1 1 ( ) ( % mm % A B A B A 1

Size: px
Start display at page:

Download "1 1 ( ) ( 1.1 1.1.1 60% mm 100 100 60 60% 1.1.2 A B A B A 1"

Transcription

1

2 1 1 ( ) ( % mm % A B A B A 1

3 B boy W ID DI DII DIII OL OL

4

5 Excel 3 Excel 3.1 sum,mean,max,min,round,if... Σ [ ] 4

6 SUM =sum( =sum(a1:a5) AVERAGE sum MAX MIN 1 ROUND =round( ) =round( ,2) =round(b1,3) 1 5

7 IF =if( =if(a1>2,1,0) =if(a1=1,, ) 3.2 > > > > > > > 2 DATA01 2 = ( 2 /10000) 22 x ( 5 <= x <= 5 abs(x) <= 5) (x < 5 x > 5) 3 Word 2 3 6

8 3.3 DATA02 > > ( D)=Sheet1!A1:E7 =a1:e7) > > > 7

9 ( D)=Sheet1!A1:E7 =a1:e7) 8

10 専 攻 人 数 クラス1 クラス2 クラス3 クラス 中 国 語 韓 国 語 英 語 フランス 語 ドイツ 語 イタリア 語 言 語 3 4 DATA DATA01 9

11 階 級 度 数 累 積 度 数 相 対 度 数 累 積 相 対 度 数 % 18% % 38% % 66% % 90% % 94% % 100% 5 / 6 / 25 ヒストグラム 20 度 数 階 級 の 下 限 7 DATA

12 5 8 ( ) 9 () 10 () x = 1 n n x i = x 1 + x x n n n (x i x) = x 3 3. {x 1, x 2,, x t } t t 11

13 3 4 x t = x t 1 + x t + x t 3 x t = x t 1 + x t + x t+1 + x t+2 4 { x 2, x 3,, x n 1 } { x 3, x 4,, x n 2 } TOPIX 4 日 付 終 値 3 項 移 動 平 均 5 項 移 動 平 均 7 項 移 動 平 均 18/04/ /04/ /04/ /04/ /04/ /04/ /04/ /04/ /04/ /04/ /04/ /04/ /03/ /03/ /03/ TOPIX 4 Yahoo Japan Finance TOPIX 12

14 1, , , 終 値 3 項 移 動 平 均 半 月 移 動 平 均 一 ヶ 月 移 動 平 均 1, , , /2/7 06/2/22 06/3/9 06/3/24 06/4/8 TOPIX 4. x = n x 1 x 2 x n 1 x n 3 r 1 = 23%, r 2 = 27%, r 3 = 28% 10 R = (1 + r 1 )(1 + r 2 )(1 + r 3 ) 1 1 r = 3 (1 + r 1 )(1 + r 2 )(1 + r 3 ) 1 26% 13

15 % 10 r r = R 1 = % 25% r 3 (1 + r) 3 = (1 + 26%) (1 + 26%) (1 + 26%) DATA

16 Excel median 11 15

17 12 7 X = {4, 7, 2, 30, 9, 7, 1} X = {1, 2, 4, 7, 7, 9, 30} , 90, 10, 110, mode X = {2, 3, 2, 4, 6, 4, 6, 6, 7} range 16 R = max(x) min(x) 17 X = {2, 3, 2, 4, 6, 4, 6, 6, 7} X 2 7 = 7 2 = 5 16

18 7.4 mean deviation 18 X = {x 1, x 2,, x n } d = n x i x n = x 1 x + x 2 x + + x n x n x 19 X = {x 1, x 2,, x 10 } = {2, 3, 2, 4, 6, 4, 6, 6, 3, 4} x = = d = 10 = = x 7/5 7.5 Excel max( -min( 20 max(a1:a10)-min(a1:a10) MEDIAN( ) 21 =MEDIAN(a1:a10) MODE( ) 22 =MODE(a1:a10) 17

19 8 8.1 Variance) 23 S 2 = = n (x i x) 2 n n x2 i n x 2 = (x 1 x) 2 + (x 2 x) (x n x) 2 n x P n x2 i n x 2 s 2 = n (x i x) 2 n 1 n 8.2 Standard Deviation 24 S = S 2 = n (x i x) 2 n S = s 2 = n (x i x) 2 n 1 18

20 8.3 5 Yahoo! , ), (0.003, ) (-0.003, ) 株 価 の 収 益 率 の 例 収 益 率 収 益 率 トヨダ 自 動 車 収 益 率 日 産 自 動 車 収 益 率 新 日 本 製 鐵 T 8.4 C.V. = S x 5 19

21 z i = x i S x S x x T i = zi 8.6 Excel S 2 =VARP( ) s 2 =VAR( ) S =STDEVP( ) s: =STDEV( ) 26 Yahoo

22 X Y Z S 2 = = n (x i x) 2 n n x2 i n x 2 = (x 1 x) 2 + (x 2 x) (x n x) 2 n x = = 3 3 n Sx 2 = (x i x) 2 n = ( 2) S 2 x = n x2 i n S 2 y = S 2 z = = (1 3)2 + (5 3) 2 + (3 3) 2 3 = = 2.67 x 2 = = 2.67 ( ) = ( ) = S 2 z > S 2 y > S 2 x. Z X 1, 5, 3 Z 15, 50,

23 X Y Z 28 X = {x 1, x 2,, x 100 }, Y = {y 1, y 2,, y 100 }, Z{y 1, y 2,, y 100 } 0 1, 3, DATA

24 9.1 DATA01 体 重 図 1 身 長 と 体 重 の 散 布 図 身 長 GDP( GDP cm cm 175cm 50kg kg

25 図 2 一 人 当 たりGDPと 乳 児 死 亡 率 乳 児 死 亡 率 一 人 当 たりGDP 1: GDP SNA 9.3 X Y S xy X Y ρ xy X Y S xy = 1 n = 1 n n (x i x) (y i ȳ) n x i y i xȳ 30 24

26 ρ xy = S xy S x S y = 1 n n 1 n n (x i x) (y i ȳ) n (x i x) 2 1 n (y i ȳ) 2 n (x i x) (y i ȳ) (x i x) 2 n (y i ȳ) 2 n 1 ρ

27 ρ xy = ρ xy = ρ xy = ρ xy = ID a b c d e f g h i j (g) (kg)

28 (kg) (g) 5 ρ xy = x = {4, 3, 5, 1, 5}, y = {1, 3, 3, 0, 1} x y Excel 1. =COVAR( 1 2 ) 2. =CORREL( 1 2 ) DATA

29 10.1 x, y y = a + bx x y a = 3, b = 2 y = 3 + 2x x = 0 y = = 3, x = 2 y = = 7..., 4 x y y x

30 学 籍 番 号 身 長 (cm) 体 重 (kg) 体 重 身 長 29

31 Ìd W e i g h t H e i g h t g x y x i y i, i = 1, 2, 3,..., 12. ŷ = a + bx d i = y i ŷ = y i (a + bx i ) 30

32 S 12 S = (y i (a + bx i )) 2 S = n (y i (a + bx i )) 2. (1) 35 ( ) S b = n x iy i n xȳ n x2 i n x2 (2) a = ȳ b x (3) 11 a b S a b 1 ( n n ) ( n ) S = yi 2 + na 2 + b 2 + x i 2ab x 2 i ( n ) ( n ) y i 2a x i y i 2b (4) x i y i 3 a a ( ( n ) ( n ) S = na 2 y i 2a + x i 2ab ( nȳ 2 2nb xȳ + nb 2 x 2)) + ( nȳ 2 2nb xȳ + nb 2 x 2) + ( n n yi 2 + x 2 i ) ( n ) b 2 x i y i 2b S = n(a (ȳ b x))

33 S a = ȳ b x (5) 3 b b S = n x 2 i ( b S ( n x iy i a n x )) 2 i n + x2 i n x2 i b = ( n x iy i ) a n x i (6) 5 a 6 b = ( n x iy i ) n xȳ ( n x2 i ) n x2 (7) a = ȳ b x (8) 1 { S = 0 a S = 0 b

34 i x i y i x 2 i x i y i (x iy i ) 12 x i 12 y i 12 x2 i x ȳ b = ( n x iy i ) n xȳ ( n x2 i ) = = 0.80 n x a = ȳ b x = = ŷ = x 1cm 0.8kg 36 x = {2, 5, 6, 9}, y = {4, 6, 8, 9} 33

35 x, y y = a + bx x y a = 3, b = 2 y = 3 + 2x x = 0 y = = 3, x = 2 y = = 7..., 4 x y y x

36 12.2 学 籍 番 号 身 長 (cm) 体 重 (kg) 体 重 身 長 35

37 Ìd W e i g h t H e i g h t g x y x i y i, i = 1, 2, 3,..., 12. ŷ = a + bx d i = y i ŷ = y i (a + bx i ) 36

38 S 12 S = (y i (a + bx i )) 2 S = n (y i (a + bx i )) 2. (9) 37 ( ) S b = n x iy i n xȳ n x2 i n x2 (10) a = ȳ b x (11) 13 a b S a b 1 ( n n ) ( n ) S = yi 2 + na 2 + b 2 + x i 2ab x 2 i ( n ) ( n ) y i 2a x i y i 2b (12) x i y i 3 a a ( ( n ) ( n ) S = na 2 y i 2a + x i 2ab ( nȳ 2 2nb xȳ + nb 2 x 2)) + ( nȳ 2 2nb xȳ + nb 2 x 2) + ( n n yi 2 + x 2 i ) ( n ) b 2 x i y i 2b S = n(a (ȳ b x))

39 S a = ȳ b x (13) 3 b b S = n x 2 i ( b S ( n x iy i a n x )) 2 i n + x2 i n x2 i b = ( n x iy i ) a n x i (14) 5 a 6 b = ( n x iy i ) n xȳ ( n x2 i ) n x2 (15) a = ȳ b x (16) 1 { S = 0 a S = 0 b

40 i x i y i x 2 i x i y i (x iy i ) 12 x i 12 y i 12 x2 i x ȳ b = ( n x iy i ) n xȳ ( n x2 i ) = = 0.80 n x a = ȳ b x = = ŷ = x 1cm 0.8kg 38 x = {2, 5, 6, 9}, y = {4, 6, 8, 9} 39

41 x = {4, 6, 9}, y = {6, 6, 9} x y DATA03 Excel Excel Excel OK Y X OK 40

42 概 要 回 帰 統 計 重 相 関 R 重 決 定 R 補 正 R 標 準 誤 差 観 測 数 30 分 散 分 析 表 自 由 度 変 動 分 散 観 測 された 分 散 比 有 意 F 回 帰 残 差 合 計 係 数 標 準 誤 差 t P 値 下 限 95% 上 限 95% 下 限 95.0% 上 限 95.0% 切 片 X 値 y x 7 y = a + b x + u u a 94.4 b X y = x 17, 40 A 1 A = {... } 41 A = {2, 1, 5}, B = {3, 6, 5} A B A B A B = {2, 1, 5, 3, 6} A B A B A B = {5} 41

43 / / n n m n m/n p p p 42

44 A P (A) 0 P (A) 1 2. Ω P (Ω) = 1 3. A B A B P (A B) = P (A) + P (B) A B { { 4 1 1/4 47 A = { 2 }, B = { } P {A B}? 48 {A B} = { 2 } P {A B} = 1 49 C = { 2 } D = { 2 } 50 P (C D) C = { } D = { } C D C D = φ φ P {φ} = P {B} P {A B} = P {A} + P {B} ?{ 1 2 }?{ 1 2 }? 43

45 Excel Excel P = 0.5 OK X X = 0 0.5, X = x = 1 1 6, x = 2 1 6, X 0 1 0, 1, 2, 3, 4, 5, X x 1 x 2 x 3 x 4 P (x) P (x 1 ) P (x 2 ) P (x 3 ) P (x 4 ) x i P (x) P (x 1 ), P (x 2 )... x 44

46 F (x) {X x} F (x) = P ({X x}) F (x) = P ({X x}) = x i <x P (x i ) x x i F (x 3 ) = P (X x 3 ) = P (x 1 ) + P (x 2 ) + P (x 3 ) x i X E (X) E (X) = n x i P (x i ). X V (X) V (X) = E [ (X E (X)) 2] = n [ (xi E (X)) 2 P (x i ) ]. 53 () X P (x) X P (x) { P (x) = p P (x) = 1 p x = 1 x = 0 E (X) = 1 p + 0 (1 p) = p. V (X) = (0 p) 2 (1 p) + (1 p) 2 p = p 2 p 3 + p 2p 2 + p 3 = p p 2 45

47 F(x) p = F (x) = 1 p 1 x < 0 0 x < 1 x 1 46

48 F(x) p = 0.5 p = P (x) = C x np x (1 p) n x x = 0, 1, 2,..., n. Y i 0 p X = n ( n ) E (X) = E Y i = np V (X) = V ( n ) Y i = n(p p 2 ) C x n Cn x = P n x n!/ (n x)! = Px x x! n (n 1) (n 2) (n x + 1) = x (x 1) (x 2) 3 2 Y i 47

49 F (x) = x P (x i ) n x p = P (x) = e λ λ x p = λ/n. p = λ/n x! C x np x (1 p) n x = (n 1) (n 2) n n = n!/ (n x)! x! n n (n 1) n (n 2) n ( m ) x ( 1 m ) n x n n (n (x 1)) n x! ( m x 1 m ) n ( 1 m ) x n n ) x 1 ( 1 m n ) n e m n (n (x 1)) 1, ( 1 m n n n P (x) = e λ λ x x! E (X) = λ. V (X) = λ. F (x) = x P (x i ) n p 48

50 λ = 10 P (X 2) = F (2) = = e λ λ 0 0! 2 e λ i λ x i i=0 + e λ λ 1 1! x i! + e λ λ 2 2! = e ! = e ! + e ! p = 0.3, n = 10 P (6) Probability Density Funtion PDF x x x 1000 P (c) 6 = C c np c (1 p) n c x = 0, 1, 2,..., n. (17) 6 P (c), f (c), F (c) P (x), f (x), F (x) 49

51 f (c) = 1 σ (c µ) 2 2π e 2σ 2 (18) f (x) X c c

52 21 (Cumulative Distribution Function CDF) F (c) = P (X c) = c P (x i ) = c C x i n p x i (1 p) n x i x = 0, 1, 2,..., n. (19) 51

53 F (c) = P (X c) = c 1 σ (x µ) 2 2π e 2σ 2 dx (20) k k k F (x) c c c P (c) f (c) F (c) a b a < b X a b a b X 52

54 X c d c d X F (c) = P (X c) = c P (x i ) (21) F (c) = P (X c) = c f (x) dx (22) The area of this part F ( 1) 53

55 This value F ( 1) E (X) = n x i P (x i ). X V (X) V (X) = E [ (X E (X)) 2] = n [ (xi E (X)) 2 P (x i ) ]. E (X) = V (X) = E [ (X E (X)) 2] = xf (x) dx. (x E (X)) 2 f (x) dx. 54

56 22 1. P (x) = C x np x (1 p) n x x = 0, 1, 2,..., n. (23) x F (x) = P (x i ) (24) ( n ) E (X) = E Y i = np (25) ( n ) V (X) = V Y i = n(p p 2 ). (26) 2. f (c) = 1 σ (c µ) 2 2π e 2σ 2 (27) F (c) = 1 c σ e (x µ)2 2σ 2 dx (28) 2π 55

57 µ σ 2 E (X) = V (X) = = 1 σ 2π = µ = 1 σ 2π = σ 2 xf (x) dx c xe (x µ)2 2σ 2 dx (x µ) 2 f (x) dx c (x µ) 2 e (x µ)2 2σ 2 dx Excel Excel 10 p = x i, i = 1, 2,..., 100 x i 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, Excel p = 0.3, n = 6 P (3) C Excel 56

58 : 1 59 Excel p = 0.5, n = 10 x = 0, 1, 2,..., X 0 2 (1) 2 1 (2) 1 0 (3) P (X 1) P (X 0) f(0), f(1) 61 X 2 F ( 1) F (0) P (X 1) P (X 0) 57

59 : 58

60 Excel Cn x nc x = combin (n, x) C6 3 = combin (6, 3) P (x) = Cnp x x (1 p) n x x = 0, 1, 2,..., n. (29) x F (x) = P (x i ) (30) ( n ) E (X) = E Y i = np (31) ( n ) V (X) = V Y i = n(p p 2 ). (32) 2. µ σ 2 f (c) = 1 σ (c µ) 2 2π e 2σ 2 (33) F (c) = 1 c σ e (x µ)2 2σ 2 dx (34) 2π 59

61 3. P (x) = e λ λ x x! (35) p = λ/n E (X) = λ. (36) V (X) = λ. (37) 25 p n x P (x) = C x np x (1 p) n x x = 0, 1, 2,..., n. (38) P (x) = e λ λ x λ x x! (39) 26 1 X 0 2 (1) 2 1 (2) 1 0 (3) P (X 1) 60

62 P (X 0) f(0), f(1) X P (X c) P (X c) = F (c) = 1 σ 2π c e (x µ)2 2σ 2 dx (40) c P (X c) µ = 0 σ 2 =

63 27.1 E (X) = µ V (X) = σ 2 X X Z = X µ σ E (Z) = 0 V (Z) = 1 63 X µ = 0 σ 2 = 1 X 1.64 F (1.64) P (X 1.64) P (0 < X 1.64) X 1.64 P (X 1.64) = 0.95 P (0 < X 1.64) = P (X 1.64) P (X 0) P (X 0) P (X 1.64) P (0 < X 1.64) = P (X 1.64) P (X 0) = = X µ = 1 σ 2 = 4 X 4.28 µ = 1 σ 2 = 4 X µ = 0 σ 2 = 1 Z Z = X µ σ 2 = X 1 2 Z x = 4.38 x X z = x 1 = = P (X 4.28) = P (Z 1.64) =

64 28.1 X {X 1, X 2, X 3,..., X n } X E (X) µ V ar (X) = σ 2 65 (at random ) µ n X = 1 n X i σ 2 S 2 = 1 n 1 n (X i X) 2 X: 100 {X 1, X 2, X 3,..., X 100 } E (X) µ µ X = X i σ 2 S 2 = (X i X) 2 66 ( ) Γ γ E (γ) = Γ γ Γ 63

65 X S 2 µ σ 2 X E ( ( ) 1 n X) = E X i n = 1 n E (X i ) n X i X E (X i ) = µ = 1 n µ = µ. n ( ) X i µ σ 2 lim n X = µ. 68 ( ) Γ γ lim n γ = Γ γ Γ X µ

66 H 0 H H 0 H 1 : ( ) X i µ σ 2 n n X n( X µ) d N(0, 1). σ 31.3 σ σ σ

67 70 X 100 X = 175 σ = 10 µ 170 H 0 µ = 170 H 1 µ > 170 X µ = 170 σ = 10 N (170, 100) X 175 α 1% 5% µ = 170 n X Z 0 Z 0 1. H 0 µ = 170 H 1 µ > α α = 5% 3. α Z P (Z > Z ) = α Z P (Z > Z ) = 5% Z P (Z Z ) = 1 5% Z Z = Z 0 = n ( X µ ) /σ Z 0 = 100 ( ) /10 = 5 66

68 5. Z 0 Z Z 0 > Z Z 0 Z Z 0 = 5, Z = 1.65 Z 0 > Z µ = 170 µ > 170 Z 0 Z µ = % σ 2 = 9 25 X = 12 H 0 µ = 10 H 1 µ > 10 67

69 DATA01 µ 160 cm σ = σ 100 X = 3.2 cm σ 2 = 4 µ = 3 µ σ 2 X µ = 3 1. H 0 µ = 3 cm H 1 µ > 3 cm µ < 3 cm µ 3cm 2. α 1/2 α α = 5% 1/2 α = 2.5% 3. 1/2 α Z P (Z > Z ) = 1/2 α Z P (Z > Z ) = 2.5% Z P (Z Z ) = 1 2.5% z Z = Z 0 = n ( X µ ) /σ Z 0 = 100 (3.2 3) /2 = 1 68

70 5. Z 0 Z Z 0 > Z Z 0 < Z Z Z 0 Z Z 0 = 1, Z = 1.96 Z 0 < Z µ = 3 Z 0 Z Z µ = % 2.5%

71 , 9.3, 8, 7, 8.9, 9.8, 9.3, 9.2, 9, 8.9 α = 1% σ 2 = 4 37 σ n 37.1 σ σ n( X µ) σ d N(0, 1). σ σ σ s n( X µ) s n 1( X µ) s d N(0, 1) d t (n 1). 70

72 t (n 1) n 1 t n 1( X µ) t t n 1 t s 37.2 t t t t 3 t 37.3 σ σ t t σ 71 X 25 71

73 µ H 0 µ = 170 H 1 µ > α α = 5% 3. υ = n 1 υ = 25 1 = α n 1 t t t P (t > t ) = α t 24 t P (t > t ) = 5% t t = X s s 2 = n (x i x) 2 n 1 X = 175, s 2 = t 0 = n 1 ( X µ ) /s t 0 = 24 ( ) / t 0 4 t t 0 > t t 0 t t 0 = 2.5, t = 1.71 t 0 > t µ = 170 µ > cm 72

74 H 0 µ = µ 0 H 1 µ µ 0 2. α 1/2 α 3. υ = n 1 υ = 25 1 = /2 α n 1 t t t P (t > t ) = α t 5. X s s 2 = n (x i x) 2 n 1 6. t 0 = n 1 ( X µ ) /s 7. t 0 t t 0 > t t 0 < t t 0 t t 0 t 72 DATA01 9 µ > σ 73

75 100 X = 3.8 cm σ 2 = 4 µ = 3 µ σ 2 X µ = 3 1. H 0 µ = 3 cm H 1 µ > 3 cm µ < 3 cm µ 3cm 2. α 1/2 α α = 5% 1/2 α = 2.5% 3. 1/2 α Z P (Z > Z ) = 1/2 α Z P (Z > Z ) = 2.5% Z P (Z Z ) = 1 2.5% z Z = Z 0 = n ( X µ ) /σ Z 0 = 100 (3.2 3) /2 = 1 5. Z 0 z Z 0 > Z Z 0 < Z Z 0 Z Z 0 Z Z 0 = 1, Z = 1.96 Z 0 < Z µ = 3 Z 0 Z Z 74

76 µ = % 2.5% σ 4 10 cm, 12 cm, 15 cm, 9 cm 13 cm X = {3, 6, 9} Y = {2, 3, 8} 74 75

77 % [1] ˆb Y i = a + b X i (41) / n t ˆb (x i x) 2 t n 2 t Excel t 41.1 DATA03 Excel Excel 76

78 概 要 回 帰 統 計 重 相 関 R 重 決 定 R 補 正 R 標 準 誤 差 観 測 数 30 分 散 分 析 表 自 由 度 変 動 分 散 観 測 された 分 散 比 有 意 F 回 帰 残 差 合 計 係 数 標 準 誤 差 t P 値 下 限 95% 上 限 95% 下 限 95.0% 上 限 95.0% 切 片 X 値 y x 7 y = a + b x + u u a 94.4 b X y = x x t t p t p p [1] 2002) 77

0 (1 ) 0 (1 ) 01 Excel Excel ( ) = Excel Excel =5+ 5 + 7 =5-5 3 =5* 5 10 =5/ 5 5 =5^ 5 5 ( ), 0, Excel, Excel 13E+05 13 10 5 13000 13E-05 13 10 5 0000

0 (1 ) 0 (1 ) 01 Excel Excel ( ) = Excel Excel =5+ 5 + 7 =5-5 3 =5* 5 10 =5/ 5 5 =5^ 5 5 ( ), 0, Excel, Excel 13E+05 13 10 5 13000 13E-05 13 10 5 0000 1 ( S/E) 006 7 30 0 (1 ) 01 Excel 0 7 3 1 (-4 ) 5 11 5 1 6 13 7 (5-7 ) 9 1 1 9 11 3 Simplex 1 4 (shadow price) 14 5 (reduced cost) 14 3 (8-10 ) 17 31 17 3 18 33 19 34 35 36 Excel 3 4 (11-13 ) 5 41 5 4

More information

June 2016 i (statistics) F Excel Numbers, OpenOffice/LibreOffice Calc ii *1 VAR STDEV 1 SPSS SAS R *2 R R R R *1 Excel, Numbers, Microsoft Office, Apple iwork, *2 R GNU GNU R iii URL http://ruby.kyoto-wu.ac.jp/statistics/training/

More information

2 Excel =sum( ) =average( ) B15:D20 : $E$26 E26 $ =A26*$E$26 $ $E26 E$26 E$26 $G34 $ E26 F4

2 Excel =sum( ) =average( ) B15:D20 : $E$26 E26 $ =A26*$E$26 $ $E26 E$26 E$26 $G34 $ E26 F4 1234567 0.1234567 = 2 3 =2+3 =2-3 =2*3 =2/3 =2^3 1:^, 2:*/, 3:+- () =2+3*4 =(2+3)*4 =3*2^2 =(3*2)^2 =(3+6)^0.5 A12 =A12+B12 ( ) ( )0.4 ( 100)0.9 % 1 2 Excel =sum( ) =average( ) B15:D20 : $E$26 E26 $ =A26*$E$26

More information

情報科学概論 第1回資料

情報科学概論 第1回資料 1. Excel (C) Hiroshi Pen Fujimori 1 2. (Excel) 2.1 Excel : 2.2Excel Excel (C) Hiroshi Pen Fujimori 2 256 (IV) :C (C 65536 B4 :2 (2 A3 Excel (C) Hiroshi Pen Fujimori 3 Tips: (1) B3 (2) (*1) (3) (4)Word

More information

(Nov/2009) 2 / = (,,, ) 1 4 3 3 2/8

(Nov/2009) 2 / = (,,, ) 1 4 3 3 2/8 (Nov/2009) 1 sun open-office calc 2 1 2 3 3 1 3 1 2 3 1 2 3 1/8 (Nov/2009) 2 / = (,,, ) 1 4 3 3 2/8 (Nov/2009) 1 (true) false 1 2 2 A1:A10 A 1 2 150 3 200 4 250 5 320 6 330 7 360 8 380 9 420 10 480 (1)

More information

Excel97関数編

Excel97関数編 Excel97 SUM Microsoft Excel 97... 1... 1... 1... 2... 3... 3... 4... 5... 6... 6... 7 SUM... 8... 11 Microsoft Excel 97 AVERAGE MIN MAX SUM IF 2 RANK TODAY ROUND COUNT INT VLOOKUP 1/15 Excel A B C A B

More information

untitled

untitled 1 1 Excel3 2008.8.19 2 3 10 1 () 4 40596079 2 OK 1 5 341 1 1 6 3-1 A134A135 B135 COUNTIF OK 3-1 7 3 B6B132 1 B135 COUNTIF) OK B6B132 8 2 3-1 3 3-1 3 1 2A133 A134 A135 3B133 SUBTOTAL 9 2 B5B131 OK 4SUBTOTAL

More information

4 4. A p X A 1 X X A 1 A 4.3 X p X p X S(X) = E ((X p) ) X = X E(X) = E(X) p p 4.3p < p < 1 X X p f(i) = P (X = i) = p(1 p) i 1, i = 1,,... 1 + r + r

4 4. A p X A 1 X X A 1 A 4.3 X p X p X S(X) = E ((X p) ) X = X E(X) = E(X) p p 4.3p < p < 1 X X p f(i) = P (X = i) = p(1 p) i 1, i = 1,,... 1 + r + r 4 1 4 4.1 X P (X = 1) =.4, P (X = ) =.3, P (X = 1) =., P (X = ) =.1 E(X) = 1.4 +.3 + 1. +.1 = 4. X Y = X P (X = ) = P (X = 1) = P (X = ) = P (X = 1) = P (X = ) =. Y P (Y = ) = P (X = ) =., P (Y = 1) =

More information

リスクとは何か?

リスクとは何か? http://www.craft.titech.ac.jp/~nakagawa/dir2/lecture.html#tit2005_1 Agenda Value at Risk 2 3 TOPIX 10 95% 4 TOPIX or Value at Risk 5 TOPIX = log TOPIX N 6 7 N TOPIX x, x, 1 2, L x N 8 x = N 1 EXCEL AVERAGE

More information

<4D6963726F736F667420576F7264202D204850835483938376838B8379815B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D6963726F736F667420576F7264202D204850835483938376838B8379815B83578B6594BB2D834A836F815B82D082C88C60202E646F63> 例 題 で 学 ぶ Excel 統 計 入 門 第 2 版 サンプルページ この 本 の 定 価 判 型 などは, 以 下 の URL からご 覧 いただけます. http://www.morikita.co.jp/books/mid/084302 このサンプルページの 内 容 は, 第 2 版 発 行 当 時 のものです. i 2 9 2 Web 2 Excel Excel Excel 11 Excel

More information

4

4 4 5 6 7 + 8 = ++ 9 + + + + ++ 10 + + 11 12 WS LC VA L WS = LC VA = LC L L VA = LC L VA L 13 i LC VA WS WS = LC = VA LC VA VA = VA α WS α = VA VA i WS = LC VA i t t+1 14 WS = α WS + WS α WS = WS WS WS =

More information

Excel基礎講座テキスト-表紙と目次v1.3.doc

Excel基礎講座テキスト-表紙と目次v1.3.doc Future Lifestyle Inc. IT Microsoft Excel 2000 Microsoft Microsoft Corporation < > Excel Excel Microsoft Excel = 11 11 1 G11 1 < > Excel Word Excel Sheet1Sheet2Sheet3 OK Sheet2 Sheet3 2 Word Excel Book1.

More information

untitled

untitled 1 BASIC (Beginner s All-purpose Symbolic Instruction Code) EXCEL BASIC EXCEL EXCEL VBA (Visual Basic for Applications) 2 3 1.1 Excel Excel Excel Check Point 1. 2. 1.1.1 Sheet1 A Sheet2 Sheet A A10 4 1

More information

1 1 3 1.1 (Frequecy Tabulatios)................................ 3 1........................................ 8 1.3.....................................

1 1 3 1.1 (Frequecy Tabulatios)................................ 3 1........................................ 8 1.3..................................... 1 1 3 1.1 (Frequecy Tabulatios)................................ 3 1........................................ 8 1.3........................................... 1 17.1................................................

More information

3 3 i

3 3 i 00D8102021I 2004 3 3 3 i 1 ------------------------------------------------------------------------------------------------1 2 ---------------------------------------------------------------------------------------2

More information

統計的仮説検定とExcelによるt検定

統計的仮説検定とExcelによるt検定 I L14(016-01-15 Fri) : Time-stamp: 016-01-15 Fri 14:03 JST hig 1,,,, p, Excel p, t. http://hig3.net ( ) L14 Excel t I(015) 1 / 0 L13-Q1 Quiz : n = 9. σ 0.95, S n 1 (n 1)

More information

Microsoft PowerPoint - Econometrics-2013-04-1018.pptx

Microsoft PowerPoint - Econometrics-2013-04-1018.pptx 計 量 経 済 学 講 義 第 回 記 述 統 計 の 基 礎 Part 0 年 0 8 ( ) 限 担 当 教 員 : 唐 渡 広 志 研 究 室 : 経 済 学 研 究 棟 階 号 室 email: kkarato@eco.u-toyama.ac.jp website: http://www.u-toyama.ac.jp/kkarato/ 講 義 の 目 的 般 的 なデータの 集 約 法 や

More information

24.15章.微分方程式

24.15章.微分方程式 m d y dt = F m d y = mg dt V y = dy dt d y dt = d dy dt dt = dv y dt dv y dt = g dv y dt = g dt dt dv y = g dt V y ( t) = gt + C V y ( ) = V y ( ) = C = V y t ( ) = gt V y ( t) = dy dt = gt dy = g t dt

More information

第85 回日本感染症学会総会学術集会後抄録(III)

第85 回日本感染症学会総会学術集会後抄録(III) β β α α α µ µ µ µ α α α α γ αβ α γ α α γ α γ µ µ β β β β β β β β β µ β α µ µ µ β β µ µ µ µ µ µ γ γ γ γ γ γ µ α β γ β β µ µ µ µ µ β β µ β β µ α β β µ µµ β µ µ µ µ µ µ λ µ µ β µ µ µ µ µ µ µ µ

More information

15 2004.03 194

15 2004.03 194 The Statistical Processing using EXCEL MIYOSHI Yoshihiko In this paper, I summarize the method of performing statistical processing using only the basic function of EXCEL without the VBA macro, add-in

More information

1 1 1 1 1 1 2 f z 2 C 1, C 2 f 2 C 1, C 2 f(c 2 ) C 2 f(c 1 ) z C 1 f f(z) xy uv ( u v ) = ( a b c d ) ( x y ) + ( p q ) (p + b, q + d) 1 (p + a, q + c) 1 (p, q) 1 1 (b, d) (a, c) 2 3 2 3 a = d, c = b

More information

α = 2 2 α 2 = ( 2) 2 = 2 x = α, y = 2 x, y X 0, X 1.X 2,... x 0 X 0, x 1 X 1, x 2 X 2.. Zorn A, B A B A B A B A B B A A B N 2

α = 2 2 α 2 = ( 2) 2 = 2 x = α, y = 2 x, y X 0, X 1.X 2,... x 0 X 0, x 1 X 1, x 2 X 2.. Zorn A, B A B A B A B A B B A A B N 2 1. 2. 3. 4. 5. 6. 7. 8. N Z 9. Z Q 10. Q R 2 1. 2. 3. 4. Zorn 5. 6. 7. 8. 9. x x x y x, y α = 2 2 α x = y = 2 1 α = 2 2 α 2 = ( 2) 2 = 2 x = α, y = 2 x, y X 0, X 1.X 2,... x 0 X 0, x 1 X 1, x 2 X 2.. Zorn

More information

3 3.3. I 3.3.2. [ ] N(µ, σ 2 ) σ 2 (X 1,..., X n ) X := 1 n (X 1 + + X n ): µ X N(µ, σ 2 /n) 1.8.4 Z = X µ σ/ n N(, 1) 1.8.2 < α < 1/2 Φ(z) =.5 α z α

3 3.3. I 3.3.2. [ ] N(µ, σ 2 ) σ 2 (X 1,..., X n ) X := 1 n (X 1 + + X n ): µ X N(µ, σ 2 /n) 1.8.4 Z = X µ σ/ n N(, 1) 1.8.2 < α < 1/2 Φ(z) =.5 α z α 2 2.1. : : 2 : ( ): : ( ): : : : ( ) ( ) ( ) : ( pp.53 6 2.3 2.4 ) : 2.2. ( ). i X i (i = 1, 2,..., n) X 1, X 2,..., X n X i (X 1, X 2,..., X n ) ( ) n (x 1, x 2,..., x n ) (X 1, X 2,..., X n ) : X 1,

More information

2 () : ( )GDP () : () : POS STEP 1: STEP 2: STEP 3: STEP 4: 3 2

2 () : ( )GDP () : () : POS STEP 1: STEP 2: STEP 3: STEP 4: 3 2 / //descrptvea1-a.tex 1 1 2 2 3 2 3.1............................................. 3 3.2............................................. 3 4 4 5 9 6 12 7 15 8 19 9 22 1 statstcs statstcum (EBM) 1 2 () : (

More information

1: *2 W, L 2 1 (WWL) 4 5 (WWL) W (WWL) L W (WWL) L L 1 2, 1 4, , 1 4 (cf. [4]) 2: 2 3 * , , = , 1

1: *2 W, L 2 1 (WWL) 4 5 (WWL) W (WWL) L W (WWL) L L 1 2, 1 4, , 1 4 (cf. [4]) 2: 2 3 * , , = , 1 I, A 25 8 24 1 1.1 ( 3 ) 3 9 10 3 9 : (1,2,6), (1,3,5), (1,4,4), (2,2,5), (2,3,4), (3,3,3) 10 : (1,3,6), (1,4,5), (2,2,6), (2,3,5), (2,4,4), (3,3,4) 6 3 9 10 3 9 : 6 3 + 3 2 + 1 = 25 25 10 : 6 3 + 3 3

More information

untitled

untitled Excel A D-2 B-2 D-2 B2 C-2 D-2 C2-23 - Enter D-2 B2(1000) C2(5) 5000 D-2 (D-2) (D-2) (D-3) (D-6) - 24 - (D-3) (D-6) D (D-2) =B2*C2 (D-3) =B3*C3 (D-4) =B4*C4 Excel - 25 - $A$1 1000 A-1 (B-1) =$A$1 (B-1)

More information

Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3. 39. 4.. 4.. 43. 46.. 46..

Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3. 39. 4.. 4.. 43. 46.. 46.. Cotets 6 6 : 6 6 6 6 6 6 7 7 7 Part. 8. 8.. 8.. 9..... 3. 3 3.. 3 3.. 7 3.3. 8 Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3.

More information

untitled

untitled 11 10 267 6 129 48.3 6 63 2 1 2JIS ME JIS T 1005JIS 1994 1 11 A 10 1999 5 3 13 ME 4 2 11 B B 1999 4 10 267 6 B 7 9 6 10 12 3 11 Excel MODE Excel STANDARDIZE STANDARDIZE(X,)X AVERAGE STDEVP Excel VAR 0.5

More information

2 p T, Q

2 p T, Q 270 C, 6000 C, 2 p T, Q p: : p = N/ m 2 N/ m 2 Pa : pdv p S F Q 1 g 1 1 g 1 14.5 C 15.5 1 1 cal = 4.1855 J du = Q pdv U ( ) Q pdv 2 : z = f(x, y). z = f(x, y) (x 0, y 0 ) y y = y 0 z = f(x, y 0 ) x x =

More information

untitled

untitled 146,650 168,577 116,665 122,915 22,420 23,100 7,564 22,562 140,317 166,252 133,581 158,677 186 376 204 257 5,594 6,167 750 775 6,333 2,325 298 88 5,358 756 1,273 1,657 - - 23,905 23,923 1,749 489 1,309

More information

橡Taro13-EXCEL統計学.PDF

橡Taro13-EXCEL統計学.PDF Excel 4.1 4.1.1 1 X n X,X, 1,Xn X=X X X /n 1 n Excel AVERAGE =AVERAGE Excel MEDIAN 3 =MEDIAN Excel MODE =MODE 4.1. 1 Excel MAX MIN =MAX MIN n X,X,,X X 4-1 1 n V X1-X + X-X + + Xn-X V= n 0 0 Excel VARP

More information

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y No1 1 (1) 2 f(x) =1+x + x 2 + + x n, g(x) = 1 (n +1)xn + nx n+1 (1 x) 2 x 6= 1 f 0 (x) =g(x) y = f(x)g(x) y 0 = f 0 (x)g(x)+f(x)g 0 (x) 3 (1) y = x2 x +1 x (2) y = 1 g(x) y0 = g0 (x) {g(x)} 2 (2) y = µ

More information

Microsoft Word - 触ってみよう、Maximaに2.doc

Microsoft Word - 触ってみよう、Maximaに2.doc i i e! ( x +1) 2 3 ( 2x + 3)! ( x + 1) 3 ( a + b) 5 2 2 2 2! 3! 5! 7 2 x! 3x! 1 = 0 ",! " >!!! # 2x + 4y = 30 "! x + y = 12 sin x lim x!0 x x n! # $ & 1 lim 1 + ('% " n 1 1 lim lim x!+0 x x"!0 x log x

More information

1 2 3 2 2.1 -countif Excel 22 http://software.ssri.co.jp/statweb2/ 1. 111 3 2. 4 4 3 3.E4:E10E4:E10 OK 2/27

1 2 3 2 2.1 -countif Excel 22 http://software.ssri.co.jp/statweb2/ 1. 111 3 2. 4 4 3 3.E4:E10E4:E10 OK 2/27 1....................... 1 2............................... 2 2.1 -countif(2 ) 2.2 (7 ) 2.3 frequency(7 ) 3....................... 8 4 [].................... 10 5................................ 10 5.1

More information

ユニセフ表紙_CS6_三.indd

ユニセフ表紙_CS6_三.indd 16 179 97 101 94 121 70 36 30,552 1,042 100 700 61 32 110 41 15 16 13 35 13 7 3,173 41 1 4,700 77 97 81 47 25 26 24 40 22 14 39,208 952 25 5,290 71 73 x 99 185 9 3 3 3 8 2 1 79 0 d 1 226 167 175 159 133

More information

【補足資料】確率・統計の基礎知識

【補足資料】確率・統計の基礎知識 補 足 資 料 確 率 統 計 の 基 礎 知 識 2011 年 3 月 日 本 銀 行 金 融 機 構 局 金 融 高 度 化 センター 1 目 次 1. 基 本 統 計 量 (1 変 量 ) - 平 均 分 散 標 準 偏 差 パーセント 点 2. 基 本 統 計 量 (2 変 量 ) - 散 布 図 共 分 散 相 関 係 数 相 関 行 列 3. 確 率 変 数 - 確 率 変 数 確 率

More information

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,,

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,, 2012 10 13 1,,,.,,.,.,,. 2?.,,. 1,, 1. (θ, φ), θ, φ (0, π),, (0, 2π). 1 0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ).

More information

Microsoft Word - 精選300題本文以外.docx

Microsoft Word - 精選300題本文以外.docx # 61 データの 整 理 検 索 コード 0697/10650 データを 階 級 ごとに 整 理 した 表 を 何 というか データを 階 級 (Class)ごとに 整 理 した 表 が 度 数 分 布 表 (Frequency Distribution Table)である 例 : 31 名 のテストの 点 数 元 データ 度 数 分 布 表 1 45 63 69 76 45 39 階 級 人 数

More information

Copyrght 7 Mzuho-DL Fnancal Technology Co., Ltd. All rghts reserved.

Copyrght 7 Mzuho-DL Fnancal Technology Co., Ltd. All rghts reserved. 766 Copyrght 7 Mzuho-DL Fnancal Technology Co., Ltd. All rghts reserved. Copyrght 7 Mzuho-DL Fnancal Technology Co., Ltd. All rghts reserved. 3 Copyrght 7 Mzuho-DL Fnancal Technology Co., Ltd. All rghts

More information

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory 10.3 Fubini 1 Introduction [1],, [2],, [3],, [4],, [5],, [6],, [7],, [8],, [1, 2, 3] 1980

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory 10.3 Fubini 1 Introduction [1],, [2],, [3],, [4],, [5],, [6],, [7],, [8],, [1, 2, 3] 1980 % 100% 1 Introduction 2 (100%) 2.1 2.2 2.3 3 (100%) 3.1 3.2 σ- 4 (100%) 4.1 4.2 5 (100%) 5.1 5.2 5.3 6 (100%) 7 (40%) 8 Fubini (90%) 2006.11.20 1 8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory

More information

1.1 ft t 2 ft = t 2 ft+ t = t+ t 2 1.1 d t 2 t + t 2 t 2 = lim t 0 t = lim t 0 = lim t 0 t 2 + 2t t + t 2 t 2 t + t 2 t 2t t + t 2 t 2t + t = lim t 0

1.1 ft t 2 ft = t 2 ft+ t = t+ t 2 1.1 d t 2 t + t 2 t 2 = lim t 0 t = lim t 0 = lim t 0 t 2 + 2t t + t 2 t 2 t + t 2 t 2t t + t 2 t 2t + t = lim t 0 A c 2008 by Kuniaki Nakamitsu 1 1.1 t 2 sin t, cos t t ft t t vt t xt t + t xt + t xt + t xt t vt = xt + t xt t t t vt xt + t xt vt = lim t 0 t lim t 0 t 0 vt = dxt ft dft dft ft + t ft = lim t 0 t 1.1

More information

46 Y 5.1.1 Y Y Y 3.1 R Y Figures 5-1 5-3 3.2mm Nylon Glass Y (X > X ) X Y X Figure 5-1 X min Y Y d Figure 5-3 X =X min Y X =10 Y Y Y 5.1.2 Y Figure 5-

46 Y 5.1.1 Y Y Y 3.1 R Y Figures 5-1 5-3 3.2mm Nylon Glass Y (X > X ) X Y X Figure 5-1 X min Y Y d Figure 5-3 X =X min Y X =10 Y Y Y 5.1.2 Y Figure 5- 45 5 5.1 Y 3.2 Eq. (3) 1 R [s -1 ] ideal [s -1 ] Y [-] Y [-] ideal * [-] S [-] 3 R * ( ω S ) = ω Y = ω 3-1a ideal ideal X X R X R (X > X ) ideal * X S Eq. (3-1a) ( X X ) = Y ( X ) R > > θ ω ideal X θ =

More information

B's Recorderマニュアル_B's Recorderマニュアル

B's Recorderマニュアル_B's Recorderマニュアル 5 Part 6 - 8 9 - 0 5 A C B AB A B A B C 7-6 - 8 9-5 0 5 7 A D B C E F A B C D F E 6 9 8 0 Part - - 5 5 7 6 9-7 6 8 0 5 5-6 7 9 8 5-5 50 5 5 5 -6 5 55 5 57-7 56 59 8 7 6 58 0 8 9 6 6 7 6 5 60 7 5 6 6-8

More information

B's Recorderマニュアル

B's Recorderマニュアル 2 3 4 5 Part 1 6 1-1 8 9 1-2 10 11 12 13 A B C A C B AB A B 14 15 17 1-4 2 1 16 1-3 18 19 1-5 2 1 20 21 22 23 24 25 A B C D E F A B C D E F 26 27 28 29 30 31 Part 2 32 2-1 2-2 1 2 34 35 5 37 4 3 36 6 2-3

More information

Microsoft Word - 研究デザインと統計学.doc

Microsoft Word - 研究デザインと統計学.doc Study design and the statistical basics Originality Accuracy Objectivity Verifiability Readability perfect Interdisciplinary Sciences Health Science 2014.12.25 2 1. 7 2. 7 3. Bias8 4. random sampling8

More information

6 12 10661 93100 227213202 222208197 85kg cm 20 64.521 106856142 2 1 4 3 9767 100 35 cm 7747 208198 90kg 23 5828 10661 93100 cm 227213202 10639 61 64.521 85kg 78kg 70kg 61 100 197204.5 cm 15 61

More information

<82D282A982C1746F95F18D908F57967B95B E696E6464>

<82D282A982C1746F95F18D908F57967B95B E696E6464> 1 2 (90cm 70cm 2015) 3 (68cm 28cm 30cm 12kg 2015) (77.5 109.5cm 2015) 4 (22cm 50cm 50cm 4.6kg 2015) (45cm 62.5cm 2015) (47.4cm 62.5cm 2014) 5 (28.5cm 23.5cm) (45cm 62cm 2015) (97cm 107cm 2015) 6 7 8 9

More information

180 140 22

180 140 22 21 180 140 22 23 25 50 1 3 350 140 500cm 600 140 24 25 26 27 28 29 30 31 1/12 8.3 1/15 6.7 10 1/8 12.5 1/20 140 90 75 150 60 150 10 30 15 35 2,000 30 32 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 % 100 50 33.3

More information

受賞講演要旨2012cs3

受賞講演要旨2012cs3 アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート α β α α α α α

More information

untitled

untitled Mail de ECO Standard ...1 EXCEL...2...3 EXCEL...4...11...13...15...17...18 EXCEL OK 1 EXCEL EXCEL MailDeEco No 1 15 2 15 3 15 PDF 4 50 PDF PDF 2 EXCEL OK 3 4 No 1 CSV CSV 2 CSV 3 4 5 CSV CSV CSV 5 ( )

More information

 

  10 44 1.2 5 4 5 3 6-1 - 1 2 3 4 5 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 9 10 TEL TEL 1 2 TEL FAX TEL FAX TEL FAX 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 1 2 3 4 5 6 ( ) ( ) 2

More information

抵 抗 値 [Ω] 04.0 累 積 数 頻 度 数 頻 度 分 布 表 市 販 の 00Ωの 抵 抗 の 抵 抗 値 の 分 布 00 00 300 03.5 03.0 0.5 0.0 正 正 正 0.5 0.0 正 正 正 正 正 正 00.5 正 正 正 正 正 正 正 正 00.0 99.5

抵 抗 値 [Ω] 04.0 累 積 数 頻 度 数 頻 度 分 布 表 市 販 の 00Ωの 抵 抗 の 抵 抗 値 の 分 布 00 00 300 03.5 03.0 0.5 0.0 正 正 正 0.5 0.0 正 正 正 正 正 正 00.5 正 正 正 正 正 正 正 正 00.0 99.5 機 械 システム 応 用 実 験 ~データの 統 計 的 処 理 とデータの 考 察 について~ I. データの 統 計 的 処 理 まず データの 統 計 的 処 理 について 学 ぶ ある 物 理 量 を 測 定 する 場 合 測 定 値 の 誤 差 を 考 慮 する 必 要 がある 測 定 値 の 誤 差 には 間 違 い(mistake)や 系 統 的 誤 差 (systematic error)などがあるが

More information

2016 年 度 情 報 リテラシー 三 科 目 合 計 の 算 出 関 数 を 用 いて 各 教 科 の 平 均 点 と 最 高 点 を 求 めることにする この2つの 計 算 は [ホーム]タブのコマ ンドにも 用 意 されているが 今 回 は 関 数 として 作 成 する まず 表 に 三 科

2016 年 度 情 報 リテラシー 三 科 目 合 計 の 算 出 関 数 を 用 いて 各 教 科 の 平 均 点 と 最 高 点 を 求 めることにする この2つの 計 算 は [ホーム]タブのコマ ンドにも 用 意 されているが 今 回 は 関 数 として 作 成 する まず 表 に 三 科 ( 第 9 回 )2016/06/13 Excel 関 数 の 基 礎 この 回 では Excel での 数 値 処 理 に 役 立 つ 関 数 について 解 説 する 1. 課 題 の 確 認 成 績 の 集 計 について 関 数 を 利 用 して 行 う 利 用 するソフトウェア:Microsoft Excel 1.1. 演 習 の 内 容 関 数 は 表 計 算 ソフトで 数 値 処 理 を

More information

緑化計画作成の手引き 26年4月版

緑化計画作成の手引き  26年4月版 http://www.city.shibuya.tokyo.jp/env/en_eventact/midori_ryokka.html 10 11 12 13 14 15 16 17 18 19 P10 P10 1 P12 2635 Fax (1) 47 03-5388-3554 http://www2.kankyo.metro.tokyo.jp/sizen/sinseisyo/e2/tebiki.htm

More information

1 180m g 10m/s 2 2 6 1 3 v 0 (t=0) z max t max t z = z max 1 2 g(t t max) 2 (6) 1.3 2 3 3 r = (x, y, z) e x, e y, e z r = xe x + ye y + ze z. (7) v =

1 180m g 10m/s 2 2 6 1 3 v 0 (t=0) z max t max t z = z max 1 2 g(t t max) 2 (6) 1.3 2 3 3 r = (x, y, z) e x, e y, e z r = xe x + ye y + ze z. (7) v = 1. 2. 3 3. 4. 5. 6. 7. 8. 9. I http://risu.lowtem.hokudai.ac.jp/ hidekazu/class.html 1 1.1 1 a = g, (1) v = g t + v 0, (2) z = 1 2 g t2 + v 0 t + z 0. (3) 1.2 v-t. z-t. z 1 z 0 = dz = v, t1 dv v(t), v

More information

http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n

http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 1 1 1.1 ɛ-n 1 ɛ-n lim n a n = α n a n α 2 lim a n = 1 n a k n n k=1 1.1.7 ɛ-n 1.1.1 a n α a n n α lim n a n = α ɛ N(ɛ) n > N(ɛ) a n α < ɛ

More information

0.45m1.00m 1.00m 1.00m 0.33m 0.33m 0.33m 0.45m 1.00m 2

0.45m1.00m 1.00m 1.00m 0.33m 0.33m 0.33m 0.45m 1.00m 2 24 11 10 24 12 10 30 1 0.45m1.00m 1.00m 1.00m 0.33m 0.33m 0.33m 0.45m 1.00m 2 23% 29% 71% 67% 6% 4% n=1525 n=1137 6% +6% -4% -2% 21% 30% 5% 35% 6% 6% 11% 40% 37% 36 172 166 371 213 226 177 54 382 704 216

More information

10 117 5 1 121841 4 15 12 7 27 12 6 31856 8 21 1983-2 - 321899 12 21656 2 45 9 2 131816 4 91812 11 20 1887 461971 11 3 2 161703 11 13 98 3 16201700-3 - 2 35 6 7 8 9 12 13 12 481973 12 2 571982 161703 11

More information

58 5 5.2 1933 (Proctor) (JIS A 1210) ( 2.5 kg 4.5 kg ) (2.5 kg 30 cm 4.5 kg 45 cm) 5.3 5 5.1 ρ d w ρ d max w opt 5.1

58 5 5.2 1933 (Proctor) (JIS A 1210) ( 2.5 kg 4.5 kg ) (2.5 kg 30 cm 4.5 kg 45 cm) 5.3 5 5.1 ρ d w ρ d max w opt 5.1 57 5 5.1 2 2.1 ( ) ( ) 58 5 5.2 1933 (Proctor) (JIS A 1210) ( 2.5 kg 4.5 kg ) (2.5 kg 30 cm 4.5 kg 45 cm) 5.3 5 5.1 ρ d w ρ d max w opt 5.1 5.3 59 5.1 v a = 0 % S r = 100 % 5.3 5.1 5 5.1 5.4 2 2 5.2 3

More information

統計Ⅰ 第1回 序説~確率

統計Ⅰ 第1回 序説~確率 授 業 担 当 : 徳 永 伸 一 東 京 医 科 歯 科 大 学 教 養 部 数 学 講 座 前 回 ( 第 2 回 )の 授 業 の 概 要 : 第 1 回 ( 教 科 書 第 9 章 順 列 組 合 せと 確 率 ほぼ 全 部 )の 復 習 教 科 書 第 10 章 記 述 統 計 S. TOKUNAGA 2 Overview 確 率 (9 章 ) 記 述 統 計 (10 章 ) 情 報 の

More information

43 IME Microsoft Office PowerPoint Microsoft Office Word Microsoft Office Excel

43 IME Microsoft Office PowerPoint Microsoft Office Word Microsoft Office Excel \n Title 情 報 教 育 の 受 講 生 における 入 力 の 調 査 Author(s) 五 月 女, 仁 子 ; Soutome, Hiroko Citation 商 経 論 叢, 48(2): 43-53 Date 2012-12-25 Type Departmental Bulletin Paper Rights publisher KANAGAWA University Repository

More information

2 36 41 41 42 44 44 1 2 16 17 18 19 20 25 26 27 28 29 4 4.12 32 4.2 4.2.1 36 4.2.2 41 4.2.3 41 4.2.4 42 4.3 4.3.1 44 4.3.2 44 31 1 32 33 < 2 x 1 x x 2 < x 1 x1x 2 x1x 2 34 36 4.2 (1) (4) (1)

More information

calibT1.dvi

calibT1.dvi 1 2 flux( ) flux 2.1 flux Flux( flux ) Flux [erg/sec/cm 2 ] erg/sec/cm 2 /Å erg/sec/cm 2 /Hz 1 Flux -2.5 Vega Vega ( Vega +0.03 ) AB cgs F ν [erg/cm 2 /s/hz] m(ab) = 2.5 logf ν 48.6 V-band 2.2 Flux Suprime-Cam

More information

第6回ストックリーグ入賞レポート 敢闘賞・大学 (PDF)

第6回ストックリーグ入賞レポート 敢闘賞・大学 (PDF) ID 3 3 2 2 2 1 1 2 3 2 3 4 5-1 - - 2 - 1-3 - 1 (1) (2) (3) (4) (1) 2 (2) (3) - 4 - (4) (1) (2) 52 52 CAPM r r = α + β ( r r ) + ε t ft Mt ft t r t r Mt r ft ε t β β σ σ M = M σ M σ M - 5 - r t r r Mt ft

More information

<4D6963726F736F667420506F776572506F696E74202D2081798E9197BF8253817A83588389834383682E707074205B8CDD8AB78382815B83685D>

<4D6963726F736F667420506F776572506F696E74202D2081798E9197BF8253817A83588389834383682E707074205B8CDD8AB78382815B83685D> 導 入 1 導 入 問 題! 次 の 主 張 のどこがおかしい? 学 歴 の 高 さ と 大 学 入 試 の 数 学 成 績 は 比 例 する どうおかしいか どう 直 せばいいか 2 導 入 おかしかったところ ( 主 に) 学 歴 の 高 さ が 数 値 化 されていない これは 何 らかの 方 法 で 解 決 可 能 Y=aXの 関 係 が 成 り 立 つか? X=0でどうか? 全 部 の 点

More information

第86回日本感染症学会総会学術集会後抄録(II)

第86回日本感染症学会総会学術集会後抄録(II) χ μ μ μ μ β β μ μ μ μ β μ μ μ β β β α β β β λ Ι β μ μ β Δ Δ Δ Δ Δ μ μ α φ φ φ α γ φ φ γ φ φ γ γδ φ γδ γ φ φ φ φ φ φ φ φ φ φ φ φ φ α γ γ γ α α α α α γ γ γ γ γ γ γ α γ α γ γ μ μ κ κ α α α β α

More information

31 gh gw

31 gh gw 30 31 gh gw 32 33 1406 1421 640 0 (mm) (mm) MAX1513 MIN349 MIN280 MAX900 gh gw 34 gh gh gw gw gh gh gw gw gh gh gw gw 35 175 176 177 178 179 180 181 195 196 197 198 202 203 2 1 L L L2 L2 L2 L 2 2 1 L L

More information

34 2 2 h = h/2π 3 V (x) E 4 2 1 ψ = sin kxk = 2π/λ λ = h/p p = h/λ = kh/2π = k h 5 2 ψ = e ax2 ガウス 型 関 数 1.2 1 関 数 値 0.8 0.6 0.4 0.2 0 15 10 5 0 5 10

34 2 2 h = h/2π 3 V (x) E 4 2 1 ψ = sin kxk = 2π/λ λ = h/p p = h/λ = kh/2π = k h 5 2 ψ = e ax2 ガウス 型 関 数 1.2 1 関 数 値 0.8 0.6 0.4 0.2 0 15 10 5 0 5 10 33 2 2.1 2.1.1 x 1 T x T 0 F = ma T ψ) 1 x ψ(x) 2.1.2 1 1 h2 d 2 ψ(x) + V (x)ψ(x) = Eψ(x) (2.1) 2m dx 2 1 34 2 2 h = h/2π 3 V (x) E 4 2 1 ψ = sin kxk = 2π/λ λ = h/p p = h/λ = kh/2π = k h 5 2 ψ = e ax2

More information

168 13 Maxwell ( H ds = C S rot H = j + D j + D ) ds (13.5) (13.6) Maxwell Ampère-Maxwell (3) Gauss S B 0 B ds = 0 (13.7) S div B = 0 (13.8) (4) Farad

168 13 Maxwell ( H ds = C S rot H = j + D j + D ) ds (13.5) (13.6) Maxwell Ampère-Maxwell (3) Gauss S B 0 B ds = 0 (13.7) S div B = 0 (13.8) (4) Farad 13 Maxwell Maxwell Ampère Maxwell 13.1 Maxwell Maxwell E D H B ε 0 µ 0 (1) Gauss D = ε 0 E (13.1) B = µ 0 H. (13.2) S D = εe S S D ds = ρ(r)dr (13.3) S V div D = ρ (13.4) ρ S V Coulomb (2) Ampère C H =

More information

untitled

untitled 005 n X i i 1 5 i 1 5 i 1 X i 3 X i 40 n i1 i i n X i 40 1 005 95 005 testing statistical hypothesis - A B A B 5 ()()() ()()() 3 005 ( ) null hypothesis 5 pp0.01p1 4 005 (1) 1 4 6 () N i 1 ( X i X ) N

More information

5 36 5................................................... 36 5................................................... 36 5.3..............................

5 36 5................................................... 36 5................................................... 36 5.3.............................. 9 8 3............................................. 3.......................................... 4.3............................................ 4 5 3 6 3..................................................

More information

,..,,.,,.,.,..,,.,,..,,,. 2

,..,,.,,.,.,..,,.,,..,,,. 2 A.A. (1906) (1907). 2008.7.4 1.,.,.,,.,,,.,..,,,.,,.,, R.J.,.,.,,,..,.,. 1 ,..,,.,,.,.,..,,.,,..,,,. 2 1, 2, 2., 1,,,.,, 2, n, n 2 (, n 2 0 ).,,.,, n ( 2, ), 2 n.,,,,.,,,,..,,. 3 x 1, x 2,..., x n,...,,

More information

(interval estimation) 3 (confidence coefficient) µ σ/sqrt(n) 4 P ( (X - µ) / (σ sqrt N < a) = α a α X α µ a σ sqrt N X µ a σ sqrt N 2

(interval estimation) 3 (confidence coefficient) µ σ/sqrt(n) 4 P ( (X - µ) / (σ sqrt N < a) = α a α X α µ a σ sqrt N X µ a σ sqrt N 2 7 2 1 (interval estimation) 3 (confidence coefficient) µ σ/sqrt(n) 4 P ( (X - µ) / (σ sqrt N < a) = α a α X α µ a σ sqrt N X µ a σ sqrt N 2 (confidence interval) 5 X a σ sqrt N µ X a σ sqrt N - 6 P ( X

More information

…K…E…X„^…x…C…W…A…fi…l…b…g…‘†[…N‡Ì“‚¢−w‘K‡Ì‹ê™v’«‡É‡Â‡¢‡Ä

…K…E…X„^…x…C…W…A…fi…l…b…g…‘†[…N‡Ì“‚¢−w‘K‡Ì‹ê™v’«‡É‡Â‡¢‡Ä 2009 8 26 1 2 3 ARMA 4 BN 5 BN 6 (Ω, F, µ) Ω: F Ω σ 1 Ω, ϕ F 2 A, B F = A B, A B, A\B F F µ F 1 µ(ϕ) = 0 2 A F = µ(a) 0 3 A, B F, A B = ϕ = µ(a B) = µ(a) + µ(b) µ(ω) = 1 X : µ X : X x 1,, x n X (Ω) x 1,,

More information

7 27 7.1........................................ 27 7.2.......................................... 28 1 ( a 3 = 3 = 3 a a > 0(a a a a < 0(a a a -1 1 6

7 27 7.1........................................ 27 7.2.......................................... 28 1 ( a 3 = 3 = 3 a a > 0(a a a a < 0(a a a -1 1 6 26 11 5 1 ( 2 2 2 3 5 3.1...................................... 5 3.2....................................... 5 3.3....................................... 6 3.4....................................... 7

More information

untitled

untitled B2 3 2005 (10:30 12:00) 201 2005/10/04 10/04 10/11 9, 15 10/18 10/25 11/01 17 20 11/08 11/15 22 11/22 11/29 ( ) 12/06 12/13 L p L p Hölder 12/20 1/10 1/17 ( ) URL: http://www.math.tohoku.ac.jp/ hattori/hattori.htm

More information

aisatu.pdf

aisatu.pdf 1 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71

More information

ohp.mgp

ohp.mgp 2012/10/09 A/B -- Excel -- !! B video Note-PC Network skype Login Windows Update Web CST Portal Excel Excel ( / ( / /? ( ( [ / /etc..], = ( Excel : (Excel : ( $ [ 1] Excel [ 2] [ 3] Lookup [ 1] [ 2] Excel..

More information