<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "<4D6963726F736F667420576F7264202D204850835483938376838B8379815B83578B6594BB2D834A836F815B82D082C88C60202E646F63>"

Transcription

1

2 誤 り 訂 正 技 術 の 基 礎 サンプルページ この 本 の 定 価 判 型 などは, 以 下 の URL からご 覧 いただけます このサンプルページの 内 容 は, 第 1 版 発 行 時 のものです

3 e mail FAX e mail

4 i CD CD 10 1 CD DVD 1

5 ii DVB-S2 LDPC 2 2 sum-product sum-product sum-product LDPC

6 iii,

7 iv

8 v 6 F q I II BCH sum-product sum-product 132

9 vi MAP MAP (FB) FB MAP LDPC I LDPC LDPC LDPC II sum-product sum-product

10 vii I[condition] [a, b] condition 1 0 a b = := A A A, A A A B A B A B A B A\B A B a A a A B A B A O(g(n)) n f(n) C g(n) C f(n) =O(g(n)) d h (a, b) a, b w h (a) a ln(x) F 2 F q R tanh A t Z (n,w) Prob[event] arg max x D f(x) arg min x D f(x) x A mod B 2 q q A n w 2 event f(x) x D f(x) x D x A B A, B A b A A\{b} A\b 2 2 +, 1+1=2 1+1=0 0

11

12 X 2 X = {0, 1} n X code X n C X C n C codeword n C code length 1 X = {0, 1} X 3 = {000, 001, 010, 011, 100, 101, 110, 111} C = {000, 011, 101, 110} C C = {000, 111} X = {0, 1} 2 q q 2

13 code rate C R R = log 2 C log 2 X n (21) C =2 k k X = {0, 1} 2 log 2 2=1 21 R R = log 2 C log 2 X n = log 2 2k log 2 2 n = k n (22) 2 n R n C minimum distance C C d =min{d h (a, b) :a, b C, a b} (23) 3 C = {000, 011, 101, 110} 2 3 {000, 111} d =3 C X n 1 7 F q k =1 n =3 1/3

14 C = {000, 011, 101, 110} 4 {0, 1, 2, 3} 0 000, 1 011, 2 101, encoder M L M =[1,L] C L bijection φ : M C φ φ m 1 m 2 (m 1,m 2 M) φ(m 1 ) φ(m 2 ) c C φ(m) =c m M φ 3 φ 1 φ 1 m M m = φ 1 (φ(m)) ˆX ˆM 3 φ(m) = 000, m =0 (24) 111, m =1 3 φ M C φ M C f : X Y y Y, x X, f(x) =y a, b X(a b),f(a) f(b) f

15 16 2 m m = M = {0, 1} k {0, 1} n 2 2 n 2 k C φ(m) Y Y n Y Y ˆX ˆX ˆM = φ 1 ( ˆX) 231 Y ˆX M C {c 1, c 2,,c M } 4

16 23 17 R(c i )(i [1,M]) R(c i ) Y n R(c i )(i [1,M]) R(c i ) decoding rule 1 Y R(c i ) i j [1,M] Y / R(c j ) ˆX = c i 2 Y R(c i ) ˆX = 3 Y Y R(c j1 ),Y R(c j2 ),,Y R(c js ) c j1, c j2,,c js 5 R(c i ) c i R(c i ) c i 1 3 D1 R(000) = {000, 001, 010, 100}, R(111) = {111, 110, 101, 011} ψ : Y n C { } ψ Y ˆX = ψ(y ) 22 5

17 ψ(y ) ˆX = X 2 ˆX X 3 ˆX = c i Y R(c i ) R(c j ) P c P e P d P c + P e + P d = n C 2 n 1 > 2 >

18 23 19 minimum distance decoding rule C = {c 1, c 2,,c M } c i C c i R(c i ) R(c i ) = {y {0, 1} n : c C\{c i } d h (y, c i ) d h (y, c)} (25) i [1,M] C\{c i } C {c i } 23(a) ˆX Y ˆX =argmin d h(y,x) (26) X C arg min X C Y 23

19 r r 2 4 bounded distance decoding rule C = {c 1, c 2,,c M } R(c i ) = {y {0, 1} n : d h (c i, y) r}, i [1,M] (27) r d 1 r 2 d C x x 23(b) r (d 1)/2 d 1 2r 2 2 d 1 = d 1 (28) 2 2 d r( (d 1)/2 ) 235

20 24 21 n = C 7 R = 800/1000 = 4/ n R 2 O(n2 n ) 8 n n O(n) O(n 2 ) HDD CD DVD LDPC f(n) C g(n) f(n) C g(n) n f(n) =O(g(n)) [10]

21 22 2 HDD CD DVD LDPC 13 LDPC sum-product CD DVD product code

22 C = {0000, 1010, 0101, 1111} 1 C 2 C 22 2 C = {00000, 11100, 00111, 11011} C C = {00000, 11111} C r =1 1 C 2 p 2 P c P d P e 3 P c + P d + P e = (a, b)(a, b {0, 1}) (a, b) (ā, b) ā, b a, b C = {00, 01} (a, b) =(0, 0) (a, b) =(0, 1)

23

24 71 7 I F q Reed-Solomon code MDS CD DVD F q q n = q 1 ( ) α 0 α 1 α 2 α q 2 H = (α 0 ) 2 (α 1 ) 2 (α 2 ) 2 (α q 2 ) 2 ( ) 1 α α 2 α n 1 = 1 α 2 α 4 α 2(n 1) (71) F q C = {x F n q : Hx t = 0} (72) α F q C n = q 1

25 72 7 I k = n 2 d =3 F 2 8 n = 255,k = 253,d=3 C 1 C 2 α i α j = αi α 2j α j α 2i α 2i α 2j = α i+2j α j+2i = α i+j (α j α i ) (73) i, j [0,q 2] (i j) α i+j 0 α j α i 0 0 (α i,α 2i ) t (α j,α 2j ) t H C C 3 1 C X F n q Y = X + E E n F q i i [1,n] (error magnitude) e F q Y S = HY t X HX t =0 S = HY t = H(X + E) t = HE t HE t S = s 1 = eαi 1 (74) s 2 eα 2(i 1) s 2 /s 1 s 2 = eα2(i 1) s 1 eα i 1 = α i 1 (75) i

26 72 73 s 2 1/s 2 s 2 1 = e2 α 2(i 1) = e (76) s 2 eα 2(i 1) i e E Ê ˆX = Y Ê ˆX C determinant F q n n A = {a ij } (i [1,n],j [1,n]) A = { n i=1 ( 1)i+j a ij A ij, n > 1 a 11, n =1 (77) j [1,n] A ij A i j (n 1) (n 1) 1 F q 2 2 A = a b c d A A = ad bc 1

27 74 7 I 1 F q n n a 1 a 2 a n a i i a 1 a 2 aa i a n = a a 1 a 2 a i a n i [1,n] a F q 2 F q n n a 1 a 2 a n 3 a 1 a 2 a i + a j a n = a 1 a 2 a i a n + a 1 a 2 a j a n F q n n A t = A 4 F q n n AB = A B 5 F q n n a 1 a 2 a n a 1 a 2 a n 0 a 1 a 2 a n 6 b 1,b 2,,b n F q B 0 B = n i=1 b i x 1 x 2 x 3 x n X = x 2 1 x 2 2 x 2 3 x 2 n (78) x n 1 1 x n 1 2 x n 1 3 xn n 1 Vandermonde X x 1 x 2 x 3 x n x 2 1 x 2 2 x 2 3 x 2 n = i x j ) (79) i>j(x x n 1 1 x n 1 2 x n 1 3 x n 1 n

28 i>j i, j [1,n] i, j x i x j X X 73 Reed-Solomon code F q 1 α α 2 α n 1 1 α 2 α 4 α 2(n 1) H = 1 α 3 α 6 α 3(n 1) 1 α 2t α 4t α 2t(n 1) (710) F q C = {c F n q : Hc t = 0} (711) n = q 1 t [1, (q 2)/2 ] (712) H 2t H sub α j 1 α j 2 α j 2t α 2j 1 α 2j 2 α 2j 2t H sub = (713) α 2tj 1 α 2tj 2 α 2tj 2t j i [0,n 1] (i [1, 2t]) j k j l (k, l [1, 2t],k l) H sub 2

29 76 7 I α j 1 α j 2 α j 2t α 2j 1 α 2j 2 α 2j 2t H sub = α 2tj 1 α 2tj 2 α 2tj 2t = α j1 α j α j 1 α j 2 α j 2t 2t α (2t 1)j 1 α (2t 1)j 2 α (2t 1)j 2t (714) 1 H sub 0 H sub 5 H 2t C k k = n 2t H 2t C d d 2t +1 d n k +1=n n +2t +1=2t +1 d =2t +1 F q H F q n = q 1 k = n 2t d = n k +1=2t n O(n 3 ) t 3 WWPeterson 1960 Error-Correcting Codes

30 n = q 1 C X =(X 0,,X n 1 ) C 0 Y =(Y 0,,Y n 1 ) F n q Y = X+E E =(E 0,,E n 1 ) F n q w h (E) =ν 1 ν t Y S =(S 1,S 2,,S 2t ) S = HY t 2 S = HY t = H(X + E) t = HE t i [1, 2t] ( ) S i = 1 α i α 2i α (n 1)i E 0 E 1 (715) E n 1 S E HQ T = S (716) Q F n q 5 E t Berlekamp-Massey-Sakata Euclid Sugiyama-Kasahara-Hirasawa-Namekawa Welch-Berlekamp Feng-Rao Sudan Euclid O(n 2 ) t 5

31 78 7 I E t t S E t 716 E E E E E = {i [0,n 1] : Ei 0} (717) E E = ν t ν E E E E = {j 1,j 2,,j ν } x k = α j k (k [1,ν]) e k = Ejk (k [1,ν]) j / E E E j =0 715 ν S i = e k x i k, i [1, 2t] (718) k=1 S 1 x 1 x 2 x 3 x ν 1 x ν S 2 x 2 1 x 2 2 x 2 3 x 2 ν 1 x 2 ν = S 2t x 2t 1 x 2t 2 x 2t 3 x 2t ν 1 x 2t ν e 2 e 1 e ν (719) x k (k [1,ν]) e k (k [1,ν]) 742 σ(z) E ν {x 1 1,x 1 2,,x 1 ν } ν σ 1,,σ ν ν σ(z) =1+ σ k z k (720) k=1 σ(z) x 1 j ν σ(x 1 j )=1+ k=1 (j [1,ν]) σ k x k j = 0 (721)

32 74 79 ν j=1 e jx i+ν j σ(x 1 j )(i [1,ν]) ( ) ν ν ν e j x i+ν j σ(x 1 j )= e j x i+ν j 1+ σ k x k j (722) j=1 = j=1 ν j=1 = S ν+i + e j x i+ν j + ν k=1 ν σ k k=1 j=1 e j x ν+i k j (723) ν σ k S ν+i k (724) k=1 = 0 (725) σ(x 1 j )= 0(j [1,ν]) ν S ν+i = σ k S ν+i k, i [1,ν] (726) k=1 S 1 S 2 S 3 S ν 1 S ν S 2 S 3 S 4 S ν S ν+1 S 3 S 4 S 5 S ν+1 S ν+2 S 4 S 5 S 6 S ν+2 S ν+3 S ν 1 S ν S ν+1 S 2ν 3 S 2ν 2 σ ν σ ν 1 σ ν 2 σ ν 3 σ 2 = S ν+1 S ν+2 S ν+3 S ν+4 S 2ν 1 S ν S ν+1 S ν+2 S 2ν 2 S 2ν 1 σ 1 S 2ν (727) Berlekamp-Massey Sugiyama ν ν ν Y S i (i [1, 2t]) ν t 727 S 1,S 2,,S 2ν (σ 1,σ 2,,σ ν )

33 80 7 I σ 1,σ 2,,σ ν σ(z) σ(z) 0 F q Chien search 721 x 1,x 2,,x ν 743 x 1,x 2,,x ν e 1,e 2,,e ν 718 S 1 x 1 x 2 x 3 x ν 1 x ν e 1 S 2 x 2 1 x 2 2 x 2 3 x 2 ν 1 x 2 ν e 2 = (728) S ν x ν 1 x ν 2 x ν 3 x ν ν 1 x ν ν e ν x 1 x 2 x ν x 2 1 x 2 2 x 2 ν x 1 x 2 x ν = x 1 x 2 x ν x ν 1 x ν 2 x ν ν x ν 1 1 x ν 1 2 x ν 1 ν 0 (729) e 1,e 2,,e ν 744 ν ν ν 1 τ t

34 74 81 D τ = S 1 S 2 S τ S 2 S 3 S τ+1 S τ S τ+1 S 2τ 1 (730) τ = ν D τ 0 τ >ν D τ =0 k [ν +1,t] e k =0,x k = e 1 x T = x 1 x 2 x τ, Q 0 e 2 x 2 0 = x τ 1 1 x τ 1 2 x τ 1 τ 0 0 e τ x τ D τ D τ = TQT t = T Q T t (731) 75 τ>ν Q 0 Q = D τ =0 τ = ν Q 6 x 1,x 2,,x τ F q T 0 D τ 0 ν τ = t τ D τ D τ 0 τ = ν 745 Peterson algorithm Y ˆX Y S 1,S 2,,S 2t τ := t

35 82 7 I 2 D τ 730 D τ = 0 τ := τ 1 3 ν := τ 727 σ 1,σ 2,,σ ν 4 σ(z) x 1,x 2,,x ν Ê =(e 1,e 2,,e ν ) 6 Ê Y ˆX = Y Ê ν t t 746 F α α 2 α 3 α 4 α 5 α 6 H = 1 α 2 α 4 α 6 α 8 α 10 α 12 1 α 3 α 6 α 9 α 12 α 15 α 18 1 α 4 α 8 α 12 α 16 α 20 α 24 C α 7 =1 1 α α 2 α 3 α 4 α 5 α 6 1 α 2 α 4 α 6 α 1 α 3 α 5 H = 1 α 3 α 6 α 2 α 5 α α 4 1 α 4 α α 5 α 2 α 6 α 3 (732) (733) C 2 E =(0, 0, 0,α 5, 0,α 2, 0) X C Y = X + E HY t = H(X + Y ) t = HE t

36 83 S 1 S 2 S 3 S 4 = α 5 α 3 α 6 α 2 α 5 + α 2 α 5 α 3 α α 6 = α 3 1 α 1 (734) S 1 S 2 S 2 S 3 = S 1S 3 S 2 S 2 = α (735) ν =2 727 S 1 S 2 σ 2 = S 3 (736) S 2 S 3 σ 1 S 4 α3 1 σ 2 = α (737) 1 α σ 1 1 σ 1 = α 2,σ 2 = α σ(z) = 1+σ 1 z + σ 2 z 2 =1+α 2 z + αz 2 σ(z) F 2 3 σ(z) σ(α 4 )=0 σ(α 2 )=0 α 4 = α 3 α 2 = α 5 6 x 1 = α 3,x 2 = α α3 α 5 e 1 = α3 (738) α 6 α 3 e 2 1 e 1 = α 5,e 2 = α 2 71 F 2 3 F 2 z 3 + z +1 α 53 ( ) 1 α α 2 α 3 α 4 α 5 α 6 H = 1 α 2 α 4 α 6 α 8 α 10 α 12 6 x F q x y =1 y x y x 1 α 3 α 4 =1 α 3 = α 4 5

37 84 7 I E =(0,α 2, 0, 0, 0, 0, 0) 1 Y = X + E 2 Ê 72 F ta b 73 tc d, a + x b c + y d, a c b d a b c d F 2 3 F 2 z 3 + z +1 α α α 2 α 4 α 2 α 4 α 75 ν =2,τ =2 D τ = TQT t = T Q T t E =(0,α 2,α,0, 0, 0, 0)

38 LDPC I low-density parity check LDPC LDPC sum-product LDPC LDPC LDPC LDPC LDPC F q F 2 2 LDPC LDPC 2 2 m n H (0 <m<n) 2 C C = {x F n 2 : Hxt = 0} H 1 C LDPC 1 Robert G Gallager LDPC 60 Information Theory and Reliable Communication 2 LSI LDPC LDPC 90 DMacKay LDPC LDPC

39 LDPC I C n m C R R 1 m/n LDPC m = 5000,n = H 1 w r =6 1 w c =3 C LDPC LDPC {H 1,H 2,,H n,} H n (n =1, 2,) n αn α 0 α 1 n H n 05n n n 3 H n 1 3n 1 n 1 n n 2 LDPC LDPC sum-product

40 131 LDPC 161 LDPC sum-product sum-product 3 sum-product 1 4 LDPC O(n) 1 O(n) LDPC Tanner graph 2 m n H i j h ij 2 5 G(H) =(V,E) V = V 1 V 2 V 1 = {v1,v 2,,v n }, V 2 = {c1,c 2,,c m } (131) V 1 V 2 h ij =1(i [1,m],j [1,n]) (i, j) v i c j e ij E h ij =0(i [1,m],j [1,n]) v i c j 2 G(H) H i c i j v j h ij =1 c i v j H LDPC 4 n 5 2 V V 1,V 2 V 1 V 2

41 LDPC I 132 v 1,,v c 1 v 1,v 2,v 3 v 1 + v 2 + v 3 =0 LDPC 2 n O(n) LDPC sum-product 132 v 2,v 3 c 1,c LDPC LDPC LDPC LDPC LDPC LDPC LDPC w c w r LDPC LDPC LDPC LDPC w c,w r LDPC LDPC LDPC LDPC LDPC

42 131 LDPC 163 w c w r LDPC 94 LDPC k 6 L k = {i [1,n]:deg(v i)=k} n (132) deg(v) v k % LDPC sum-product sum-product LDPC 2 w c =2 w r =4 H

43 LDPC I H 1 = (133) H 1 8 H 2 = (134) H 1 H H = (135) , 4 w r 1 0 n h 1 H 1 h 1 s(h 1 ) H 1 = s 2 (h 1 ) s n/wr 1 (h 1 ) (136) s( ) w r 4,2 H 2,,H wc H 1 H 2 H = (137) H wc w c,w r H LDPC LDPC 6 H G G 8 8! 9

44 132 LDPC LDPC LDPC 2 sum-product sum-product 2 2 sumproduct 2 sum-product sum-product {0, 1} 3 {0, 1,e} e 0, 1 1 p p p 2 2 m n H LDPC H G O(n 2 )

45 LDPC I C C x 2 y =(y 1,y 2,,y n ) {0, 1,e} n c A(c) v B(v) sum-product sum-product 1 v N(v) =y i c c e 2 v c B(v) M v c M v c B(v)\c e v N(v) e M v c = e M v c B(v)\c e 3 c v A(c) M c v M c v A(c)\v e M c v = e M c v F M c v = v A(c)\v M v c 134 sum-product 3

46 132 LDPC v e b {0, 1} N(v) =e N(v) =b a LDPC 0, 0, 0, 0, 0, 0, 0, 0 Y =(e, e, e, e, 0, 0, 0, 0) v 1,v 2,,v 8 c 1,,c 4 a N(v) b c 4 c 4 v 6,v 8 (M v6 c 4 = M v8 c 4 =0) v 3 M c4 v 3 = M v6 c 4 + M v8 c 4 =0 0 v 3 N(v 3 )=0 3 c d 3 0 LDPC sum-product

47 LDPC I LDPC 9 sum-product density evolution sum-product sum-product d k 11 p i i e q i 11 d k 15

48 132 LDPC 169 i e sum-product p 2 i +1 e e d 1 e 12 p i+1 = pq d 1 i (138) i e q i k 1 e 13 q i =1 (1 p i ) k 1 (139) p i p i+1 = p(1 (1 p i ) k 1 ) d 1 (1310) p 0 = p 2 sum-product p i+1 = g(p i ) p 0 = p g(x) =p(1 (1 x) k 1 ) d 1 d =3,k =6 p i 136 x y y = x y = g(x) p =04 p i p 1 = g(p 0 ) (p 0,p 1 ) x =04 y = g(x) y = x x = p 1 12 sum-product p sum-product p166

49 LDPC I 136 p i p =04 y = g(x) (p 1,p 2 ) y = g(x) (p i,p i+1 ) 136 p i p i 0 14 p =04 sum-product 0 p =0451 y = x y = g(x) 137 p i p i p = p i 0 0

50 171 p d =3,k = LDPC [5] e, e, 0, 0, 0 sum-product 132 m n H H h 1,,h n T = {t 1,t 2,,t s } [1,n] T H(T ) =(h t1 h t2 h ts ) H(T ) 1 T sum-product H G G girth LDPC LDPC sum-product LDPC

51

52 , 26, 27, 31, 38, , 4,31, 105, 146, 183, 193, , 161 ACS 119, 121 AWGN 106, 120, 183 BCH 94 BCH 42, 92, 93, 187 BCJR 116, 147, 156 LDPC 22, 49, 133, 159, 162 MAP 101, 145, 176 min-sum 183 SN 107 sum-product 132, 135, 138, 160, 174 sum-product 22, 166, 175 u u + v 43 41, 78, 80 78, 82 17, 18, 31, 38, , 78, 80, , 14, 15, 19 11, 13, , 46, , 39, , , 137, , 80, , , , 43, , 157, , , , 99, 131, 140, , , , , , , 26, 27, , , , , 7,17 130, , 21, 28, 103, 122, , 45 29, 30, 40, 67, 68, , , 41 7, 18, , 85 14, 30, 38, 39, 45, 49, 72, 94, 192

53 222 19, 48, 105, , 48, , , 71, 76 49, 102, 103, 105, 110, , 39 26, 38, , 101, 144, 151, , 102, , 10, , 99, 129, , 135, 138, 149, , 156, 173, 182 3, 31 85, 86, 94 29, 42, 76, 86, 95, , , 165, , , 33, 41, 72, 77, 177, , 36, 41 MAP 145, , 43, 62, 68 85, 86, 94 LDPC 162 7, 18 22, , , 29, 31, 61 51, , 87, , , 71, 76, 77, , , 19, , 124, , , , 122, 152, 186, , , , , 27, , , , , , , 115, 126, 152, , , 6 20, 46 5, 20 5, 47 39, 40, , 49, 156, 177 LDPC 162

54 223 76, 81 22, 117, , 132, 135, 147, 161, 172, , 4, 16, 97 3, 16, 101, , 7, 17 6, 7, 17, 19, 49, 111 3, 13 3, 15, 16, 28, 68, 86, 87, 164 3, 15, 87, 156 6, 15, 16, , 27, 63 10, 12, 196, , 14, 62, , 4, 13, 24, 30, 45 85, 93 4, 13, , 28, MAP 101 2, 4, 7, 14, 18, 101, 108, 111, , , , , , 101, , , 136, 141, 175, , , , , , 105 1, 3, 15, 139, , 24, , 102, , , 22, 71, 75, 85, , 44, , 142, 161, 162,

55 c FAX http: wwwmorikitacojp Printed in Japan ISBN

「産業上利用することができる発明」の審査の運用指針(案)

「産業上利用することができる発明」の審査の運用指針(案) 1 1.... 2 1.1... 2 2.... 4 2.1... 4 3.... 6 4.... 6 1 1 29 1 29 1 1 1. 2 1 1.1 (1) (2) (3) 1 (4) 2 4 1 2 2 3 4 31 12 5 7 2.2 (5) ( a ) ( b ) 1 3 2 ( c ) (6) 2. 2.1 2.1 (1) 4 ( i ) ( ii ) ( iii ) ( iv)

More information

i ii iii iv v vi vii ( ー ー ) ( ) ( ) ( ) ( ) ー ( ) ( ) ー ー ( ) ( ) ( ) ( ) ( ) 13 202 24122783 3622316 (1) (2) (3) (4) 2483 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 11 11 2483 13

More information

2

2 1 2 3 4 5 6 7 8 9 10 I II III 11 IV 12 V 13 VI VII 14 VIII. 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 _ 33 _ 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 VII 51 52 53 54 55 56 57 58 59

More information

untitled

untitled i ii iii iv v 43 43 vi 43 vii T+1 T+2 1 viii 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 a) ( ) b) ( ) 51

More information

61“ƒ/61G2 P97

61“ƒ/61G2 P97 σ σ φσ φ φ φ φ φ φ φ φ σ σ σ φσ φ σ φ σ σ σ φ α α α φα α α φ α φ α α α φ α α α σ α α α α α α Σα Σ α α α α α σ σ α α α α α α α α α α α α σ α σ φ σ φ σ α α Σα Σα α σ σ σ σ σ σ σ σ σ σ σ σ Σ σ σ σ σ

More information

i

i 14 i ii iii iv v vi 14 13 86 13 12 28 14 16 14 15 31 (1) 13 12 28 20 (2) (3) 2 (4) (5) 14 14 50 48 3 11 11 22 14 15 10 14 20 21 20 (1) 14 (2) 14 4 (3) (4) (5) 12 12 (6) 14 15 5 6 7 8 9 10 7

More information

4 4. A p X A 1 X X A 1 A 4.3 X p X p X S(X) = E ((X p) ) X = X E(X) = E(X) p p 4.3p < p < 1 X X p f(i) = P (X = i) = p(1 p) i 1, i = 1,,... 1 + r + r

4 4. A p X A 1 X X A 1 A 4.3 X p X p X S(X) = E ((X p) ) X = X E(X) = E(X) p p 4.3p < p < 1 X X p f(i) = P (X = i) = p(1 p) i 1, i = 1,,... 1 + r + r 4 1 4 4.1 X P (X = 1) =.4, P (X = ) =.3, P (X = 1) =., P (X = ) =.1 E(X) = 1.4 +.3 + 1. +.1 = 4. X Y = X P (X = ) = P (X = 1) = P (X = ) = P (X = 1) = P (X = ) =. Y P (Y = ) = P (X = ) =., P (Y = 1) =

More information

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 () - 1 - - 2 - - 3 - - 4 - - 5 - 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57

More information

入門ガイド

入門ガイド ii iii iv NEC Corporation 1998 v P A R 1 P A R 2 P A R 3 T T T vi P A R T 4 P A R T 5 P A R T 6 P A R T 7 vii 1P A R T 1 2 2 1 3 1 4 1 1 5 2 3 6 4 1 7 1 2 3 8 1 1 2 3 9 1 2 10 1 1 2 11 3 12 1 2 1 3 4 13

More information

<4D6963726F736F667420506F776572506F696E74202D208376838C835B83938365815B835683878393312E707074205B8CDD8AB78382815B83685D>

<4D6963726F736F667420506F776572506F696E74202D208376838C835B83938365815B835683878393312E707074205B8CDD8AB78382815B83685D> i i vi ii iii iv v vi vii viii ix 2 3 4 5 6 7 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

More information

SC-85X2取説

SC-85X2取説 I II III IV V VI .................. VII VIII IX X 1-1 1-2 1-3 1-4 ( ) 1-5 1-6 2-1 2-2 3-1 3-2 3-3 8 3-4 3-5 3-6 3-7 ) ) - - 3-8 3-9 4-1 4-2 4-3 4-4 4-5 4-6 5-1 5-2 5-3 5-4 5-5 5-6 5-7 5-8 5-9 5-10 5-11

More information

untitled

untitled 1 (1) (2) (3) (4) (1) (2) (3) (1) (2) (3) (1) (2) (3) (4) (5) (1) (2) (3) (1) (2) 10 11 12 2 2520159 3 (1) (2) (3) (4) (5) (6) 103 59529 600 12 42 4 42 68 53 53 C 30 30 5 56 6 (3) (1) 7 () () (()) () ()

More information

H28.4 / 11 28 7 1 28 28 1 27 29 30 4 1 29 5 5 2 2 1 2 2 28 3 1 28 http://www.city.saitama.jp/005/001/018/003/p036471.html 2 28 7 11 28 8 31 3 CD DVD 4 4 5 7 11 8 31 9 1 9 30 10 1 10 31 11 1 11

More information

ÿþ

ÿþ I O 01 II O III IV 02 II O 03 II O III IV III IV 04 II O III IV III IV 05 II O III IV 06 III O 07 III O 08 III 09 O III O 10 IV O 11 IV O 12 V O 13 V O 14 V O 15 O ( - ) ( - ) 16 本 校 志 望 の 理 由 入 学 後 の

More information

i

i i ii iii iv v vi vii viii ix x xi ( ) 854.3 700.9 10 200 3,126.9 162.3 100.6 18.3 26.5 5.6/s ( ) ( ) 1949 8 12 () () ア イ ウ ) ) () () () () BC () () (

More information

...J......1803.QX

...J......1803.QX 5 7 9 11 13 15 17 19 21 23 45-1111 48-2314 1 I II 100,000 80,000 60,000 40,000 20,000 0 272,437 80,348 82,207 81,393 82,293 83,696 84,028 82,232 248,983 80,411 4,615 4,757 248,434 248,688 76,708 6,299

More information

provider_020524_2.PDF

provider_020524_2.PDF 1 1 1 2 2 3 (1) 3 (2) 4 (3) 6 7 7 (1) 8 (2) 21 26 27 27 27 28 31 32 32 36 1 1 2 2 (1) 3 3 4 45 (2) 6 7 5 (3) 6 7 8 (1) ii iii iv 8 * 9 10 11 9 12 10 13 14 15 11 16 17 12 13 18 19 20 (2) 14 21 22 23 24

More information

これわかWord2010_第1部_100710.indd

これわかWord2010_第1部_100710.indd i 1 1 2 3 6 6 7 8 10 10 11 12 12 12 13 2 15 15 16 17 17 18 19 20 20 21 ii CONTENTS 25 26 26 28 28 29 30 30 31 32 35 35 35 36 37 40 42 44 44 45 46 49 50 50 51 iii 52 52 52 53 55 56 56 57 58 58 60 60 iv

More information

パワポカバー入稿用.indd

パワポカバー入稿用.indd i 1 1 2 2 3 3 4 4 4 5 7 8 8 9 9 10 11 13 14 15 16 17 19 ii CONTENTS 2 21 21 22 25 26 32 37 38 39 39 41 41 43 43 43 44 45 46 47 47 49 52 54 56 56 iii 57 59 62 64 64 66 67 68 71 72 72 73 74 74 77 79 81 84

More information

これでわかるAccess2010

これでわかるAccess2010 i 1 1 1 2 2 2 3 4 4 5 6 7 7 9 10 11 12 13 14 15 17 ii CONTENTS 2 19 19 20 23 24 25 25 26 29 29 31 31 33 35 36 36 39 39 41 44 45 46 48 iii 50 50 52 54 55 57 57 59 61 63 64 66 66 67 70 70 73 74 74 77 77

More information

2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a

More information

44 4 I (1) ( ) (10 15 ) ( 17 ) ( 3 1 ) (2)

44 4 I (1) ( ) (10 15 ) ( 17 ) ( 3 1 ) (2) (1) I 44 II 45 III 47 IV 52 44 4 I (1) ( ) 1945 8 9 (10 15 ) ( 17 ) ( 3 1 ) (2) 45 II 1 (3) 511 ( 451 1 ) ( ) 365 1 2 512 1 2 365 1 2 363 2 ( ) 3 ( ) ( 451 2 ( 314 1 ) ( 339 1 4 ) 337 2 3 ) 363 (4) 46

More information

i ii i iii iv 1 3 3 10 14 17 17 18 22 23 28 29 31 36 37 39 40 43 48 59 70 75 75 77 90 95 102 107 109 110 118 125 128 130 132 134 48 43 43 51 52 61 61 64 62 124 70 58 3 10 17 29 78 82 85 102 95 109 iii

More information

178 5 I 1 ( ) ( ) 10 3 13 3 1 8891 8 3023 6317 ( 10 1914 7152 ) 16 5 1 ( ) 6 13 3 13 3 8575 3896 8 1715 779 6 (1) 2 7 4 ( 2 ) 13 11 26 12 21 14 11 21

178 5 I 1 ( ) ( ) 10 3 13 3 1 8891 8 3023 6317 ( 10 1914 7152 ) 16 5 1 ( ) 6 13 3 13 3 8575 3896 8 1715 779 6 (1) 2 7 4 ( 2 ) 13 11 26 12 21 14 11 21 I 178 II 180 III ( ) 181 IV 183 V 185 VI 186 178 5 I 1 ( ) ( ) 10 3 13 3 1 8891 8 3023 6317 ( 10 1914 7152 ) 16 5 1 ( ) 6 13 3 13 3 8575 3896 8 1715 779 6 (1) 2 7 4 ( 2 ) 13 11 26 12 21 14 11 21 4 10 (

More information

平成18年版 男女共同参画白書

平成18年版 男女共同参画白書 i ii iii iv v vi vii viii ix 3 4 5 6 7 8 9 Column 10 11 12 13 14 15 Column 16 17 18 19 20 21 22 23 24 25 26 Column 27 28 29 30 Column 31 32 33 34 35 36 Column 37 Column 38 39 40 Column 41 42 43 44 45

More information

1... 1... 1... 3 2... 4... 4... 4... 4... 4... 6... 10... 11... 15... 30

1... 1... 1... 3 2... 4... 4... 4... 4... 4... 6... 10... 11... 15... 30 1 2420128 1 6 3 2 199103 189/1 1991031891 3 4 5 JISJIS X 0208, 1997 1 http://www.pref.hiroshima.lg.jp/site/monjokan/ 1... 1... 1... 3 2... 4... 4... 4... 4... 4... 6... 10... 11... 15... 30 1 3 5 7 6 7

More information

1... 1 2... 3 3... 5 1... 5 2... 6 4... 7 1... 7 2... 9 3... 9 6... 9 7... 11 8... 11 5... 7

1... 1 2... 3 3... 5 1... 5 2... 6 4... 7 1... 7 2... 9 3... 9 6... 9 7... 11 8... 11 5... 7 3 2620149 1 3 6 3 2 198829 198829 19/2 19 2 3 4 5 JISJIS X 0208 : 1997 1 http://www.pref.hiroshima.lg.jp/site/monjokan/ 1... 1 2... 3 3... 5 1... 5 2... 6 4... 7 1... 7 2... 9 3... 9 6... 9 7... 11 8...

More information

<4D6963726F736F667420576F7264202D204850835483938376838B8379815B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D6963726F736F667420576F7264202D204850835483938376838B8379815B83578B6594BB2D834A836F815B82D082C88C60202E646F63> 例 題 で 学 ぶ Excel 統 計 入 門 第 2 版 サンプルページ この 本 の 定 価 判 型 などは, 以 下 の URL からご 覧 いただけます. http://www.morikita.co.jp/books/mid/084302 このサンプルページの 内 容 は, 第 2 版 発 行 当 時 のものです. i 2 9 2 Web 2 Excel Excel Excel 11 Excel

More information

Taro10-名張1審無罪判決.PDF

Taro10-名張1審無罪判決.PDF -------------------------------------------------------------------------------- -------------------------------------------------------------------------------- -1- 39 12 23 36 4 11 36 47 15 5 13 14318-2-

More information

AHPを用いた大相撲の新しい番付編成

AHPを用いた大相撲の新しい番付編成 5304050 2008/2/15 1 2008/2/15 2 42 2008/2/15 3 2008/2/15 4 195 2008/2/15 5 2008/2/15 6 i j ij >1 ij ij1/>1 i j i 1 ji 1/ j ij 2008/2/15 7 1 =2.01/=0.5 =1.51/=0.67 2008/2/15 8 1 2008/2/15 9 () u ) i i i

More information

エクセルカバー入稿用.indd

エクセルカバー入稿用.indd i 1 1 2 3 5 5 6 7 7 8 9 9 10 11 11 11 12 2 13 13 14 15 15 16 17 17 ii CONTENTS 18 18 21 22 22 24 25 26 27 27 28 29 30 31 32 36 37 40 40 42 43 44 44 46 47 48 iii 48 50 51 52 54 55 59 61 62 64 65 66 67 68

More information

III

III III 1 1 2 1 2 3 1 3 4 1 3 1 4 1 3 2 4 1 3 3 6 1 4 6 1 4 1 6 1 4 2 8 1 4 3 9 1 5 10 1 5 1 10 1 5 2 12 1 5 3 12 1 5 4 13 1 6 15 2 1 18 2 1 1 18 2 1 2 19 2 2 20 2 3 22 2 3 1 22 2 3 2 24 2 4 25 2 4 1 25 2

More information

iii iv v vi vii viii ix 1 1-1 1-2 1-3 2 2-1 3 3-1 3-2 3-3 3-4 4 4-1 4-2 5 5-1 5-2 5-3 5-4 5-5 5-6 5-7 6 6-1 6-2 6-3 6-4 6-5 6 6-1 6-2 6-3 6-4 6-5 7 7-1 7-2 7-3 7-4 7-5 7-6 7-7 7-8 7-9 7-10 7-11 8 8-1

More information

7 27 7.1........................................ 27 7.2.......................................... 28 1 ( a 3 = 3 = 3 a a > 0(a a a a < 0(a a a -1 1 6

7 27 7.1........................................ 27 7.2.......................................... 28 1 ( a 3 = 3 = 3 a a > 0(a a a a < 0(a a a -1 1 6 26 11 5 1 ( 2 2 2 3 5 3.1...................................... 5 3.2....................................... 5 3.3....................................... 6 3.4....................................... 7

More information

ii iii iv CON T E N T S iii iv v Chapter1 Chapter2 Chapter 1 002 1.1 004 1.2 004 1.2.1 007 1.2.2 009 1.3 009 1.3.1 010 1.3.2 012 1.4 012 1.4.1 014 1.4.2 015 1.5 Chapter3 Chapter4 Chapter5 Chapter6 Chapter7

More information

01_.g.r..

01_.g.r.. I II III IV V VI VII VIII IX X XI I II III IV V I I I II II II I I YS-1 I YS-2 I YS-3 I YS-4 I YS-5 I YS-6 I YS-7 II II YS-1 II YS-2 II YS-3 II YS-4 II YS-5 II YS-6 II YS-7 III III YS-1 III YS-2

More information

25 11M15133 0.40 0.44 n O(n 2 ) O(n) 0.33 0.52 O(n) 0.36 0.52 O(n) 2 0.48 0.52

25 11M15133 0.40 0.44 n O(n 2 ) O(n) 0.33 0.52 O(n) 0.36 0.52 O(n) 2 0.48 0.52 26 1 11M15133 25 11M15133 0.40 0.44 n O(n 2 ) O(n) 0.33 0.52 O(n) 0.36 0.52 O(n) 2 0.48 0.52 1 2 2 4 2.1.............................. 4 2.2.................................. 5 2.2.1...........................

More information

untitled

untitled I...1 II...2...2 III...3...3...7 IV...15...15...20 V...23...23...24...25 VI...31...31...32...33...40...47 VII...62...62...67 VIII...70 1 2 3 4 m 3 m 3 m 3 m 3 m 3 m 3 5 6 () 17 18 7 () 17 () 17 8 9 ()

More information

AccessflÌfl—−ÇŠš1

AccessflÌfl—−ÇŠš1 ACCESS ACCESS i ii ACCESS iii iv ACCESS v vi ACCESS CONTENTS ACCESS CONTENTS ACCESS 1 ACCESS 1 2 ACCESS 3 1 4 ACCESS 5 1 6 ACCESS 7 1 8 9 ACCESS 10 1 ACCESS 11 1 12 ACCESS 13 1 14 ACCESS 15 1 v 16 ACCESS

More information

困ったときのQ&A

困ったときのQ&A ii iii iv NEC Corporation 1997 v P A R T 1 vi vii P A R T 2 viii P A R T 3 ix x xi 1P A R T 2 1 3 4 1 5 6 1 7 8 1 9 1 2 3 4 10 1 11 12 1 13 14 1 1 2 15 16 1 2 1 1 2 3 4 5 17 18 1 2 3 1 19 20 1 21 22 1

More information

(報告書まとめ 2004/03/  )

(報告書まとめ 2004/03/  ) - i - ii iii iv v vi vii viii ix x xi 1 Shock G( Invention) (Property rule) (Liability rule) Impact flow 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 (

More information

3 ( 9 ) ( 13 ) ( ) 4 ( ) (3379 ) ( ) 2 ( ) 5 33 ( 3 ) ( ) 6 10 () 7 ( 4 ) ( ) ( ) 8 3() 2 ( ) 9 81

3 ( 9 ) ( 13 ) ( ) 4 ( ) (3379 ) ( ) 2 ( ) 5 33 ( 3 ) ( ) 6 10 () 7 ( 4 ) ( ) ( ) 8 3() 2 ( ) 9 81 1 ( 1 8 ) 2 ( 9 23 ) 3 ( 24 32 ) 4 ( 33 35 ) 1 9 3 28 3 () 1 (25201 ) 421 5 ()45 (25338 )(2540 )(1230 ) (89 ) () 2 () 3 ( ) 2 ( 1 ) 3 ( 2 ) 4 3 ( 9 ) ( 13 ) ( ) 4 ( 43100 ) (3379 ) ( ) 2 ( ) 5 33 ( 3 )

More information

M41 JP Manual.indd

M41 JP Manual.indd i ii iii iv v vi vii 1 No / A-B EQ 2 MIC REC REC00001.WAV Stereo CH:01 0:00:00 1:50:00 3 4 5 6 7 8 9 10 11 12 1 1 F F A A 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 Φ 35 36 37 38

More information

48 * *2

48 * *2 374-1- 17 2 1 1 B A C A C 48 *2 49-2- 2 176 176 *2 -3- B A A B B C A B A C 1 B C B C 2 B C 94 2 B C 3 1 6 2 8 1 177 C B C C C A D A A B A 7 B C C A 3 C A 187 187 C B 10 AC 187-4- 10 C C B B B B A B 2 BC

More information

案内(最終2).indd

案内(最終2).indd 1 2 3 4 5 6 7 8 9 Y01a K01a Q01a T01a N01a S01a Y02b - Y04b K02a Q02a T02a N02a S02a Y05b - Y07b K03a Q03a T03a N03a S03a A01r Y10a Y11a K04a K05a Q04a Q05a T04b - T06b T08a N04a N05a S04a S05a Y12b -

More information

2008 (2008/09/30) 1 ISBN 7 1.1 ISBN................................ 7 1.2.......................... 8 1.3................................ 9 1.4 ISBN.............................. 12 2 13 2.1.....................

More information

86 7 I ( 13 ) II ( )

86 7 I ( 13 ) II ( ) 10 I 86 II 86 III 89 IV 92 V 2001 93 VI 95 86 7 I 2001 6 12 10 2001 ( 13 ) 10 66 2000 2001 4 100 1 3000 II 1988 1990 1991 ( ) 500 1994 2 87 1 1994 2 1000 1000 1000 2 1994 12 21 1000 700 5 800 ( 97 ) 1000

More information

31 gh gw

31 gh gw 30 31 gh gw 32 33 1406 1421 640 0 (mm) (mm) MAX1513 MIN349 MIN280 MAX900 gh gw 34 gh gh gw gw gh gh gw gw gh gh gw gw 35 175 176 177 178 179 180 181 195 196 197 198 202 203 2 1 L L L2 L2 L2 L 2 2 1 L L

More information

140 120 100 80 60 40 20 0 115 107 102 99 95 97 95 97 98 100 64 72 37 60 50 53 50 36 32 18 H18 H19 H20 H21 H22 H23 H24 H25 H26 H27 1 100 () 80 60 40 20 0 1 19 16 10 11 6 8 9 5 10 35 76 83 73 68 46 44 H11

More information

CRS4

CRS4 I... 1 II... 1 A... 1 B... 1 C... 1 D... 2 E... 3 III... 3 A... 3 B... 4 C... 5 IV... 8 A... 8 B... 8 C... 9 D... 10 V... 11 A... 11 B... 11 C... 12 VI... 12 A... 12 B... 12 C... 12 VII... 13 ii I II A

More information

13 0 1 1 4 11 4 12 5 13 6 2 10 21 10 22 14 3 20 31 20 32 25 33 28 4 31 41 32 42 34 43 38 5 41 51 41 52 43 53 54 6 57 61 57 62 60 70 0 Gauss a, b, c x, y f(x, y) = ax 2 + bxy + cy 2 = x y a b/2 b/2 c x

More information

- - - - - - - - - - - - - - - - - - - - - - - - - -1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - -2...2...3...4...4...4...5...6...7...8...

- - - - - - - - - - - - - - - - - - - - - - - - - -1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - -2...2...3...4...4...4...5...6...7...8... 取 扱 説 明 書 - - - - - - - - - - - - - - - - - - - - - - - - - -1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - -2...2...3...4...4...4...5...6...7...8...9...11 - - - - - - - - - - - - - - - - -

More information

パソコン機能ガイド

パソコン機能ガイド PART12 ii iii iv v 1 2 3 4 5 vi vii viii ix P A R T 1 x P A R T 2 xi P A R T 3 xii xiii P A R T 1 2 3 1 4 5 1 6 1 1 2 7 1 2 8 1 9 10 1 11 12 1 13 1 2 3 4 14 1 15 1 2 3 16 4 1 1 2 3 17 18 1 19 20 1 1

More information

パソコン機能ガイド

パソコン機能ガイド PART2 iii ii iv v 1 2 3 4 5 vi vii viii ix P A R T 1 x P A R T 2 xi P A R T 3 xii xiii P A R T 1 2 1 3 4 1 5 6 1 2 1 1 2 7 8 9 1 10 1 11 12 1 13 1 2 3 14 4 1 1 2 3 15 16 1 17 1 18 1 1 2 19 20 1 21 1 22

More information

活用ガイド (ソフトウェア編)

活用ガイド (ソフトウェア編) ii iii iv NEC Corporation 1998 v vi PA RT 1 vii PA RT 2 viii PA RT 3 PA RT 4 ix P A R T 1 2 3 1 4 5 1 1 2 1 2 3 4 6 1 2 3 4 5 7 1 6 7 8 1 9 1 10 1 2 3 4 5 6 7 8 9 10 11 11 1 12 12 1 13 1 1 14 2 3 4 5 1

More information

21 1 11 11 11 11 13 13 13 14 14 14 211 216 217 2118 221 222 222 223 225 226 226 227 2 228 229 229 2210 2211 2213 2216 2228 2229 2230 2231 2232 2233 2233 2234 2234 2236 2237 2238 2238 2239 2240 2241 3

More information

VB-C50i/VB-C50iR 使用説明書

VB-C50i/VB-C50iR 使用説明書 a ii iii iv a v vi vii viii d a a d ix a a d b a a a b x a a g a g a e a a xi a a a xii a a xiii xiv 1-2 1-3 d 1-4 1-5 1-6 1-7 1-8 1-9 1-10 1-11 1-12 2-2 2-3 a 2-4 a 2-5 a 2-6 2-7 2-8 2-9 2-10 2-11 2-12

More information

1... 1 2... 1 1... 1 2... 2 3... 2 4... 4 5... 4 6... 4 7... 22 8... 22 3... 22 1... 22 2... 23 3... 23 4... 24 5... 24 6... 25 7... 31 8... 32 9... 3

1... 1 2... 1 1... 1 2... 2 3... 2 4... 4 5... 4 6... 4 7... 22 8... 22 3... 22 1... 22 2... 23 3... 23 4... 24 5... 24 6... 25 7... 31 8... 32 9... 3 3 2620149 3 6 3 2 198812 21/ 198812 21 1 3 4 5 JISJIS X 0208 : 1997 JIS 4 JIS X 0213:2004 http://www.pref.hiroshima.lg.jp/site/monjokan/ 1... 1 2... 1 1... 1 2... 2 3... 2 4... 4 5... 4 6... 4 7... 22

More information

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C 0 9 (1990 1999 ) 10 (2000 ) 1900 1994 1995 1999 2 SAT ACT 1 1990 IMO 1990/1/15 1:00-4:00 1 N 1990 9 N N 1, N 1 N 2, N 2 N 3 N 3 2 x 2 + 25x + 52 = 3 x 2 + 25x + 80 3 2, 3 0 4 A, B, C 3,, A B, C 2,,,, 7,

More information

untitled

untitled 23 12 10 12:55 ~ 18:45 KKR Tel0557-85-2000 FAX0557-85-6604 12:55~13:00 13:00~13:38 I 1) 13:00~13:12 2) 13:13~13:25 3) 13:26~13:38 13:39~14:17 II 4) 13:39~13:51 5) 13:52 ~ 14:04 6) 14:05 ~ 14:17 14:18 ~

More information

5 36 5................................................... 36 5................................................... 36 5.3..............................

5 36 5................................................... 36 5................................................... 36 5.3.............................. 9 8 3............................................. 3.......................................... 4.3............................................ 4 5 3 6 3..................................................

More information

Claude E. Shannon Award SITA 6 28 7 3 2009 IEEE International Symposium on Information Theory (ISIT2009) (7 2 ) 2010 Shannon Award (Te Sun Han) SITA A

Claude E. Shannon Award SITA 6 28 7 3 2009 IEEE International Symposium on Information Theory (ISIT2009) (7 2 ) 2010 Shannon Award (Te Sun Han) SITA A No.71 2009 7 17 Claude E. Shannon Award...................................................................................................................................................................

More information

第1部 一般的コメント

第1部 一般的コメント (( 2000 11 24 2003 12 31 3122 94 2332 508 26 a () () i ii iii iv (i) (ii) (i) (ii) (iii) (iv) (a) (b)(c)(d) a) / (i) (ii) (iii) (iv) 1996 7 1996 12

More information

松竹映画ファンド重要事項説明書

松竹映画ファンド重要事項説明書 2004 11 30 2004 11 2005 2 1 2004 11 30 1. IV. (5) 26 10 10,000 1,350 2,625 232,025 133,006 9,500 1,320 2,520 224,005 131,001 9,000 1,290 2,415 215,985 128,996 8,500 1,260 2,310 207,965 126,991 8,000 1,230

More information

1 10 200 15 20 50 (1) (2) 45 A4 JICA 15 WS 1 [] a. b. 10 A 30 15 15 NGO PC 5 15 15 15 15 NGO 1948 1970 10 NGO 90 AB 40 40 WS 1 NGO 40 WS Q 43 63 73 15 9 8 5 5 4 63 17 9 8 6 6 4 2000 14 15 100 2000 1

More information

o 2o 3o 3 1. I o 3. 1o 2o 31. I 3o PDF Adobe Reader 4o 2 1o I 2o 3o 4o 5o 6o 7o 2197/ o 1o 1 1o

o 2o 3o 3 1. I o 3. 1o 2o 31. I 3o PDF Adobe Reader 4o 2 1o I 2o 3o 4o 5o 6o 7o 2197/ o 1o 1 1o 78 2 78... 2 22201011... 4... 9... 7... 29 1 1214 2 7 1 8 2 2 3 1 2 1o 2o 3o 3 1. I 1124 4o 3. 1o 2o 31. I 3o PDF Adobe Reader 4o 2 1o 72 1. I 2o 3o 4o 5o 6o 7o 2197/6 9. 9 8o 1o 1 1o 2o / 3o 4o 5o 6o

More information

PSCHG000.PS

PSCHG000.PS a b c a ac bc ab bc a b c a c a b bc a b c a ac bc ab bc a b c a ac bc ab bc a b c a ac bc ab bc de df d d d d df d d d d d d d a a b c a b b a b c a b c b a a a a b a b a

More information

第1章 国民年金における無年金

第1章 国民年金における無年金 1 2 3 4 ILO ILO 5 i ii 6 7 8 9 10 ( ) 3 2 ( ) 3 2 2 2 11 20 60 12 1 2 3 4 5 6 7 8 9 10 11 12 13 13 14 15 16 17 14 15 8 16 2003 1 17 18 iii 19 iv 20 21 22 23 24 25 ,,, 26 27 28 29 30 (1) (2) (3) 31 1 20

More information

長崎県地域防災計画

長崎県地域防災計画 i ii iii iv v vi vii viii ix - 1 - - 2 - - 3 - - 4 - - 5 - - 6 - - 7 - - 8 - - 9 - 玢 - 10 - - 11 - - 12 - - 13 - - 14 - - 15 - - 16 - - 17 - - 18 - - 19 - - 20 - - 21 - - 22 - - 23 - - 24 - - 25 - -

More information

vol.31_H1-H4.ai

vol.31_H1-H4.ai http://www.jmdp.or.jp/ http://www.donorsnet.jp/ CONTENTS 29 8,715 Vol. 31 2 3 ac ad bc bd ab cd 4 Point! Point! Point! 5 Point! Point! 6 7 314 611 122 4 125 2 72 2 102 3 2 260 312 0 3 14 3 14 18 14 60

More information

Microsoft Word - Documento2

Microsoft Word - Documento2 ? 3 2 ... 19 20 20 2 1 1 20 40 20 2 9 20 20 2 40 : http://www.hirahidenobu.com/scw/entry 平 秀 信 : 250 400 2 4 58CD4 CD1: 2 2 CD2 URL CD3: CD4: CD CD4... 250 200 250 http://www.hirahidenobu.com/scw/entry

More information

1 (1) (2)

1 (1) (2) 1 2 (1) (2) (3) 3-78 - 1 (1) (2) - 79 - i) ii) iii) (3) (4) (5) (6) - 80 - (7) (8) (9) (10) 2 (1) (2) (3) (4) i) - 81 - ii) (a) (b) 3 (1) (2) - 82 - - 83 - - 84 - - 85 - - 86 - (1) (2) (3) (4) (5) (6)

More information