Hsiao (2003, 6 ) Maddala, Li, Trost and Joutz (1997) Hsiao and Pesaran (2004) 4.2 y it = γy it 1 + x itβ + ε it i = 1, 2,..., N t = 1, 2,...T (

Size: px
Start display at page:

Download "Hsiao (2003, 6 ) Maddala, Li, Trost and Joutz (1997) Hsiao and Pesaran (2004) 4.2 y it = γy it 1 + x itβ + ε it i = 1, 2,..., N t = 1, 2,...T ("

Transcription

1 Balestra and Nerlove (1966) (GMM) Arellano and Bond (1991) Arellano (2003) N T N T Smith and Fuerter (2004) 1 (the random coefficient model) Singer and Willett ( ) 2004)

2 Hsiao (2003, 6 ) Maddala, Li, Trost and Joutz (1997) Hsiao and Pesaran (2004) 4.2 y it = γy it 1 + x itβ + ε it i = 1, 2,..., N t = 1, 2,...T (1) γ x it K β K ε it ε it = µ i + u it (2) µ i iidn(0, σµ) 2, u it iidn(0, σu) 2 ε it N T 2 u it Maddala (2001) y it = x itβ + µ i + w it (3) w it = ρw it 1 + u it ρ < 1 (4) y it = γy it 1 + x itβ + µ i + u it (5) 2

3 Lillard and Willis (1978) AR(1) Lillard and Weiss (1979) Baltagi and Li (1991) Wansbeek (1992) (4) the Paris-Winsten (PW) transformation Maddala(2001) Nerlove(( ) (3) LSDV ŵ it 4) OLS ˆρ 3) y it = x itβ + µ i + u it (6) y it = y it ˆρy it 1 x it = x it ˆρx it 1 µ i = µ i (1 ˆρ) LSDV β µ i Bhargava, Franizini and Narendranathan (1982) Durbin-Watson Statistic w it = ρw it 1 + u it H 0 : ρ = 0 H 1 : ρ < 1 N T i=1 t=2 d = (ŵ wit ŵ wit 1 ) 2 N T i=1 t=1ŵ2 wit (7) û wit AR(1) AR(n) Baltagi and Li (1995) AR(1) AR(1) AR(1)

4 AR(1) MA(1) Balestra and Nerlove(1966) OLS Maddala (1971a, 1971b) Nickell (1981) (GMM) Maddala (2001) 4 Sevestre and Trognon (1996, pp ) Maddala (1971a) λ λ class β = 0 γ(λ) p lim ˆγ(0) < γ < p lim ˆγ(λ) < p lim ˆγ(1) < p within GLS poolingols lim between ˆγ( ) (8) GLS 3 Baltagi and Li (1995) Baltagi (2001,pp.90-95) (survival analysis)

5 Ridder and Wansbeek (1990, pp ) Trognon(1978) AR(1) x it = δx it 1 + w it w it N(0, σ 2 w) y i0 T γ Anderson and Hsiao (1981,1982) 4.3 Anderson and Hsiao (1981,1982) w it = γw it 1 + ρ z i + β x it + µ i + u it i = 1, 2,..N. t = 1, 2,...T (9) y it = w it + η i (10) µ i = (1 γ)η i E(η i ) = 0 V ar(η i ) = σ 2 η = σ 2 µ/(1 γ) 2 (11) z i 1 y i0 (µ i +ρ z i )/(1 γ) + β j=0 x it jγ j µ i y i0 y i0 µ i y i0 y i1 y i1... µ i 2 y i0 µ i u it y i0 = ȳ 0 + ε i ȳ 0 0 ε i iid ( 2a y i0 µ i ( 2b)y i0 µ i cov(y i0, µ i ) = ϕσy 2 0 y it [ϕε i /(1 γ)] = lim t E[y it ρ z i /(1 γ) β t 1 j=0 x it jγ j ε i ] 3 w i0 y it = w it + η i µ i = (1 γ)η i y it µ i y i0 η i + ρ z i /(1 γ) + β t 1 j=0 x it jγ j

6 w i0 3 w it 4 ( 4a)w i0 θ w σu/(1 2 γ 2 ) ( 4b)w i0 θ w σw 2 0 ( 4c)w i0 θ i0 σu/(1 2 γ 2 ) ( 4d)w i0 θ i0 σw0 2 Anderson and Hsiao (1981,1982) 8 5 L(γ, ρ, β, γ, η, σ 2 u, σ 2 w, σ 2 µ) = (2π) NT/2 v N/2 exp{ 1 2σ 2 (y it γy it 1 ρ z i β x it ) 2 } i t (12) v N T σ 2 µ = 0 Anderson and Hsiao (1981) (9) 10 z i µ i y it y it 1 = (x it x it 1 ) β + γ(y it 1 y it 2 ) + (u it u it 1 ) (13) u it 6 β γ 7 (y it 2 y it 3 ) 5 Anderson and Hsiao (1982) Hisao ( ) 6 y it 1 u it Hsiao (2003, pp.85-86)

7 ( γ iv β iv ) [ ( N T (y i,t 1 y i,t 2 )(y it 2 y it 3 ) (y it 2 y it 3 )(x it x it 1 ) ) = (x it x it 1 )(y it 2 y it 3 ) (x it x it 1 )(x it x it 1 ) i=1t=3 [ ( N T i=1t=3 (14) ) ] y it 2 y it 3 (y it y it 1 ) x it x it 1 )] 1 y it 2 ( γ iv β iv ) [ ( N T y it 2 (y i,t 1 y i,t 2 ) y it 2 (x it x it 1 ) ) = (x it x it 1 )y it 2 (x it x it 1 )(x it x it 1 ) i=1t=2 [ ( ) ] N T y it 2 (y it y it 1 ) i=1t=2 x it x it 1 )] 1 (15) (y i,t 1 y i,t 2 ) (y it 2 y it 3 ) y it ˆβ ˆγ 9 ρ ȳ it ˆγȳ it 1 ˆβ x it = ρ z i + µ i + ū it i = 1,..N (16) ȳ i = T t=1 y it/t, x i = T t=1 x it/t, ū i = T t=1 u it/t 3 σ 2 u σ2 µ N T σu 2 i=1 t=2 = it y it 1 ) ˆγ(y it 1 y it 2 ) ˆβ (x it x it 1 )] 2 2N(T 1) (17) N σµ 2 i=1 = i ˆγȳ i, 1 ˆρ z i ˆβ x i ) 1 N T ˆσ2 u (18) N T γ β σ 2 u ρ σµ 2 N N T Anderson and Hsiao (1982) N T T N 8 8 Arellano (1989) y it 2 y it 3 (y it 2 y it 3 )

8 γ 3 T N ρ N T 3 T N ρ N T γ ρ γ N T ( 3) T N T N Hsiao, Pesaran and Tahmiscioglu (2002) Fujiki, Hsiao and Shen (2002) Chamberlain (1982,1984) (Minimum Distance Estimation: MDE) 9 2 (β, γ) min[ N u i=1 i Ω 1 u i ] (19) Ω u i u i = [ y i1 β x i1 γ y i0, y i2 β x i2 γ y i1,...] N 4.4 Arellano and Bond (1991) Ahn and Schmidt (1995) 2 y 10 E[y is, (u it u i,t 1 )] = 0, s = 0, 1,...t 2, t = 2,...T (20) Arellano and Bond (1991) GMM) 1 n i=1 n y is[(y it y i,t 1 ) (y i,t 1 y i,t 2 ) γ (x it x i,t 1 ) β] = 0 (21) s = 0,..., t 2, t = 2,..., T 9 MDE Chamberlain (1982,1984) Lee(2002, 3 ) 10 Holtz-Eakin(1988) Holtz-Eakin, Newey and Rosen(1988)

9 (y i1, y i2, y i3,...y it 2 ) 11 [y i1 ] W i = 0 [y i1, y i2 ] (22) [y i1,...y it 2 ] 20) E(W i u i ) = 0 (23) 1 (y it y it 1 ) = (y it 1 y it 2 ) γ + (x it x it 1 ) β + (u it u it 1 ) (24) y it = y it 1γ+ x itβ+ u it i = 1, 2...N W i Arellano and Bond (1991) (GMM) (24) W y it = W y it 1γ + W x itβ + W u it (25) γ β ˆγ GMM = [( y it 1 ) W ˆβ GMM = [( x it 1 ) W 1 ˆV N W ( y it 1 )] 1 [( y it 1 ) 1 W ˆV N W ( y it )] (26) 1 ˆV N W ( x it 1 )] 1 [( x it 1 ) 1 W ˆV N W ( y it )] (27) V N = N i=1 W i ( u i)( u i ) W i 12 x it E(x it u is ) = 0, t, s = 1, 2,..., T x it µ i 24) x it x it (predetermined) E(x it u is ) 0 for s < t E(x it u is ) = 0 for s t (x i1, x i2,..., x is 1 ) W i 11 Baltagi (2001, p Arellano and Bond (1991, p.279) 25) one-step GMM two-step iid

10 Arellano and Bond (1991) GMM GMM Arellano and Bond (1991) j 13 1 r j = T 3 j T t=4+j r tj (28) r tj = E( u it u it j ) H 0 : r j = 0 m j = ˆr j SE(ˆr j ) (29) ˆr j û it ˆr tj = N 1 N i=1 û it û it j Arellano and Bond (1991) Sargan (1958) s = û W [ N i=1 W i ( û i )( û i ) W i ] 1 W ( û) χ 2 p k 1 (30) p W û 25) Arellano and Bond (1991) Ahn and Schmidt(1995) y y (u it u it 1 ) () E(y is u it ) = 0 t = 2,...T, s = 0, 1,...t 2 (31) E(u it u it ) = 0 t = 2,...T 1 (32) T (T 1)/2 + (T 2) (32) γ 1 σµ/σ 2 u 2 Ahn and Schmidt(1995) (31)(32) 1 i t cov(u it, y i0 ) cov(u it, y i0 ) = 0 13 Arellano (2003, pp )

11 i t cov(u it, µ i ) cov(u it, µ i ) = 0 3 i t s cov(u it, u is ) cov(u it, u is ) = GMM Chamberlain (1982,1984) (Minimum Distance Estomator) Blundell and Bond (1998) GMM GMM Anderson and Hsiao (1981,1982) GMM GMM Arellano and Bond GMM γ 1 µ i Blundell and Bond (1998) T=3 E(y i1 u i3 ) = 0 γ GMM y i2 = πy i1 + µ i + u i2 i = 1, 2,...N (33) γ 1 µ i π 0 y i1 y i2 E(y i1 µ i ) > 0 σ 2 µ = var(µ i ) σ 2 u = var(u it ) π k p lim ˆπ = (γ 1) (σµ/σ 2 u) 2 + k k = (1 γ) (1 + γ) (34) Blundell and Bond (1998) GMM Nelson amd Startz (1990) Staiger and Stock (1997) Ahn and Schumidt (1995) T-3 E(u it y it 1 ) = 0 t = 4, 5,...T (35) y i2 E(u i3 y i2 ) = 0 (36) y i y i0 y i0 t

12 y i1 = µ i 1 γ + u i1 (37) t = 2 y it (36) E[(µ i + u i3 )(u i2 + (γ 1)u i1 )] = 0 (38) E(u i1 µ i ) = E(u i1 u i3 ) = 0 i = 1, 2,...N (39) y i0 u i1 µ i /(1 γ) Blundell and Bond (1998) γ 1 σ µ/σ 2 u 2 (35)(36) GMM GMM Z + i GMM Z i y i Z + i = 0 0 y i (40) y it 1 Z i (T-2) m GMM y i Z i = 0 y i1 y i (41) y i1... y it 2 GMM σµ/σ 2 u 2 = 1, T = 4 GMM GMM γ = γ = γ = γ GMM GMM γ 1 σµ/σ 2 u 2

13 (GMM) GMM (OLS) GLS) (IV) (MDE) GMM GMM GMM Blundell and Bond (1998) GMM empirical likelihood empirical likelihood Owen (2001) Mittelhammer, Judge and Miller (2000) 16 STATA Johnston and DiNardo (

14 GMM Arellano and Bond (1991) N=100 T= GMM 2 GMM (IV) 3 two-step GMM Ziliak (1997) Ziliak (1997) N=532 T=8 iid GMM Keane and Runkle (1992) forward filter 2SLS(FF) 18 Ahn and Schmidt (1999) Crepon, Kramarz and Trognon (1997) Alonso-Borrego and Arellano (1999) N=100 T=4, GMM Alvarez and Arellano (2003) one-step GMM (LIML) N T 17 seed STATA seed Hayashi and Sims (1983) forward filtering

15 T/N 1/T 1/N 1/(2N-T) T GMM LIML T LIML GMM Blundell and Bond (1998) GMM N=100,200,500 T=4 GMM Binder, Hsiao, and Pesaran (2000) Hsiao, Pesaran and Tahmiscioglu (2002) Hsiao (2003) GMM GMM T=5 N=50, % GMM 15-20% GMM MDE GMM MDE GMM Hahn, Hausman and Kuersteiner (2002) 3 y n y n 3 (long differences;ld) Wansbeek and Bekker (1996) GMM Ahn and Schmidt (1995) Alvarez and Arellano (2003) T N T/N N/T N T

16 Frankel and Rose (1996) Pedroni(2001) Sala-i-Martin (1996) Nerlove (2000) Quah (1996) 2 Nagahata, Saita, Sekine and Tachibana (2004) spurious Levin-Lin (LL) test(1992,1993) Im-Pesaran-Shin (IPS) test(2003) Maddala-Wu (MW) test (1999) y it = γy it 1 + u it i = 1, 2,...N (42) t H 0 : γ 1 = 1 vs H 1 : γ 1 < 1 (43) Levin-Lin (LL) test H 0 : γ 1 = γ 2 =... = γ N = γ = 1 vs H 1 : γ 1 = γ 2 =... = γ N = γ < 1 (44)

17 O Connell(1998) Levin-Lin test Im-Pesaran-Shin (IPS) test Levin-Lin test H 0 : γ i = 1 for all i vs H 1 : γ i < 1 at least one i Maddala (2001, p.554) N Levin-Lin test Augmented Dickey-Fuller test N t M σ 2 t t M σ 2 /N Maddala-Wu test N Ronald A. Fisher (1973a) P i i p λ = 2 N i=1 log e P i 2N χ N P λ test Maddala and Wu (1999) Fisher Choi(1999) Fisher Fisher 4.7 STATA Wooldridge (2003) ( msu.edu/ ec/wooldridge/book2.htm) WAGEPAN.DTA Vella and Verbeek (1998) Wooldridge (2003) ln wage it = α + γ ln wage it 1 + β exp er it + δ exp er 2 it + ζhours it + ηhours it 1 + θunion i + κeduc i + λmarried i + νpoorhlth i + µ i + ν t + u it

18 ln wage = exp er = hours = union = 1 educ = married = 1 poorhlth = 1 ν t = STATA /**Dynamic Panel **/ /*Pooled OLS*/ reg lwage lwage 1 d81 d82 d83 d84 d85 d86 d87 exper expersq hours hours 1 union educ married poorhlth /*LSDV*/ xtreg lwage lwage 1 d81 d82 d83 d84 d85 d86 d87 exper expersq hours hours 1 union educ married poorhlth, fe est store fixed xtreg lwage lwage 1 d81 d82 d83 d84 d85 d86 d87 exper expersq hours hours 1 union educ married poorhlth, re xttest0 est store random hausman fixed random /*Anderson-Hsiao IV Estimation*/ xtivreg lwage lwage 1 d81 d82 d83 d84 d85 d86 exper expersq ( hours hours 1 = union educ married poorhlth ), re ec2sls /*Anderson-Hsiao Maximum Likelihood Estimation*/ xtreg lwage lwage 1 d81 d82 d83 d84 d85 d86 d87 exper expersq hours hours 1 union educ married poorhlth, mle /*Arellano-Bond GMM Estimation*/ xtabond lwage hours hours 1 d81 d82 d83 d84 d85 d86 d87, lags(1) inst(exper expersq union educ married poorhlth) artests(2) xtabond lwage hours hours 1 d81 d82 d83 d84 d85 d86 d87, lags(1) inst(exper expersq union educ married poorhlth) artests(2) robust

19 OLS γ F E(0.092) < MLE(0.17) < RE(0.49) = OLS(0.49) (IV) one-step GMM γ GMM IV GMM(0.31) < IV (0.57)

20

21 Dependent Variable: lwage Estimated Coefficient Pool OLS t-statistics Estimated Coefficient t-statistics Estimated Coefficient z-statistics Estimated Coefficient z-statistics lwage_ d d d d d d d (dropped) exper expersq hours hours_ union educ (dropped) married poorhlth _cons Fixed Random MLE Diagnostic Test Number of observation Number of groups (ari) R-sq: within between overall Log Likelihood F test that all u_i=0: sigma_u sigma_e rho Breusch and Pagan Lagrangian multiplier test for random effects: Hausman specification test Likelihood-ratio test of sigma_u = 0 for MLE F(544, 3757) = 6.19 Prob>F = chi2(1) = Prob > chi2 = chi2(13) = chibar2(01) = Prob>chibar2 =

22 Dependent Variable: lwage Estimated Coefficient z-statistics hours hours_ lwage_ d d d d d d exper expersq _cons Diagnostic Test Number of observation Number of groups R-sq: Wald test sigma_u sigma_e rho within between overall IV chi2(11) = Prob>chi2 = hours hours_1 lwage_1 d81 d82 d83 d84 d85 d86 exper Baltagi(2001) the error component two-stage least square (EC2SLS)

23 Dependent Variable: lwage one-step results Estimated Coefficient Robust z-statistics lwage_ hours hours_ d d d d d _cons Diagnostic Test Number of observation Number of groups Sargan test Wald test Arellano-Bond test for residual AR(1) Arellano-Bond test for residual AR(2) GMM chi2(26) = Prob>chi2 = chi2(8) = z = Prob>z = z = 2.20 Prob>z =

2004 2 µ i ν it IN(0, σ 2 ) 1 i ȳ i = β x i + µ i + ν i (2) 12 y it ȳ i = β(x it x i ) + (ν it ν i ) (3) 3 β 1 µ i µ i = ȳ i β x i (4) (least square d

2004 2 µ i ν it IN(0, σ 2 ) 1 i ȳ i = β x i + µ i + ν i (2) 12 y it ȳ i = β(x it x i ) + (ν it ν i ) (3) 3 β 1 µ i µ i = ȳ i β x i (4) (least square d 2004 1 3 3.1 1 5 1 2 3.2 1 α = 0, λ t = 0 y it = βx it + µ i + ν it (1) 1 (1995)1998Fujiki and Kitamura (1995). 2004 2 µ i ν it IN(0, σ 2 ) 1 i ȳ i = β x i + µ i + ν i (2) 12 y it ȳ i = β(x it x i ) +

More information

% 10%, 35%( 1029 ) p (a) 1 p 95% (b) 1 Std. Err. (c) p 40% 5% (d) p 1: STATA (1). prtesti One-sample test of pr

% 10%, 35%( 1029 ) p (a) 1 p 95% (b) 1 Std. Err. (c) p 40% 5% (d) p 1: STATA (1). prtesti One-sample test of pr 1 1. 2014 6 2014 6 10 10% 10%, 35%( 1029 ) p (a) 1 p 95% (b) 1 Std. Err. (c) p 40% 5% (d) p 1: STATA (1). prtesti 1029 0.35 0.40 One-sample test of proportion x: Number of obs = 1029 Variable Mean Std.

More information

(p.2 ( ) 1 2 ( ) Fisher, Ronald A.1932, 1971, 1973a, 1973b) treatment group controll group (error function) 2 (Legendre, Adrian

(p.2 ( ) 1 2 ( ) Fisher, Ronald A.1932, 1971, 1973a, 1973b) treatment group controll group (error function) 2 (Legendre, Adrian 2004 1 1 1.1 Maddala(1993) Mátyás and Sevestre (1996) Hsiao(2003) Baltagi(2001) Lee(2002) Woolridge(2002a), Arellano(2003) Journal of Econometrics Econometrica Greene(2000) Maddala(2001) Johnston and Di-

More information

.. est table TwoSLS1 TwoSLS2 GMM het,b(%9.5f) se Variable TwoSLS1 TwoSLS2 GMM_het hi_empunion totchr

.. est table TwoSLS1 TwoSLS2 GMM het,b(%9.5f) se Variable TwoSLS1 TwoSLS2 GMM_het hi_empunion totchr 3,. Cameron and Trivedi (2010) Microeconometrics Using Stata, Revised Edition, Stata Press 6 Linear instrumentalvariables regression 9 Linear panel-data models: Extensions.. GMM xtabond., GMM(Generalized

More information

4.9 Hausman Test Time Fixed Effects Model vs Time Random Effects Model Two-way Fixed Effects Model

4.9 Hausman Test Time Fixed Effects Model vs Time Random Effects Model Two-way Fixed Effects Model 1 EViews 5 2007 7 11 2010 5 17 1 ( ) 3 1.1........................................... 4 1.2................................... 9 2 11 3 14 3.1 Pooled OLS.............................................. 14

More information

chap9.dvi

chap9.dvi 9 AR (i) (ii) MA (iii) (iv) (v) 9.1 2 1 AR 1 9.1.1 S S y j = (α i + β i j) D ij + η j, η j = ρ S η j S + ε j (j =1,,T) (1) i=1 {ε j } i.i.d(,σ 2 ) η j (j ) D ij j i S 1 S =1 D ij =1 S>1 S =4 (1) y j =

More information

c (y it 2 y it 3 ) y it 2 y it 3 (y it 1 y it 2 ) 4 Arellano and Bond (1991) Ahn and Schmidt (1995) 2 y 5 E[y is, (ν it ν it 1 )] = 0, s =0, 1,

c (y it 2 y it 3 ) y it 2 y it 3 (y it 1 y it 2 ) 4 Arellano and Bond (1991) Ahn and Schmidt (1995) 2 y 5 E[y is, (ν it ν it 1 )] = 0, s =0, 1, c 2000 1 6.1 y it = δy it 1 + x 0 itβ + u it i =1, 2,..., N t =1, 2,...T (1) δ x 0 it K β K u it u it = µ i + ν it (2) µ i IID(0, σµ) 2, ν it IID(0, σν) 2 u it N T 1 v it Anderson and Hsiao (1981) Arellano(1989)

More information

2 Tobin (1958) 2 limited dependent variables: LDV 2 corner solution 2 truncated censored x top coding censor from above censor from below 2 Heck

2 Tobin (1958) 2 limited dependent variables: LDV 2 corner solution 2 truncated censored x top coding censor from above censor from below 2 Heck 10 2 1 2007 4 6 25-44 57% 2017 71% 2 Heckit 6 1 2 Tobin (1958) 2 limited dependent variables: LDV 2 corner solution 2 truncated 50 50 censored x top coding censor from above censor from below 2 Heckit

More information

chap10.dvi

chap10.dvi . q {y j } I( ( L y j =Δy j = u j = C l ε j l = C(L ε j, {ε j } i.i.d.(,i q ( l= y O p ( {u j } q {C l } A l C l

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

80 X 1, X 2,, X n ( λ ) λ P(X = x) = f (x; λ) = λx e λ, x = 0, 1, 2, x! l(λ) = n f (x i ; λ) = i=1 i=1 n λ x i e λ i=1 x i! = λ n i=1 x i e nλ n i=1 x

80 X 1, X 2,, X n ( λ ) λ P(X = x) = f (x; λ) = λx e λ, x = 0, 1, 2, x! l(λ) = n f (x i ; λ) = i=1 i=1 n λ x i e λ i=1 x i! = λ n i=1 x i e nλ n i=1 x 80 X 1, X 2,, X n ( λ ) λ P(X = x) = f (x; λ) = λx e λ, x = 0, 1, 2, x! l(λ) = n f (x i ; λ) = n λ x i e λ x i! = λ n x i e nλ n x i! n n log l(λ) = log(λ) x i nλ log( x i!) log l(λ) λ = 1 λ n x i n =

More information

untitled

untitled 2 : n =1, 2,, 10000 0.5125 0.51 0.5075 0.505 0.5025 0.5 0.4975 0.495 0 2000 4000 6000 8000 10000 2 weak law of large numbers 1. X 1,X 2,,X n 2. µ = E(X i ),i=1, 2,,n 3. σi 2 = V (X i ) σ 2,i=1, 2,,n ɛ>0

More information

28

28 y i = Z i δ i +ε i ε i δ X y i = X Z i δ i + X ε i [ ] 1 δ ˆ i = Z i X( X X) 1 X Z i [ ] 1 σ ˆ 2 Z i X( X X) 1 X Z i Z i X( X X) 1 X y i σ ˆ 2 ˆ σ 2 = [ ] y i Z ˆ [ i δ i ] 1 y N p i Z i δ ˆ i i RSTAT

More information

2 1,2, , 2 ( ) (1) (2) (3) (4) Cameron and Trivedi(1998) , (1987) (1982) Agresti(2003)

2 1,2, , 2 ( ) (1) (2) (3) (4) Cameron and Trivedi(1998) , (1987) (1982) Agresti(2003) 3 1 1 1 2 1 2 1,2,3 1 0 50 3000, 2 ( ) 1 3 1 0 4 3 (1) (2) (3) (4) 1 1 1 2 3 Cameron and Trivedi(1998) 4 1974, (1987) (1982) Agresti(2003) 3 (1)-(4) AAA, AA+,A (1) (2) (3) (4) (5) (1)-(5) 1 2 5 3 5 (DI)

More information

: , 2.0, 3.0, 2.0, (%) ( 2.

: , 2.0, 3.0, 2.0, (%) ( 2. 2017 1 2 1.1...................................... 2 1.2......................................... 4 1.3........................................... 10 1.4................................. 14 1.5..........................................

More information

第11回:線形回帰モデルのOLS推定

第11回:線形回帰モデルのOLS推定 11 OLS 2018 7 13 1 / 45 1. 2. 3. 2 / 45 n 2 ((y 1, x 1 ), (y 2, x 2 ),, (y n, x n )) linear regression model y i = β 0 + β 1 x i + u i, E(u i x i ) = 0, E(u i u j x i ) = 0 (i j), V(u i x i ) = σ 2, i

More information

AR(1) y t = φy t 1 + ɛ t, ɛ t N(0, σ 2 ) 1. Mean of y t given y t 1, y t 2, E(y t y t 1, y t 2, ) = φy t 1 2. Variance of y t given y t 1, y t

AR(1) y t = φy t 1 + ɛ t, ɛ t N(0, σ 2 ) 1. Mean of y t given y t 1, y t 2, E(y t y t 1, y t 2, ) = φy t 1 2. Variance of y t given y t 1, y t 87 6.1 AR(1) y t = φy t 1 + ɛ t, ɛ t N(0, σ 2 ) 1. Mean of y t given y t 1, y t 2, E(y t y t 1, y t 2, ) = φy t 1 2. Variance of y t given y t 1, y t 2, V(y t y t 1, y t 2, ) = σ 2 3. Thus, y t y t 1,

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

²�ËÜËܤǻþ·ÏÎó²òÀÏÊÙ¶¯²ñ - Â裱¾Ï¤ÈÂ裲¾ÏÁ°È¾

²�ËÜËܤǻþ·ÏÎó²òÀÏÊÙ¶¯²ñ - Â裱¾Ï¤ÈÂ裲¾ÏÁ°È¾ Kano Lab. Yuchi MATSUOKA December 22, 2016 1 / 32 1 1.1 1.2 1.3 1.4 2 ARMA 2.1 ARMA 2 / 32 1 1.1 1.2 1.3 1.4 2 ARMA 2.1 ARMA 3 / 32 1.1.1 - - - 4 / 32 1.1.2 - - - - - 5 / 32 1.1.3 y t µ t = E(y t ), V

More information

最小2乗法

最小2乗法 2 2012 4 ( ) 2 2012 4 1 / 42 X Y Y = f (X ; Z) linear regression model X Y slope X 1 Y (X, Y ) 1 (X, Y ) ( ) 2 2012 4 2 / 42 1 β = β = β (4.2) = β 0 + β (4.3) ( ) 2 2012 4 3 / 42 = β 0 + β + (4.4) ( )

More information

s = 1.15 (s = 1.07), R = 0.786, R = 0.679, DW =.03 5 Y = 0.3 (0.095) (.708) X, R = 0.786, R = 0.679, s = 1.07, DW =.03, t û Y = 0.3 (3.163) + 0

s = 1.15 (s = 1.07), R = 0.786, R = 0.679, DW =.03 5 Y = 0.3 (0.095) (.708) X, R = 0.786, R = 0.679, s = 1.07, DW =.03, t û Y = 0.3 (3.163) + 0 7 DW 7.1 DW u 1, u,, u (DW ) u u 1 = u 1, u,, u + + + - - - - + + - - - + + u 1, u,, u + - + - + - + - + u 1, u,, u u 1, u,, u u +1 = u 1, u,, u Y = α + βx + u, u = ρu 1 + ɛ, H 0 : ρ = 0, H 1 : ρ 0 ɛ 1,

More information

基礎数学I

基礎数学I I & II ii ii........... 22................. 25 12............... 28.................. 28.................... 31............. 32.................. 34 3 1 9.................... 1....................... 1............

More information

( 30 ) 30 4 5 1 4 1.1............................................... 4 1.............................................. 4 1..1.................................. 4 1.......................................

More information

Microsoft Word - 表紙.docx

Microsoft Word - 表紙.docx 黒住英司 [ 著 ] サピエンティア 計量経済学 訂正および練習問題解答 (206/2/2 版 ) 訂正 練習問題解答 3 .69, 3.8 4 (X i X)U i i i (X i μ x )U i ( X μx ) U i. i E [ ] (X i μ x )U i i E[(X i μ x )]E[U i ]0. i V [ ] (X i μ x )U i i 2 i j E [(X i

More information

renshumondai-kaito.dvi

renshumondai-kaito.dvi 3 1 13 14 1.1 1 44.5 39.5 49.5 2 0.10 2 0.10 54.5 49.5 59.5 5 0.25 7 0.35 64.5 59.5 69.5 8 0.40 15 0.75 74.5 69.5 79.5 3 0.15 18 0.90 84.5 79.5 89.5 2 0.10 20 1.00 20 1.00 2 1.2 1 16.5 20.5 12.5 2 0.10

More information

4 2 p = p(t, g) (1) r = r(t, g) (2) p r t g p r dp dt = p dg t + p g (3) dt dr dt = r dg t + r g dt 3 p t p g dt p t 3 2 4 r t = 3 4 2 Benefit view dp

4 2 p = p(t, g) (1) r = r(t, g) (2) p r t g p r dp dt = p dg t + p g (3) dt dr dt = r dg t + r g dt 3 p t p g dt p t 3 2 4 r t = 3 4 2 Benefit view dp ( ) 62 1 1 47 2 3 47 2 e-mail:miyazaki@ngu.ac.jp 1 2000 2005 1 4 2 p = p(t, g) (1) r = r(t, g) (2) p r t g p r dp dt = p dg t + p g (3) dt dr dt = r dg t + r g dt 3 p t p g dt p t 3 2 4 r t = 3 4 2 Benefit

More information

³ÎΨÏÀ

³ÎΨÏÀ 2017 12 12 Makoto Nakashima 2017 12 12 1 / 22 2.1. C, D π- C, D. A 1, A 2 C A 1 A 2 C A 3, A 4 D A 1 A 2 D Makoto Nakashima 2017 12 12 2 / 22 . (,, L p - ). Makoto Nakashima 2017 12 12 3 / 22 . (,, L p

More information

Microsoft Word - 計量研修テキスト_第5版).doc

Microsoft Word - 計量研修テキスト_第5版).doc Q10-2 テキスト P191 1. 記述統計量 ( 変数 :YY95) 表示変数として 平均 中央値 最大値 最小値 標準偏差 観測値 を選択 A. 都道府県別 Descriptive Statistics for YY95 Categorized by values of PREFNUM Date: 05/11/06 Time: 14:36 Sample: 1990 2002 Included

More information

Microsoft Word - 慶應義塾大学 山田篤裕研究会 社会保障政策分科会A(雇用形態に対応した年金制度を求めて~国民年金納付率の分析からの厚生年金適用拡大~).doc

Microsoft Word - 慶應義塾大学 山田篤裕研究会 社会保障政策分科会A(雇用形態に対応した年金制度を求めて~国民年金納付率の分析からの厚生年金適用拡大~).doc 1 A 1 1 2 1961 50 2011 3 20 1 1 2 3 1 20 70 2 3 4 3 4 1 1 2 3 4 2 1 2 1 2 1 1 2 20 3 2 5 2010 23.1%2050 40% 2 1961 50 3 2005 1.26 2 23 3 21 6 1 1 1 1961 1985 1990 1 2 3 3 1 1 2011.10.28 http://www.mhlw.go.jp/topics/nenkin/zaisei/01/

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

研究シリーズ第40号

研究シリーズ第40号 165 PEN WPI CPI WAGE IIP Feige and Pearce 166 167 168 169 Vector Autoregression n (z) z z p p p zt = φ1zt 1 + φ2zt 2 + + φ pzt p + t Cov( 0 ε t, ε t j )= Σ for for j 0 j = 0 Cov( ε t, zt j ) = 0 j = >

More information

1 Tokyo Daily Rainfall (mm) Days (mm)

1 Tokyo Daily Rainfall (mm) Days (mm) ( ) r-taka@maritime.kobe-u.ac.jp 1 Tokyo Daily Rainfall (mm) 0 100 200 300 0 10000 20000 30000 40000 50000 Days (mm) 1876 1 1 2013 12 31 Tokyo, 1876 Daily Rainfall (mm) 0 50 100 150 0 100 200 300 Tokyo,

More information

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,. 24(2012) (1 C106) 4 11 (2 C206) 4 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 (). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5... 6.. 7.,,. 8.,. 1. (75%)

More information

y = x x R = 0. 9, R = σ $ = y x w = x y x x w = x y α ε = + β + x x x y α ε = + β + γ x + x x x x' = / x y' = y/ x y' =

y = x x R = 0. 9, R = σ $ = y x w = x y x x w = x y α ε = + β + x x x y α ε = + β + γ x + x x x x' = / x y' = y/ x y' = y x = α + β + ε =,, ε V( ε) = E( ε ) = σ α $ $ β w ( 0) σ = w σ σ y α x ε = + β + w w w w ε / w ( w y x α β ) = α$ $ W = yw βwxw $β = W ( W) ( W)( W) w x x w x x y y = = x W y W x y x y xw = y W = w w

More information

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 3 5 5 5 3 3 7 5 33 5 33 9 5 8 > e > f U f U u u > u ue u e u ue u ue u e u e u u e u u e u N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 > A A > A E A f A A f A [ ] f A A e > > A e[ ] > f A E A < < f ; >

More information

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,.

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,. (1 C205) 4 10 (2 C206) 4 11 (2 B202) 4 12 25(2013) http://www.math.is.tohoku.ac.jp/~obata,.,,,..,,. 1. 2. 3. 4. 5. 6. 7. 8. 1., 2007 ( ).,. 2. P. G., 1995. 3. J. C., 1988. 1... 2.,,. ii 3.,. 4. F. ( ),..

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

y i OLS [0, 1] OLS x i = (1, x 1,i,, x k,i ) β = (β 0, β 1,, β k ) G ( x i β) 1 G i 1 π i π i P {y i = 1 x i } = G (

y i OLS [0, 1] OLS x i = (1, x 1,i,, x k,i ) β = (β 0, β 1,, β k ) G ( x i β) 1 G i 1 π i π i P {y i = 1 x i } = G ( 7 2 2008 7 10 1 2 2 1.1 2............................................. 2 1.2 2.......................................... 2 1.3 2........................................ 3 1.4................................................

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

ohpmain.dvi

ohpmain.dvi fujisawa@ism.ac.jp 1 Contents 1. 2. 3. 4. γ- 2 1. 3 10 5.6, 5.7, 5.4, 5.5, 5.8, 5.5, 5.3, 5.6, 5.4, 5.2. 5.5 5.6 +5.7 +5.4 +5.5 +5.8 +5.5 +5.3 +5.6 +5.4 +5.2 =5.5. 10 outlier 5 5.6, 5.7, 5.4, 5.5, 5.8,

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

Isogai, T., Building a dynamic correlation network for fat-tailed financial asset returns, Applied Network Science (7):-24, 206,

Isogai, T., Building a dynamic correlation network for fat-tailed financial asset returns, Applied Network Science (7):-24, 206, H28. (TMU) 206 8 29 / 34 2 3 4 5 6 Isogai, T., Building a dynamic correlation network for fat-tailed financial asset returns, Applied Network Science (7):-24, 206, http://link.springer.com/article/0.007/s409-06-0008-x

More information

国土技術政策総合研究所資料

国土技術政策総合研究所資料 ISSN 1346-7328 国総研資料第 652 号平成 23 年 9 月 国土技術政策総合研究所資料 TECHNICAL NOTE of Naional Insiue for Land and Infrasrucure Managemen No.652 Sepember 2011 航空需要予測における計量時系列分析手法の適用性に関する基礎的研究 ~ 季節変動自己回帰移動平均モデル及びベクトル誤差修正モデルの適用性

More information

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence Hanbury-Brown Twiss (ver. 2.) 25 4 4 1 2 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 4 3 Hanbury-Brown Twiss ( ) 5 3.1............................................

More information

6.1 (P (P (P (P (P (P (, P (, P.

6.1 (P (P (P (P (P (P (, P (, P. (011 30 7 0 ( ( 3 ( 010 1 (P.3 1 1.1 (P.4.................. 1 1. (P.4............... 1 (P.15.1 (P.16................. (P.0............3 (P.18 3.4 (P.3............... 4 3 (P.9 4 3.1 (P.30........... 4 3.

More information

6.1 (P (P (P (P (P (P (, P (, P.101

6.1 (P (P (P (P (P (P (, P (, P.101 (008 0 3 7 ( ( ( 00 1 (P.3 1 1.1 (P.3.................. 1 1. (P.4............... 1 (P.15.1 (P.15................. (P.18............3 (P.17......... 3.4 (P................ 4 3 (P.7 4 3.1 ( P.7...........

More information

ii 3.,. 4. F. (), ,,. 8.,. 1. (75% ) (25% ) =9 7, =9 8 (. ). 1.,, (). 3.,. 1. ( ).,.,.,.,.,. ( ) (1 2 )., ( ), 0. 2., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75% ) (25% ) =9 7, =9 8 (. ). 1.,, (). 3.,. 1. ( ).,.,.,.,.,. ( ) (1 2 )., ( ), 0. 2., 1., 0,. 23(2011) (1 C104) 5 11 (2 C206) 5 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 ( ). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5.. 6.. 7.,,. 8.,. 1. (75%

More information

パネル・データの分析

パネル・データの分析 パネル データの分析 内容 パネル データとは pooled cross section data の分析 パネルデータの分析 DID (Difference in Differences) モデル パネル データの分析 階差モデル (first difference model) fixed effects model random effects model パネル分析の実際 データ セットの作成

More information

I

I I 6 4 10 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

Stata 11 Stata ts (ARMA) ARCH/GARCH whitepaper mwp 3 mwp-083 arch ARCH 11 mwp-051 arch postestimation 27 mwp-056 arima ARMA 35 mwp-003 arima postestim

Stata 11 Stata ts (ARMA) ARCH/GARCH whitepaper mwp 3 mwp-083 arch ARCH 11 mwp-051 arch postestimation 27 mwp-056 arima ARMA 35 mwp-003 arima postestim TS001 Stata 11 Stata ts (ARMA) ARCH/GARCH whitepaper mwp 3 mwp-083 arch ARCH 11 mwp-051 arch postestimation 27 mwp-056 arima ARMA 35 mwp-003 arima postestimation 49 mwp-055 corrgram/ac/pac 56 mwp-009 dfgls

More information

PDF

PDF 1 1 1 1-1 1 1-9 1-3 1-1 13-17 -3 6-4 6 3 3-1 35 3-37 3-3 38 4 4-1 39 4- Fe C TEM 41 4-3 C TEM 44 4-4 Fe TEM 46 4-5 5 4-6 5 5 51 6 5 1 1-1 1991 1,1 multiwall nanotube 1993 singlewall nanotube ( 1,) sp 7.4eV

More information

都道府県別パネル・データを用いた均衡地価の分析: パネル共和分の応用

都道府県別パネル・データを用いた均衡地価の分析: パネル共和分の応用 No.04-J-7 4 3 * yumi.saita@boj.or.jp ** towa.tachibana@boj.or.jp *** **** toshitaka.sekine@boj.or.jp 103-8660 30 * ** *** London School of Economics **** : Λ y z x 4 3 / 1 (panel cointegration) Meese and

More information

第13回:交差項を含む回帰・弾力性の推定

第13回:交差項を含む回帰・弾力性の推定 13 2018 7 27 1 / 31 1. 2. 2 / 31 y i = β 0 + β X x i + β Z z i + β XZ x i z i + u i, E(u i x i, z i ) = 0, E(u i u j x i, z i ) = 0 (i j), V(u i x i, z i ) = σ 2, i = 1, 2,, n x i z i 1 3 / 31 y i = β

More information

( ) 2002 1 1 1 1.1....................................... 1 1.1.1................................. 1 1.1.2................................. 1 1.1.3................... 3 1.1.4......................................

More information

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 p µ γ µ + mp ν γ ν + m 5.1 γ p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 1 2 p µp ν {γ µ, γ ν } + m 2 5.2 p m p p µ γ µ {, } 10 γ {γ µ, γ ν } 2η µν 5.3 p µ γ µ + mp

More information

5 : 1 1

5 : 1 1 5 : 1 1 2 2 1 y = β 0 + β 1 x + u x u Cov(x, u) 0 β 0 β 1 x x u z Cov(z, u) = 0 Cov(z, x) 0 z x (1) z u (2)z x (3)z x Cov(z, u) = 0 Cov(z, x) 0 1 = 0 x = π 0 + π 1 z + v 1 Bowden and Turkington (1984)

More information

151021slide.dvi

151021slide.dvi : Mac I 1 ( 5 Windows (Mac Excel : Excel 2007 9 10 1 4 http://asakura.co.jp/ books/isbn/978-4-254-12172-8/ (1 1 9 1/29 (,,... (,,,... (,,, (3 3/29 (, (F7, Ctrl + i, (Shift +, Shift + Ctrl (, a i (, Enter,

More information

st.dvi

st.dvi 9 3 5................................... 5............................. 5....................................... 5.................................. 7.........................................................................

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x Compton Scattering Beaming exp [i k x ωt] k λ k π/λ ω πν k ω/c k x ωt ω k α c, k k x ωt η αβ k α x β diag + ++ x β ct, x O O x O O v k α k α β, γ k γ k βk, k γ k + βk k γ k k, k γ k + βk 3 k k 4 k 3 k

More information

waseda2010a-jukaiki1-main.dvi

waseda2010a-jukaiki1-main.dvi November, 2 Contents 6 2 8 3 3 3 32 32 33 5 34 34 6 35 35 7 4 R 2 7 4 4 9 42 42 2 43 44 2 5 : 2 5 5 23 52 52 23 53 53 23 54 24 6 24 6 6 26 62 62 26 63 t 27 7 27 7 7 28 72 72 28 73 36) 29 8 29 8 29 82 3

More information

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz 1 2 (a 1, a 2, a n ) (b 1, b 2, b n ) A (1.1) A = a 1 b 1 + a 2 b 2 + + a n b n (1.1) n A = a i b i (1.2) i=1 n i 1 n i=1 a i b i n i=1 A = a i b i (1.3) (1.3) (1.3) (1.1) (ummation convention) a 11 x

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

数学の基礎訓練I

数学の基礎訓練I I 9 6 13 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 3 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

II III II 1 III ( ) [2] [3] [1] 1 1:

II III II 1 III ( ) [2] [3] [1] 1 1: 2015 4 16 1. II III II 1 III () [2] [3] 2013 11 18 [1] 1 1: [5] [6] () [7] [1] [1] 1998 4 2008 8 2014 8 6 [1] [1] 2 3 4 5 2. 2.1. t Dt L DF t A t (2.1) A t = Dt L + Dt F (2.1) 3 2 1 2008 9 2008 8 2008

More information

untitled

untitled 17 5 13 1 2 1.1... 2 1.2... 2 1.3... 3 2 3 2.1... 3 2.2... 5 3 6 3.1... 6 3.2... 7 3.3 t... 7 3.4 BC a... 9 3.5... 10 4 11 1 1 θ n ˆθ. ˆθ, ˆθ, ˆθ.,, ˆθ.,.,,,. 1.1 ˆθ σ 2 = E(ˆθ E ˆθ) 2 b = E(ˆθ θ). Y 1,,Y

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n . X {x, x 2, x 3,... x n } X X {, 2, 3, 4, 5, 6} X x i P i. 0 P i 2. n P i = 3. P (i ω) = i ω P i P 3 {x, x 2, x 3,... x n } ω P i = 6 X f(x) f(x) X n n f(x i )P i n x n i P i X n 2 G(k) e ikx = (ik) n

More information

solutionJIS.dvi

solutionJIS.dvi May 0, 006 6 morimune@econ.kyoto-u.ac.jp /9/005 (7 0/5/006 1 1.1 (a) (b) (c) c + c + + c = nc (x 1 x)+(x x)+ +(x n x) =(x 1 + x + + x n ) nx = nx nx =0 c(x 1 x)+c(x x)+ + c(x n x) =c (x i x) =0 y i (x

More information

と入力する すると最初の 25 行が表示される 1 行目は変数の名前であり 2 列目は企業番号 (1,,10),3 列目は西暦 (1935,,1954) を表している ( 他のパネルデータを分析する際もデ ータをこのように並べておかなくてはならない つまりまず i=1 を固定し i=1 の t に関

と入力する すると最初の 25 行が表示される 1 行目は変数の名前であり 2 列目は企業番号 (1,,10),3 列目は西暦 (1935,,1954) を表している ( 他のパネルデータを分析する際もデ ータをこのように並べておかなくてはならない つまりまず i=1 を固定し i=1 の t に関 R によるパネルデータモデルの推定 R を用いて 静学的パネルデータモデルに対して Pooled OLS, LSDV (Least Squares Dummy Variable) 推定 F 検定 ( 個別効果なしの F 検定 ) GLS(Generalized Least Square : 一般化最小二乗 ) 法による推定 およびハウスマン検定を行うやり方を 動学的パネルデータモデルに対して 1 階階差

More information

2.1: n = N/V ( ) k F = ( 3π 2 N ) 1/3 = ( 3π 2 n ) 1/3 V (2.5) [ ] a = h2 2m k2 F h2 2ma (1 27 ) (1 8 ) erg, (2.6) /k B 1 11 / K

2.1: n = N/V ( ) k F = ( 3π 2 N ) 1/3 = ( 3π 2 n ) 1/3 V (2.5) [ ] a = h2 2m k2 F h2 2ma (1 27 ) (1 8 ) erg, (2.6) /k B 1 11 / K 2 2.1? [ ] L 1 ε(p) = 1 ( p 2 2m x + p 2 y + pz) 2 = h2 ( k 2 2m x + ky 2 + kz) 2 n x, n y, n z (2.1) (2.2) p = hk = h 2π L (n x, n y, n z ) (2.3) n k p 1 i (ε i ε i+1 )1 1 g = 2S + 1 2 1/2 g = 2 ( p F

More information

(pdf) (cdf) Matlab χ ( ) F t

(pdf) (cdf) Matlab χ ( ) F t (, ) (univariate) (bivariate) (multi-variate) Matlab Octave Matlab Matlab/Octave --...............3. (pdf) (cdf)...3.4....4.5....4.6....7.7. Matlab...8.7.....9.7.. χ ( )...0.7.3.....7.4. F....7.5. t-...3.8....4.8.....4.8.....5.8.3....6.8.4....8.8.5....8.8.6....8.9....9.9.....9.9.....0.9.3....0.9.4.....9.5.....0....3

More information

untitled

untitled 18 1 2,000,000 2,000,000 2007 2 2 2008 3 31 (1) 6 JCOSSAR 2007pp.57-642007.6. LCC (1) (2) 2 10mm 1020 14 12 10 8 6 4 40,50,60 2 0 1998 27.5 1995 1960 40 1) 2) 3) LCC LCC LCC 1 1) Vol.42No.5pp.29-322004.5.

More information

1 15 R Part : website:

1 15 R Part : website: 1 15 R Part 4 2017 7 24 4 : website: email: http://www3.u-toyama.ac.jp/kkarato/ kkarato@eco.u-toyama.ac.jp 1 2 2 3 2.1............................... 3 2.2 2................................. 4 2.3................................

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2 Hanbury-Brown Twiss (ver. 1.) 24 2 1 1 1 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 3 3 Hanbury-Brown Twiss ( ) 4 3.1............................................

More information

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,, 6,,3,4,, 3 4 8 6 6................................. 6.................................. , 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p,

More information

R R 16 ( 3 )

R R 16   ( 3 ) (017 ) 9 4 7 ( ) ( 3 ) ( 010 ) 1 (P3) 1 11 (P4) 1 1 (P4) 1 (P15) 1 (P16) (P0) 3 (P18) 3 4 (P3) 4 3 4 31 1 5 3 5 4 6 5 9 51 9 5 9 6 9 61 9 6 α β 9 63 û 11 64 R 1 65 13 66 14 7 14 71 15 7 R R 16 http://wwwecoosaka-uacjp/~tazak/class/017

More information

x E E E e i ω = t + ikx 0 k λ λ 2π k 2π/λ k ω/v v n v c/n k = nω c c ω/2π λ k 2πn/λ 2π/(λ/n) κ n n κ N n iκ k = Nω c iωt + inωx c iωt + i( n+ iκ ) ωx

x E E E e i ω = t + ikx 0 k λ λ 2π k 2π/λ k ω/v v n v c/n k = nω c c ω/2π λ k 2πn/λ 2π/(λ/n) κ n n κ N n iκ k = Nω c iωt + inωx c iωt + i( n+ iκ ) ωx x E E E e i ω t + ikx k λ λ π k π/λ k ω/v v n v c/n k nω c c ω/π λ k πn/λ π/(λ/n) κ n n κ N n iκ k Nω c iωt + inωx c iωt + i( n+ iκ ) ωx c κω x c iω ( t nx c) E E e E e E e e κ e ωκx/c e iω(t nx/c) I I

More information

43433 8 3 . Stochastic exponentials...................................... 3. Girsanov s theorem......................................... 4 On the martingale property of stochastic exponentials 5. Gronwall

More information

オーストラリア研究紀要 36号(P)☆/3.橋本

オーストラリア研究紀要 36号(P)☆/3.橋本 36 p.9 202010 Tourism Demand and the per capita GDP : Evidence from Australia Keiji Hashimoto Otemon Gakuin University Abstract Using Australian quarterly data1981: 2 2009: 4some time-series econometrics

More information

x 3 a (mod p) ( ). a, b, m Z a b m a b (mod m) a b m 2.2 (Z/mZ). a = {x x a (mod m)} a Z m 0, 1... m 1 Z/mZ = {0, 1... m 1} a + b = a +

x 3 a (mod p) ( ). a, b, m Z a b m a b (mod m) a b m 2.2 (Z/mZ). a = {x x a (mod m)} a Z m 0, 1... m 1 Z/mZ = {0, 1... m 1} a + b = a + 1 1 22 1 x 3 (mod ) 2 2.1 ( )., b, m Z b m b (mod m) b m 2.2 (Z/mZ). = {x x (mod m)} Z m 0, 1... m 1 Z/mZ = {0, 1... m 1} + b = + b, b = b Z/mZ 1 1 Z Q R Z/Z 2.3 ( ). m {x 0, x 1,..., x m 1 } modm 2.4

More information

こんにちは由美子です

こんにちは由美子です Analysis of Variance 2 two sample t test analysis of variance (ANOVA) CO 3 3 1 EFV1 µ 1 µ 2 µ 3 H 0 H 0 : µ 1 = µ 2 = µ 3 H A : Group 1 Group 2.. Group k population mean µ 1 µ µ κ SD σ 1 σ σ κ sample mean

More information

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: sin 6 5 ζ a, b Z: Q: R: C: 3 3 7 4 sin 6 5 ζ 9 6 6............................... 6............................... 6.3......................... 4 7 6 8 8 9 3 33 a, b a bc c b a a b 5 3 5 3 5 5 3 a a a a p > p p p, 3,

More information

0406_total.pdf

0406_total.pdf 59 7 7.1 σ-ω σ-ω σ ω σ = σ(r), ω µ = δ µ,0 ω(r) (6-4) (iγ µ µ m U(r) γ 0 V (r))ψ(x) = 0 (7-1) U(r) = g σ σ(r), V (r) = g ω ω(r) σ(r) ω(r) (6-3) ( 2 + m 2 σ)σ(r) = g σ ψψ (7-2) ( 2 + m 2 ω)ω(r) = g ω ψγ

More information

4 OLS 4 OLS 4.1 nurseries dual c dual i = c + βnurseries i + ε i (1) 1. OLS Workfile Quick - Estimate Equation OK Equation specification dual c nurser

4 OLS 4 OLS 4.1 nurseries dual c dual i = c + βnurseries i + ε i (1) 1. OLS Workfile Quick - Estimate Equation OK Equation specification dual c nurser 1 EViews 2 2007/5/17 2007/5/21 4 OLS 2 4.1.............................................. 2 4.2................................................ 9 4.3.............................................. 11 4.4

More information

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

II ( ) (7/31) II (  [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re II 29 7 29-7-27 ( ) (7/31) II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I Euler Navier

More information

ρ /( ρ) + ( q, v ) : ( q, v ), L < q < q < q < L 0 0 ( t) ( q ( t), v ( t)) dq ( t) v ( t) lmr + 0 Φ( r) dt lmr + 0 Φ ( r) dv ( t) Φ ( q ( t) q ( t)) + Φ ( q+ ( t) q ( t)) dt ( ) < 0 ( q (0), v (0)) (

More information

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1.

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1. 1.1 1. 1.3.1..3.4 3.1 3. 3.3 4.1 4. 4.3 5.1 5. 5.3 6.1 6. 6.3 7.1 7. 7.3 1 1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N

More information

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + 2.6 2.6.1 ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.121) Z ω ω j γ j f j

More information

seminar0220a.dvi

seminar0220a.dvi 1 Hi-Stat 2 16 2 20 16:30-18:00 2 2 217 1 COE 4 COE RA E-MAIL: ged0104@srv.cc.hit-u.ac.jp 2004 2 25 S-PLUS S-PLUS S-PLUS S-code 2 [8] [8] [8] 1 2 ARFIMA(p, d, q) FI(d) φ(l)(1 L) d x t = θ(l)ε t ({ε t }

More information

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ± 7 7. ( ) SU() SU() 9 ( MeV) p 98.8 π + π 0 n 99.57 9.57 97.4 497.70 δm m 0.4%.% 0.% 0.8% π 9.57 4.96 Σ + Σ 0 Σ 89.6 9.46 K + K 0 49.67 (7.) p p = αp + βn, n n = γp + δn (7.a) [ ] p ψ ψ = Uψ, U = n [ α

More information