T P Q ( ) ( ) m n m n m n n n 1 1.1 1.1.1 A 2 P Q 3 R S T R S T P 80 50 60 Q 90 40 70 80 50 60 90 40 70 8 5 6 1 1 2 9 4 7 2 1 2 3 1 2 m n m n m n n n n 1.1 8 5 6 9 4 7 2 6 0 8 2 3 2 2 2 1 2 1 1.1 2 4 7 1 1 3 7 5 2 3 5 0 3 4 1 6 9 1

More information

.1 A cos 2π 3 sin 2π 3 sin 2π 3 cos 2π 3 T ra 2 deta T ra 2 deta T ra 2 deta a + d 2 ad bc a 2 + d 2 + ad + bc A 3 a b a 2 + bc ba + d c d ca + d bc +

.1 A cos 2π 3 sin 2π 3 sin 2π 3 cos 2π 3 T ra 2 deta T ra 2 deta T ra 2 deta a + d 2 ad bc a 2 + d 2 + ad + bc A 3 a b a 2 + bc ba + d c d ca + d bc + .1 n.1 1 A T ra A A a b c d A 2 a b a b c d c d a 2 + bc ab + bd ac + cd bc + d 2 a 2 + bc ba + d ca + d bc + d 2 A a + d b c T ra A T ra A 2 A 2 A A 2 A 2 A n A A n cos 2π sin 2π n n A k sin 2π cos 2π

More information

koba/class/soft-kiso/ 1 λ if λx.λy.y false 0 λ typed λ-calculus λ λ 1.1 λ λ, syntax τ (types) ::= b τ 1 τ 2 τ 1

koba/class/soft-kiso/ 1 λ if λx.λy.y false 0 λ typed λ-calculus λ λ 1.1 λ λ, syntax τ (types) ::= b τ 1 τ 2 τ 1 http://www.kb.ecei.tohoku.ac.jp/ koba/class/soft-kiso/ 1 λ if λx.λy.y false 0 λ typed λ-calculus λ λ 1.1 λ 1.1.1 λ, syntax τ (types) ::= b τ 1 τ 2 τ 1 τ 2 M (terms) ::= c τ x M 1 M 2 λx : τ.m (M 1,M 2

More information

(u(x)v(x)) = u (x)v(x) + u(x)v (x) ( ) u(x) = u (x)v(x) u(x)v (x) v(x) v(x) 2 y = g(t), t = f(x) y = g(f(x)) dy dx dy dx = dy dt dt dx., y, f, g y = f (g(x))g (x). ( (f(g(x)). ). [ ] y = e ax+b (a, b )

More information

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y No1 1 (1) 2 f(x) =1+x + x 2 + + x n, g(x) = 1 (n +1)xn + nx n+1 (1 x) 2 x 6= 1 f 0 (x) =g(x) y = f(x)g(x) y 0 = f 0 (x)g(x)+f(x)g 0 (x) 3 (1) y = x2 x +1 x (2) y = 1 g(x) y0 = g0 (x) {g(x)} 2 (2) y = µ

More information

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,.

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,. (1 C205) 4 10 (2 C206) 4 11 (2 B202) 4 12 25(2013) http://www.math.is.tohoku.ac.jp/~obata,.,,,..,,. 1. 2. 3. 4. 5. 6. 7. 8. 1., 2007 ( ).,. 2. P. G., 1995. 3. J. C., 1988. 1... 2.,,. ii 3.,. 4. F. ( ),..

More information

I L01( Wed) : Time-stamp: Wed 07:38 JST hig e, ( ) L01 I(2017) 1 / 19

I L01( Wed) : Time-stamp: Wed 07:38 JST hig e,   ( ) L01 I(2017) 1 / 19 I L01(2017-09-20 Wed) : Time-stamp: 2017-09-20 Wed 07:38 JST hig e, http://hig3.net ( ) L01 I(2017) 1 / 19 ? 1? 2? ( ) L01 I(2017) 2 / 19 ?,,.,., 1..,. 1,2,.,.,. ( ) L01 I(2017) 3 / 19 ? I. M (3 ) II,

More information

he T N/ N/

he T N/ N/ 6.000 1.000 0.800 0.000 0.500 1.500 3.000 1.200 0.000 0.000 0.000 0.000 0.000-0.100 he 1.500 T 0.100 1.50 0.00 2 24.5 N/ 3 18.0 N/ 3 28.0 18.7 18.7 14.0 14.0 X() 20.000 Y() 0.000 (kn/2) 10.000 0.000 kn

More information

Microsoft Word - −C−…−gŁš.doc

Microsoft Word - −C−…−gŁš.doc ÿj~ Êu ÊËu ÎÍÊ Êy Ê~ Ê~Êu}Ì ÐÑÒdÌÊh ~{ 3 1 Êu ÿj~ Êu ~Êÿj~ ÊÂÇÍÊiÍ MO Ê{dÉÆÍ ÂÊÊ ÊuÊÎdyÉÆÍ {dêâi ~ +%ÌuËÊÎÐÑÑ~{ÉÆÍ ÉÎˈÊuÊ{dÉÆÍÂÌÉÂ~~ÍÊdÊÊÌ ÂvÇ ÉÆÍÇÉÇÍ ÊÊ~{ÉÉÌ ÎÆ{dÉÊÉÉÆÍ Êu u ÿj~ ÊÊ~ÊÊÂÇ~ÉÆÍÂdÊÊÇ

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a

More information

LCR e ix LC AM m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x (k > 0) k x = x(t)

LCR e ix LC AM m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x (k > 0) k x = x(t) 338 7 7.3 LCR 2.4.3 e ix LC AM 7.3.1 7.3.1.1 m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x k > 0 k 5.3.1.1 x = xt 7.3 339 m 2 x t 2 = k x 2 x t 2 = ω 2 0 x ω0 = k m ω 0 1.4.4.3 2 +α 14.9.3.1 5.3.2.1 2 x

More information

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy f f x, y, u, v, r, θ r > = x + iy, f = u + iv C γ D f f D f f, Rm,. = x + iy = re iθ = r cos θ + i sin θ = x iy = re iθ = r cos θ i sin θ x = + = Re, y = = Im i r = = = x + y θ = arg = arctan y x e i =

More information

dynamics-solution2.dvi

dynamics-solution2.dvi 1 1. (1) a + b = i +3i + k () a b =5i 5j +3k (3) a b =1 (4) a b = 7i j +1k. a = 14 l =/ 14, m=1/ 14, n=3/ 14 3. 4. 5. df (t) d [a(t)e(t)] =ti +9t j +4k, = d a(t) d[a(t)e(t)] e(t)+ da(t) d f (t) =i +18tj

More information

fx-3650P_fx-3950P_J

fx-3650P_fx-3950P_J SA1109-E J fx-3650p fx-3950p http://edu.casio.jp RCA500002-001V04 AB2 Mode

More information

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k II 231017 1 1.1. R n k +1 v 0,, v k k v 1 v 0,, v k v 0 1.2. v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ kσ dimσ = k 1.3. k σ {v 0,...,v k } {v i0,...,v il } l σ τ < τ τ σ 1.4.

More information

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds 127 3 II 3.1 3.1.1 Φ(t) ϕ em = dφ dt (3.1) B( r) Φ = { B( r) n( r)}ds (3.2) S S n( r) Φ 128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds

More information

Parametric Polymorphism

Parametric Polymorphism ML 2 2011/04/19 Parametric Polymorphism Type Polymorphism ? : val hd_int : int list - > int val hd_bool : bool list - > bool val hd_i_x_b : (int * bool) list - > int * bool etc. let hd_int = function (x

More information

a x x x x 1 x 2 Ý; x. x = x 1 + x 2 + Ý + x = 10 1; 1; 3; 3; 4; 5; 8; 8; 8; 9 1 + 1 + 3 + 3 + 4 + 5 + 8 + 8 + 8 + 9 10 = 50 10 = 5 . 1 1 Ý Ý # 2 2 Ý Ý & 7 7; 9; 15; 21; 33; 44; 56 21 8 7; 9; 15; 20; 22;

More information

x E E E e i ω = t + ikx 0 k λ λ 2π k 2π/λ k ω/v v n v c/n k = nω c c ω/2π λ k 2πn/λ 2π/(λ/n) κ n n κ N n iκ k = Nω c iωt + inωx c iωt + i( n+ iκ ) ωx

x E E E e i ω = t + ikx 0 k λ λ 2π k 2π/λ k ω/v v n v c/n k = nω c c ω/2π λ k 2πn/λ 2π/(λ/n) κ n n κ N n iκ k = Nω c iωt + inωx c iωt + i( n+ iκ ) ωx x E E E e i ω t + ikx k λ λ π k π/λ k ω/v v n v c/n k nω c c ω/π λ k πn/λ π/(λ/n) κ n n κ N n iκ k Nω c iωt + inωx c iωt + i( n+ iκ ) ωx c κω x c iω ( t nx c) E E e E e E e e κ e ωκx/c e iω(t nx/c) I I

More information

分散分析・2次元正規分布

分散分析・2次元正規分布 2 II L10(2016-06-30 Thu) : Time-stamp: 2016-06-30 Thu 13:55 JST hig F 2.. http://hig3.net ( ) L10 2 II(2016) 1 / 24 F 2 F L09-Q1 Quiz :F 1 α = 0.05, 2 F 3 H 0, : σ 2 1 /σ2 2 = 1., H 1, σ 2 1 /σ2 2 1. 4

More information

( )

( ) 18 10 01 ( ) 1 2018 4 1.1 2018............................... 4 1.2 2018......................... 5 2 2017 7 2.1 2017............................... 7 2.2 2017......................... 8 3 2016 9 3.1 2016...............................

More information

Microsoft Word - ’V‘é−gŁš.doc

Microsoft Word - ’V‘é−gŁš.doc ÿj~ Êu ÊËu ÎÍÊ Êy Ê~ Ê~Êu}Ì ÐÑÒdÌÊh ~{ 2 1 Êu ÿj~ Êu ~Êÿj~ ÊÂÇÍÊiÍ MO Ê{dÉÆÍ ÂÊÊ ÊuÊÎdyÉÆÍ {dêâi ~ +%ÌuËÊÎÐÑÑ~{ÉÆÍ ÉÎˈÊuÊ{dÉÆÍÂÌÉÂ~~ÍÊdÊÊÌ ÂvÇ ÉÆÍÇÉÇÍ ÊÊ~{ÉÉÌ ÎÆ{dÉÊÉÉÆÍ Êu u ÿj~ ÊÊ~ÊÊÂÇ~ÉÆÍÂy ÊÊ

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

,.,. 2, R 2, ( )., I R. c : I R 2, : (1) c C -, (2) t I, c (t) (0, 0). c(i). c (t)., c(t) = (x(t), y(t)) c (t) = (x (t), y (t)) : (1)

,.,. 2, R 2, ( )., I R. c : I R 2, : (1) c C -, (2) t I, c (t) (0, 0). c(i). c (t)., c(t) = (x(t), y(t)) c (t) = (x (t), y (t)) : (1) ( ) 1., : ;, ;, ; =. ( ).,.,,,., 2.,.,,.,.,,., y = f(x), f ( ).,,.,.,., U R m, F : U R n, M, f : M R p M, p,, R m,,, R m. 2009 A tamaru math.sci.hiroshima-u.ac.jp 1 ,.,. 2, R 2, ( ).,. 2.1 2.1. I R. c

More information

( )/2 hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1

( )/2   hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1 ( )/2 http://www2.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html 1 2011 ( )/2 2 2011 4 1 2 1.1 1 2 1 2 3 4 5 1.1.1 sample space S S = {H, T } H T T H S = {(H, H), (H, T ), (T, H), (T, T )} (T, H) S

More information

II

II II 16 16.0 2 1 15 x α 16 x n 1 17 (x α) 2 16.1 16.1.1 2 x P (x) P (x) = 3x 3 4x + 4 369 Q(x) = x 4 ax + b ( ) 1 P (x) x Q(x) x P (x) x P (x) x = a P (a) P (x) = x 3 7x + 4 P (2) = 2 3 7 2 + 4 = 8 14 +

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

1 1 3 ABCD ABD AC BD E E BD 1 : 2 (1) AB = AD =, AB AD = (2) AE = AB + (3) A F AD AE 2 = AF = AB + AD AF AE = t AC = t AE AC FC = t = (4) ABD ABCD 1 1

1 1 3 ABCD ABD AC BD E E BD 1 : 2 (1) AB = AD =, AB AD = (2) AE = AB + (3) A F AD AE 2 = AF = AB + AD AF AE = t AC = t AE AC FC = t = (4) ABD ABCD 1 1 ABCD ABD AC BD E E BD : () AB = AD =, AB AD = () AE = AB + () A F AD AE = AF = AB + AD AF AE = t AC = t AE AC FC = t = (4) ABD ABCD AB + AD AB + 7 9 AD AB + AD AB + 9 7 4 9 AD () AB sin π = AB = ABD AD

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1)

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1) D d dx 1 1.1 n d n y a 0 dx n + a d n 1 y 1 dx n 1 +... + a dy n 1 dx + a ny = f(x)...(1) dk y dx k = y (k) a 0 y (n) + a 1 y (n 1) +... + a n 1 y + a n y = f(x)...(2) (2) (2) f(x) 0 a 0 y (n) + a 1 y

More information

renshumondai-kaito.dvi

renshumondai-kaito.dvi 3 1 13 14 1.1 1 44.5 39.5 49.5 2 0.10 2 0.10 54.5 49.5 59.5 5 0.25 7 0.35 64.5 59.5 69.5 8 0.40 15 0.75 74.5 69.5 79.5 3 0.15 18 0.90 84.5 79.5 89.5 2 0.10 20 1.00 20 1.00 2 1.2 1 16.5 20.5 12.5 2 0.10

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

Pascal Pascal Free Pascal CPad for Pascal Microsoft Windows OS Pascal

Pascal Pascal Free Pascal CPad for Pascal Microsoft Windows OS Pascal Pascal Pascal Pascal Free Pascal CPad for Pascal Microsoft Windows OS 2010 10 1 Pascal 2 1.1.......................... 2 1.2.................. 2 1.3........................ 3 2 4 2.1................................

More information

add1 2 β β - conversion (λx.x + 1(2 β x + 1 x λ f(x, y = 2 x + y 2 λ(x, y.2 x + y 1 λy.2 x + y λx.(λy.2 x + y x λy.2 x + y EXAMPLE (λ(x, y.2

add1 2 β β - conversion (λx.x + 1(2 β x + 1 x λ f(x, y = 2 x + y 2 λ(x, y.2 x + y 1 λy.2 x + y λx.(λy.2 x + y x λy.2 x + y EXAMPLE (λ(x, y.2 output: 2011,11,10 2.1 λ λ β λ λ - abstraction λ λ - binding 1 add1 + add1(x = x + 1 add1 λx.x + 1 x + 1 add1 function application 2 add1 add1(2 g.yamadatakahiro@gmail.com 1 add1 2 β β - conversion (λx.x

More information

v_-3_+2_1.eps

v_-3_+2_1.eps I 9-9 (3) 9 9, x, x (t)+a(t)x (t)+b(t)x(t) = f(t) (9), a(t), b(t), f(t),,, f(t),, a(t), b(t),,, x (t)+ax (t)+bx(t) = (9),, x (t)+ax (t)+bx(t) = f(t) (93), b(t),, b(t) 9 x (t), x (t), x (t)+a(t)x (t)+b(t)x(t)

More information

CG38.PDF

CG38.PDF ............3...3...6....6....8.....8.....4...9 3....9 3.... 3.3...4 3.4...36...39 4....39 4.....39 4.....4 4....49 4.....5 4.....57...64 5....64 5....66 5.3...68 5.4...7 5.5...77...8 6....8 6.....8 6.....83

More information

AC Modeling and Control of AC Motors Seiji Kondo, Member 1. q q (1) PM (a) N d q Dept. of E&E, Nagaoka Unive

AC Modeling and Control of AC Motors Seiji Kondo, Member 1. q q (1) PM (a) N d q Dept. of E&E, Nagaoka Unive AC Moeling an Control of AC Motors Seiji Kono, Member 1. (1) PM 33 54 64. 1 11 1(a) N 94 188 163 1 Dept. of E&E, Nagaoka University of Technology 163 1, Kamitomioka-cho, Nagaoka, Niigata 94 188 (a) 巻数

More information

# let st1 = {name = "Taro Yamada"; id = };; val st1 : student = {name="taro Yamada"; id=123456} { 1 = 1 ;...; n = n } # let string_of_student {n

# let st1 = {name = Taro Yamada; id = };; val st1 : student = {name=taro Yamada; id=123456} { 1 = 1 ;...; n = n } # let string_of_student {n II 6 / : 2001 11 21 (OCaml ) 1 (field) name id type # type student = {name : string; id : int};; type student = { name : string; id : int; } student {} type = { 1 : 1 ;...; n : n } { 1 = 1 ;...; n = n

More information

sikepuri.dvi

sikepuri.dvi 2009 2 2 2. 2.. F(s) G(s) H(s) G(s) F(s) H(s) F(s),G(s) H(s) : V (s) Z(s)I(s) I(s) Y (s)v (s) Z(s): Y (s): 2: ( ( V V 2 I I 2 ) ( ) ( Z Z 2 Z 2 Z 22 ) ( ) ( Y Y 2 Y 2 Y 22 ( ) ( ) Z Z 2 Y Y 2 : : Z 2 Z

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

第122号.indd

第122号.indd -1- -2- -3- 0852-36-5150 0852-36-5163-4- -5- -6- -7- 1st 1-1 1-2 1-3 1-4 1-5 -8- 2nd M2 E2 D2 J2 C2-9- 3rd M3 E3 D3 J3 C3-10- 4th M4 E4 D4 J4 C4-11- -12- M5 E5 J5 D5 C5 5th -13- -14- NEWS NEWS -15- NEWS

More information

> > <., vs. > x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D > 0 x (2) D = 0 x (3

> > <., vs. > x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D > 0 x (2) D = 0 x (3 13 2 13.0 2 ( ) ( ) 2 13.1 ( ) ax 2 + bx + c > 0 ( a, b, c ) ( ) 275 > > 2 2 13.3 x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D >

More information

214 March 31, 214, Rev.2.1 4........................ 4........................ 5............................. 7............................... 7 1 8 1.1............................... 8 1.2.......................

More information

ML Edinburgh LCF ML Curry-Howard ML ( ) ( ) ( ) ( ) 1

ML Edinburgh LCF ML Curry-Howard ML ( ) ( ) ( ) ( ) 1 More Logic More Types ML/OCaml GADT Jacques Garrigue ( ) Jacques Le Normand (Google) Didier Rémy (INRIA) @garriguejej ocamlgadt ML Edinburgh LCF ML Curry-Howard ML ( ) ( ) ( ) ( ) 1 ( ) ML type nebou and

More information

画像工学特論

画像工学特論 .? (x i, y i )? (x(t), y(t))? (x(t)) (X(ω)) Wiener-Khintchine 35/97 . : x(t) = X(ω)e jωt dω () π X(ω) = x(t)e jωt dt () X(ω) S(ω) = lim (3) ω S(ω)dω X(ω) : F of x : [X] [ = ] [x t] Power spectral density

More information

I

I I 6 4 10 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

29

29 9 .,,, 3 () C k k C k C + C + C + + C 8 + C 9 + C k C + C + C + C 3 + C 4 + C 5 + + 45 + + + 5 + + 9 + 4 + 4 + 5 4 C k k k ( + ) 4 C k k ( k) 3 n( ) n n n ( ) n ( ) n 3 ( ) 3 3 3 n 4 ( ) 4 4 4 ( ) n n

More information

Part y mx + n mt + n m 1 mt n + n t m 2 t + mn 0 t m 0 n 18 y n n a 7 3 ; x α α 1 7α +t t 3 4α + 3t t x α x α y mx + n

Part y mx + n mt + n m 1 mt n + n t m 2 t + mn 0 t m 0 n 18 y n n a 7 3 ; x α α 1 7α +t t 3 4α + 3t t x α x α y mx + n Part2 47 Example 161 93 1 T a a 2 M 1 a 1 T a 2 a Point 1 T L L L T T L L T L L L T T L L T detm a 1 aa 2 a 1 2 + 1 > 0 11 T T x x M λ 12 y y x y λ 2 a + 1λ + a 2 2a + 2 0 13 D D a + 1 2 4a 2 2a + 2 a

More information

68 A mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1

68 A mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1 67 A Section A.1 0 1 0 1 Balmer 7 9 1 0.1 0.01 1 9 3 10:09 6 A.1: A.1 1 10 9 68 A 10 9 10 9 1 10 9 10 1 mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1 A.1. 69 5 1 10 15 3 40 0 0 ¾ ¾ É f Á ½ j 30 A.3: A.4: 1/10

More information

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x ( II (1 4 ) 1. p.13 1 (x, y) (a, b) ε(x, y; a, b) f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a x a A = f x (a, b) y x 3 3y 3 (x, y) (, ) f (x, y) = x + y (x, y) = (, )

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

3.300 m m m m m m 0 m m m 0 m 0 m m m he m T m 1.50 m N/ N

3.300 m m m m m m 0 m m m 0 m 0 m m m he m T m 1.50 m N/ N 3.300 m 0.500 m 0.300 m 0.300 m 0.300 m 0.500 m 0 m 1.000 m 2.000 m 0 m 0 m 0.300 m 0.300 m -0.200 he 0.400 m T 0.200 m 1.50 m 0.16 2 24.5 N/ 3 18.0 N/ 3 28.0 18.7 18.7 14.0 14.0 X(m) 1.000 2.000 20 Y(m)

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

2. 2 I,II,III) 2 x expx) = lim + x 3) ) expx) e x 3) x. ) {a } a a 2 a 3...) a b b {a } α : lim a = α b) ) [] 2 ) f x) = + x ) 4) x > 0 {f x)} x > 0,

2. 2 I,II,III) 2 x expx) = lim + x 3) ) expx) e x 3) x. ) {a } a a 2 a 3...) a b b {a } α : lim a = α b) ) [] 2 ) f x) = + x ) 4) x > 0 {f x)} x > 0, . 207 02 02 a x x ) a x x a x x a x x ) a x x [] 3 3 sup) if) [3] 3 [4] 5.4 ) e x e x = lim + x ) ) e x e x log x = log e x) a > 0) x a x = e x log a 2) 2. 2 I,II,III) 2 x expx) = lim + x 3) ) expx) e

More information

ad bc A A A = ad bc ( d ) b c a n A n A n A A det A A ( ) a b A = c d det A = ad bc σ {,,,, n} {,,, } {,,, } {,,, } ( ) σ = σ() = σ() = n sign σ sign(

ad bc A A A = ad bc ( d ) b c a n A n A n A A det A A ( ) a b A = c d det A = ad bc σ {,,,, n} {,,, } {,,, } {,,, } ( ) σ = σ() = σ() = n sign σ sign( I n n A AX = I, YA = I () n XY A () X = IX = (YA)X = Y(AX) = YI = Y X Y () XY A A AB AB BA (AB)(B A ) = A(BB )A = AA = I (BA)(A B ) = B(AA )B = BB = I (AB) = B A (BA) = A B A B A = B = 5 5 A B AB BA A

More information