Size: px
Start display at page:

Download ""

Transcription

1

2

3 15 Radon CT A 55 1 (oscillation phenomena) e iθ = cos θ + i sin θ, cos θ = eiθ + e iθ 2, sin θ = eiθ e iθ. 2i f(t) = ce iωt, d 2 f dt 2 + ω2 f = 0, θ = ωt. (periodic function (period) f(t + T ) = f(t). e iωt T = /ω T ω (frequency) f = 1/T 1. e iωt T > 0 ω [0, T ) x ( π < x < π) x ( π < x < π) θ = t/t 3

4 (periodical integration) T a+t f(t)dt = f(t)dt = f(t)dt. 0 a T t f(t) f(t) = g(t) + ih(t) b a b a f(t) dt = b a f(t) dt = lim n g(t) dt + i b a h(t) dt n f(τ j )(t j t j 1 ) j=1 b a f(t) dt = F (b) F (a), F (t) = f(t) b b f(t) dt f(t) dt (a b) a a (e iωt ) = iωe iωt n Z { π if n = 0, e int dt = π 0 otherwise 2. e (a+ib)t e at cos(bt) dt, e at sin(bt) dt 3. c n t n e ct dt n = 1, 2 4

5 2 T f(t) 2 dt < + (square integrable) T H T H T = { f; f(t + T ) = f(t), T } f(t) 2 dt < +. H T L 2 (0, T ) L 2 ( T/2, T/2) f(t) + g(t) 2 2( f(t) 2 + g(t) 2 ) f, g H T = αf + βg H T H T (f g) = T 2 f(t)g(t) f(t) 2 + g(t) 2 f(t)g(t)dt = T 0 f(t)g(t)dt = 4. z, w T/2 T/2 z + w 2 2( z 2 + w 2 ), 2 zw z 2 + w 2 (i) (f g 1 + g 2 ) = (f g 1 ) + (f g 2 ), (f βg) = β(f g). f(t)g(t)dt 5

6 (ii) (f 1 + f 2 g) = (f 1 g) + (f g 2 ), (αf g) = α(f g). (iii) (f g) = (g f). (iv) (f f) (f f) = 0 f 0 (f g) H T [] (Cauchy-Schwarz inequality) (f g) (f f)(g g) f(t)g(t) dt f(t) 2 dt g(t) 2 dt. T T [] f (Hermann Schwarz) b b b f(t) dt 1 dt f(t) 2 dt a 6. [a, b] f b a f(t) dt < +, a b a a T f(t) 2 dt = + f = (f f), f + g f + g, αf = α f. OrthoNormal System 7. e at (0 t ) a {e int / } n Z L 2 (0, ) {cos(nt)/ π} n=1,2,... {sin(nt)/ π} n=1,2,... 1/ L 2 (0, ) 6

7 8. T ( ). H {e n } n 1 f f = f n (e n f)e n {z n } f n z n e n 2 = f 2 + n z n (e n f) 2 (f e n ) = 0, n = 1, 2,... f (e n f)e n f z n e n n n best approximation (e n f) 2 (f f) = f 2 n 1 f H Bessel (Bessel s inequality) 2.3 (). [a, b] f(t) lim n ± b a f(t)e int dt = 0. Proof. [a, b] [ π, π] f t [ π, π] \ [a, b] 0 b a f(t)e int dt = (e n f) 0 (n ± ) 7

8 [a, b] [ π, π] [a, b] [ π + k, π + k] (k Z) π+k π+k f(t)e int dt = = π π π π f(s + k)e in(s+k) ds f(s + k)e ins ds 10. f(t) = 1, f(t) = t Remark. b b f(t)e int dt f(t)e int dt a f(t) = t 1/2 (0 < t 1) 1 0 a f(t) 2 dt = + 0 < t δ, δ t 1 1 lim n 0 f(t)e int dt = 0 lim f(t) cos(nt) dt = 0, n f(t) sin(nt) dt = 0 lim n cos(nt) sin(nt) f (amplitude modulation) f f cos(nt), sin(nt) /n 0 8

9 3 f(x) f(x) 2 dx < + f(x) = n Z f n e inx, f n C (Fourier series) f(x) f n = 1 f(x)e inx dx, n = 0, ±1, ±2,... f n f f (Fourier coefficient) {e n (x) = e inx / } (e n f)e n (x) n Z D. Bernoulli ( ), L. Euler ( ) J. Fourier ( ) ( ) Fourier P. Dirichlet ( ) 3.1. { 1 if 0 x < π, f(x) = 0 if π x < 0. 9

10 f 0 = 1 2, f n = 1 ( 1)n in f n e inx n Z Remark. 11. cos(mx), sin(mx) 12. m x m + = { x m if x 0, 0 otherwise [ π, π] 13. f 4 (regularization) Fejer Poisson lim f n = 0 n 0 < r < 1 f n r n e inx n 10

11 r 1 f n f 1 π π P r (y) P r (y) = n Z r n e iny = = f(y)p r (x y) dy (re iy ) n + n=0 (re iy ) n n=1 1 re iy + 1 reiy 1 re = 1 r 2 iy 1 2r cos y + r 2 Poisson (Poisson kernel) 4.1 (Poisson ). (i) P r (y) 0 ( 1+r P 1 r r(y) 1 r ) y ( y 1+r (ii) (iii) 1 π P r (y)dy = 1, π lim P r(y) = 0 r 1 0 for y 0. More precisely, δ > 0, ɛ > 0, r < 1, P r (y) ɛ for y δ and r r < P r (y) Poisson P r (x) = 1 r 2 (1 r) 2 + 4r sin 2 x 2 P r 4.2. f(x) {f n } f(x) = lim f n r n e inx r 1 0 n Z x 11

12 Proof. ɛ > 0 f(x) f(y) ɛ for x y δ δ > 0 P r (x y) ɛ if x y δ r < 1 1 π f(x) π f(y)p r (x y) dy = (f(x) f(y))p r (x y) dy π = ɛ π x y δ π π π f(x) f(y) P r (x y) dy f(x) f(y) P r (x y) dy + π ɛ + 4Mπɛ P r (x y) dy + ɛ π π x y δ f(x) f(y) dy (M = f = sup{ f(x) ; x R}) 15. f n r n e inz n Z f(x) f(y) P r (x y) dy Iz < log r z 4.3 ( ). ɛ > 0, N, {a n } N n= N N f N a n e n = sup f(x) a n e inx ɛ. N f N f 2 (e n f)e n f n= N x R N n= N n= N a n e n 2 f a n e n 2 0 f g f g N f (e n f)e n f g (e n f g)e n + g (e n g)e n n= N f g + g (e n g)e n 12

13 f(x) 2 dx < f(x), g(x) π π f(x)g(x)dx = n Z (f g) = (f e n )(e n g) f n g n, f n = 1 π e inx f(x) dx. π π π f(x) 2 dx = n Z f n 2, (f f) = (e n f) 2 n Z H {e n } f (f f) = (e n f) 2 n (complete) Parseval (Parseval s equality) f = n (e n f)e n lim n n f (e k f)e k = 0 k=1 (Cauchy-Schwarz ) (f g) = (f e n )(e n g) n 13

14 I = n e n )(e n (Dirac ) 16. n f (e k f)e k 2 = (f f) k=1 n (e k f) L > 0 f(x) = F (Lx/). y R x k e iyx dx e iyx dx = i y e iyx k=1 y xe iyx dx = ix y e iyx + 1 y 2 e iyx x 2 e iyx dx = i x2 y e iyx + 2x y 2 e iyx 2i y 3 e iyx x, x 2 ( π < x < π) i 2 n ( 1)n (n 0), n 2 ( 1)n (n 0) Parseval 1 ζ(2) = n = π2 2 6 n=1 1 ζ(4) = n = π n=1 14

15 18. x 2 x 3 x ζ(x) = x x x +... L. Euler (infinite product formula) ζ(x) = p:prime (1 1p x ) 1 ζ(2n) B. Riemann ζ(z) (i) z = 1 (ii) z = 2, 4,... (iii) 0 < Rz < 1 (iii) Rz = 1/2 5 (smooth) (piecewise smooth) 5.1. f f (x) 2 dx < + f f n < +. n Z 15

16 Proof. f f n f f n 2 < + n f f n = inf n f n = n n ( ) 1/2 ( ) 1/2 1 n f n 1 f n n 2 < + 2 n n 19. f(x) f(x) = x ( π < x < π) f(x) = x sin(1/x) ( 2/π x 2/π) (i) (ii) 5.2 ( ). f(x) = n Z f n e inx x Proof. f(x) = lim f n r n e inx r 1 0 n Z f(x) f n e inx n Z f(x) f n r n e inx n Z + f n (1 r n ) n Z 16

17 5.3. f(x) = x ( π x π). xe inx dx = i n xe inx + 1 n 2 e inx f 0 = π/2 x = π 2 2 π n:odd 1 π x e inx dx = ( 1)n 1 (n 0) π πn 2 1 n 2 einx = π 2 4 π (cos x cos(3x) cos(5x) +... ) f(x) = x α ( π x π) α > 0 { 2α 2 π 2α 1 f (x) 2 if 2α 1 > 0, 2α 1 dx = + otherwise. Dirichlet n n f k e ikx = k= n = k= n k= n = 1 Dirichlet D n (y) D n (y) = n k= n 1 f(y)e ik(x y) dy n 1 f(x y)e iky dy f(x y)d n (y)dy. e iky = e iny 2n k=0 e iky = sin(n )y sin y n Dirichlet 5.5 (Dirichlet ). (i) f(x) δ > 0 lim f(x)d n (x) dx = 0. n x δ 17

18 (ii) n 1 D n (x) dx =. Proof. (i) Dirichlet sin(n + 1/2)x e (n+1/2)x e i(n+1/2)x = 2i sin(n + 1/2)x x δ D n sin(x/2) 0 (ii) {e ikx } n D n (x) dx = e ikx dx =. k= n 5.6 ( (principle of localization)). f(x) x = a n f(x) = lim f k e ikx n k= n f x = a f(x), g(x) f(x) = g(x) ( x a 2δ) n lim (f k g k )e ika = 0 n k= n x a δ Proof. h(x) = f(x) g(x) h(x) = 0 ( x a 2δ) (h(x y) h(x))d n (y)dy = 0 uniformly for x a δ lim n (h(x y) h(x))d n (y)dy + y δ y δ (h(x y) h(x))d n (y)dy 0 Dirichlet n x a δ 0 18

19 5.7. f(x) = x ( π < x < π) 1 π π xe inx dx = i( 1)n, n 0 n x = i( 1) n e inx ( 1) n 1 = 2 sin(nx), n n n 0 n=1 π < x < π x = π/2 x = ±π π 4 = lim n n k= n f k e ikx = (Dirichlet). f x = a x = a x = a lim n n k= n f k e ika = f(a + 0) + f(a 0) 2 f(a) Proof. x = a f x = a a = ±π f(a ± 0) = f( π) g(x) = f(x) g( π) = g(π) f(π) + f( π) 2 h(x) = g(x) g(π)x = g(x) + g( π)x 19

20 x = ±π h f h x = ±π x = ±π h x = ±π h(±π) = 0 Ax + B x = ±π B f x = ±π f(π) + f( π) 2 Remark. Gibbs 5.9 (Kolmogorov). [ π, π] f(t) π π f(t) dt < + f t 5.10 (Carleson). f(x) N f(x) = lim f n e inx N n= N x f(x + ) = f(x) {f n } f m 1 f (m 1) (x) x f (m) n= n 2m f n 2 < + 20

21 0 k < m f (k) (x) = (in) k f n e inx x n= (i) f m f (m) ( ) 1 f n = o n m (ii) f f n ( ) 1 f n = O n m+2 f m f (m) ξ f(ξ) = + f(x)e ixξ dx f 2L f(x) [ L, L] 0 f (support) [ L, L] F ( ) L F (x) = f π x, π x π 21

22 F n = 1 = 1 2L = 1 2L π π L L F (x)e inx dx f(y)e iπny/l dy f(x)e iπnx/l dx L F n 2LF n n ξ = πn/l f 6.1. f f f (m) (x) dx < + f(ξ) = O(1/ ξ m ). Proof. [a, b] f(ξ) = ( i) n b ξ n x n f(x) dx n! n 0 a ξ f (m) (x)e ixξ dx = (iξ) m f(x)e ixξ dx ξ m f(ξ) f (m) (x) dx

23 f 2L > 0 f(x) = 0 for x L f [ L,L] 2L > 0 f(x) = 1 L e iπn(x y)/l f(y) dy = 1 π 2L L L eiπnx/l f(πn/l) n Z n Z f f(ξ) = O(1/ ξ 2 ) L 1 Parseval e ixξ f(ξ) dξ f(x) 2 dx = 1 π L f(πn/l) 2 n Z L 1 f(ξ) 2 dξ f(ξ) 25. f(x) f(ξ) f(x) (integrable) f(ξ) = f(x) dx < + f(x)e ixξ dx 23

24 6.2. f(x) f(ξ) ξ lim f(ξ) = 0 ξ ± Proof. a < b b a f(x)e ixξ dx ξ ξ ± 0 a f(x)e ixξ dx, b f(x)e ixξ dx f(x) Remark. 26. b a f(x) 2 dx < + b f(x) dx < + a 27. ɛ-δ ɛ-δ ɛ > 0, a > 0, f(x) dx ɛ. x a ξ η e ixξ e ixη ɛ ( x a) f(ξ) f(η) a ( ) f(x)(e ixξ e ixη dx + 2ɛ ɛ f(x) dx + 2 a 0 Parseval 24

25 6.3. f(x) [a, b] 0 b a f(x) 2 dx < + f 6.4. f(x) f(x) 2 dx = 1 f(ξ) 2 dξ f(x) dx < +, f(x) 2 dx < + f f(ξ) 2 dξ < + f f/ L 2 (R) L 2 (R) f(x)g(x)dx = 1 f(ξ)ĝ(ξ)dξ f(x) = 1 f(ξ)e ixξ dξ Lebesgue x Proof. f(x) { f(x) if x a, f a (x) = 0 otherwise f a f a (ξ) = a a f(x)e ixξ dx 25

26 f(ξ) f a (ξ) f(ξ) f a (ξ) = f(x)e ixξ dx f(x) dx 0 (a + ) x a ξ f a (ξ) 2 dξ = a b f b (ξ) f a (ξ) = g(x) = 1 f b (ξ) f a (ξ) 2 dξ = x a a a x b a f(x) 2 dx f(x)e ixξ dx { f(x) if a x b, 0 otherwise a x b f(x) 2 dx x a f(x) 2 dx b + a + b + c f b (ξ) f a (ξ) 2 dξ f(x) 2 dx c x a b + f b (ξ) f(ξ) c c f(ξ) f a (ξ) 2 dξ f(x) 2 dx x a c + f(ξ) f a (ξ) 2 dξ 26 x a f(x) 2 dx

27 a + Parseval f(ξ) 2 dξ = lim a + f a (ξ) 2 dξ a = lim f(x) 2 dx a + = a f(x) 2 dx. Parseval 28. f f(ξ) = f( ξ). f f f(ξ) (ξ 0) f(ξ) 2 ξ > 0 power spectrum 29. h(ξ) c h = h(ξ) 2 dξ c f f a f f b + f b f a f f a 2 f(x) 2 dx x a f a f f a f f a + f f a lim f a = f a + 27

28 Parseval f L 1 (R) f f(ξ) ξ + f(ξ)e ixξ dξ = N lim N + N f(ξ)e ixξ dξ N N f(ξ)e ixξ dξ = + N (x) = N f(y) e i(x y)ξ dξ dy = N N N + e ixξ dξ = 2 sin(nx). x f(y) N (x y) dy Dirichlet 30. N N (x) D n (x) 6.5 ( ). f L 1 (R) L 2 (R) x = a 1 N f(x) = lim f(ξ)e ixξ dξ N N f(x) x = a f, g L 1 (R) L 2 (R) f(x) = g(x) ( x a 2δ) N lim ( f(ξ) ĝ(ξ))e ixξ dξ = 0 N N x a δ

29 6.6 (Dirichlet). f L 2 (R) L 2 (R) x = a f(a + 0) + f(a 0) 2 N = lim N N f(ξ)e iaξ dξ e ax2 ixξ dx = π a e ξ2 /4a. ξ = 0 (Gaussian integral) ξ F (ξ) df dξ = ξ 2a F Cauchy ξ = π e ax2 dx = a. y = x + ξ 33. a > f(x) = (x )e ax2 f(x) dx < + 29

30 34. a > 0 b π e ax2 +bx /(4a) = a eb2 ( π x n e ax2 iξ = i ) n e ξ2 /(4a). a ξ { e λx if x > 0, f(x) = 0 otherwise (λ > 0 ) e λx ixξ dx = 1 λ + iξ e ixξ λ + iξ dξ = { e λx if x > 0, 0 if x < 0 e ixξ /(λ + iξ) 35. λ 1 e ixξ iξ λ dξ = { 0 if x > 0, e λx if x < Cauchy x x = 0 1/2 + 1 z iλ dz = log(z iλ) z=+ = πi. z= 30

31 { x λ e ax if x > 0, f(x) = 0 otherwise. a > λ x λ = e λ log x, x > 0. f(ξ) = + 0 x λ e ax ixξ dx x z = (a + iξ)x f(ξ) = (a + iξ) λ 1 z λ e z dz L a + iξ e z + f(ξ) = (a + iξ) λ 1 x λ e x dx = (a + iξ) λ 1 Γ(λ + 1) 0 { x λ (a + iξ) λ 1 e ixξ e ax /Γ(λ + 1) if x > 0, dξ = 0 otherwise L 8 vs. 31

32 f(x) f(x a) T a (translation) lim T yf T a f = 0. y a f(x), g(x) (convolution) (f g)(x) = f(x y)g(y)dy f g = g f, (f g) h = f (g h). f(x) f(rx) (0 r R) f(x) rf(rx) f(x + a) f (n) (x) f(ξ) f(ξ/r) e iaξ f(ξ) (iξ) n f(ξ) e iαx f(x) f(ξ + α) f(x)g(x) f g f ĝ f(ξ)ĝ(ξ) parameter a Taylor (Riemann-Lebesgue). f(x) f(x) dx < + f(ξ) ξ lim f(ξ) = 0. ξ ± 32

33 Proof. f g f(x) g(x) dx f(ξ) f(ξ) ĝ(ξ) + ĝ(ξ) 6.1 ( ĝ(ξ) 0 (ξ ) f g ξ 8.2. (i) f(x) m lim f (l) (x) = 0(0 l m 1), x ± f (m) (x) dx < + f(ξ) f(ξ) = o ( ) 1 ξ m lim ξ ± ξm f(ξ) = 0 (ii) f(ξ) f(ξ) = O(1/ ξ m+2 ) f m f (m) lim f (l) (x) = 0(0 l m), x ± Proof. (i) f (l) f (m) (x)e ixξ dx = (iξ) m f(x)e ixξ dx (iξ) m f(ξ) 33

34 (ii) f f(ξ) = O(1/ ξ 2 ) Riemann-Lebesgue f(x) = 1 f(ξ)dξ f(ξ) = O(1/ ξ 3 ) f f (x) = 1 (iξ) f(ξ)e ixξ dξ iξ f(ξ) Riemann-Lebesgue f (x) f L 2 (R) lim (T hf f)/h = g h 0 g L 2 (R) lim (T hf f)/h g = 0 h 0 f L 2 - g = f f C 1 f L 2 (R) f L 2 - L 2 - f f 8.3. f L 2 (R) (i) f (n) L 2 ξ n f(ξ) L 2 (R) (ii) ξ n f(ξ) L 2 (R) f C n 1 Proof. ξ n f(ξ) L 2 (R) ξ m f(ξ) L 2 (R) ξ 1, ξ 1 ξ 1 Cauchy-Schwartz 38. n λ > 0 f n (x) = 1 1 (λ + iξ) n eixξ dξ f n+1 (x) = x n f n(x) (λ+iξ) n f n n 34

35 9 f(x) = 1 dξ dyf(y)e i(x y)ξ x ξ f(x) = f(y)δ(x y)dy = δ(x) = 1 dξe ixξ f(x y)δ(y)dy, g(y) = f( y) g(y)δ(y)dy = g(0) g(y) δ(y) g(y) y = a 0 a+ɛ a ɛ g(y)δ(y) = 0 = g(0) δ(a) = 0 (a 0) g(y) = 1 ( y ɛ) δ(y)dy = g(y)δ(y)dy = g(0) = 1 δ(y) y = e aξ2 +ixξ dξ = 1 4πa e x2 /4a 35

36 a +0 1 a a dξe ixξ = sin(ax) πx a + wild δ(x) ϕ a (x) δ(x) = lim a 0 ϕ a (x) {ϕ a } (i) ϕ a (x) (ii) f(x) lim a 0 f(x)ϕ a (x) dx = f(0) f f(x) g g(x)f(x)dx f g g(x)f(y)dx δ g g(0) 36

37 ϕ a ϕ a (g) = g(x)ϕ a (x)dx δ = lim a +0 ϕ a regularization 0 e ±ixξ dξ 0 e ±i(x±iɛ)ξ dξ, ɛ > 0 ɛ +0 0 e ±ixξ 1 dξ = lim ɛ +0 ɛ ix = ±i x ± i f(x) dx = x ± i0 = = (f(x) f(0) + f(0)) dx x ± i0 f(x) f(0) x f(x) f(0) x f(x) f(0) x δ(x) = dx + f(0) lim dx πif(0). = f (x) x=0 i x + i0 i x i0 lim ɛ +0 r + 37 r r 1 x ± iɛ dx

38 (i) regularization (ii) regularization L. Schwartz distribution, I.M. Gelfand generalized function, hyperfunction 39. π e ax2 ixξ /4a dx = a e ξ2 Fresnel + e itx2 ixξ dx = it + 0 π it + 0 e iξ2 /4t t e πi/4 if t > 0, it + 0 = 0 if t = 0, t e πi/4 if t < 0 t R (t 0) h(x) = h = δ { 1 if x 0, 0 otherwise h Heaviside function 10 (wave equation) 2 u t 2 2 u x 2 = 0 38

39 u(0, x) = f(x), u (0, x) = g(x) t u(t, x) = 1 v(t, ξ)e ixξ dξ v(0, ξ) = v(0, ξ) = f(x)e ixξ dx, g(x)e ixξ dx, 2 v t 2 (t, ξ) = ξ2 v(t, ξ) v(t, ξ) = iξ f(ξ) + ĝ(ξ) 2iξ u(t, x) = (heat equation) f(x + t) + f(x t) 2 e itξ + iξ f(ξ) ĝ(ξ) e itξ 2iξ u t = D 2 u x 2 (D > 0) x+t x t g(y) dy. u(0, x) = f(x) u(t, x) = 1 v(0, ξ) = 39 e ixξ v(t, ξ)dξ f(y)e iyξ dy.

40 u(t, x) v t (t, ξ) = Dξ2 v(t, ξ) v(t, ξ) = e Dξ2t v(0, ξ) = e Dξ2 t f(y)e iyξ dy. u(t, x) = 1 dy f(y) dξe Dtξ2 +i(x y)ξ dξ 1 = e (x y)2 /(4Dt) f(y) dy 4πDt f(x) = δ(x) x = 0 u(t, x) = 1 4πDt e x2 /(4Dt) 40. Dirichlet y 0 (Laplace equation) f(x, 0) = h(x), f(x, y) = 2 f x f y 2 = 0 lim f(x, y) = 0 y + F (ξ, y)e ixξ dξ (iξ) 2 F + 2 F y 2 = 0 40

41 F (ξ, y) = A(ξ)e ξy + B(ξ)e ξy f(x, y) = 1 = y π F (ξ, y) = 1 ĥ(ξ)e y ξ ĥ(ξ)e ξ y e ixξ dξ = 1 h(t) (x t) 2 + y dt 2 dtdξ h(t)e y ξ e i(x t)ξ 11 f(x + L) = f(x) f(x) = n Z f n e inx f(ξ) = dx f n e ix(ξ n) n = f n dxe ix(ξ n) n = f n δ(ξ n) n 1 dξe ixξ f(ξ) = f n e inx 41 n

42 f(x) g(x) = n Z f(x + n) g g(x)e inx dx = f(x+k)e in(x+k) dx = f(x)e inx dx = f(n) k 11.1 (Poisson s summation formula). f(x + n) = 1 f(n)e inx. n f(x) = δ(x) 1 e inx = δ(x + n). n Z n Z f(x) f(ξ) n f(ξ) = 0 for ξ > α f(ξ) ( ξ α) 2α g g(ξ) = 1 α e iπnξ/α f(η)e iπnη/α dη 2α n α = π e iπnξ/α f(πn/α) α n f(x) = 1 α dξ π α α = n f(πn/α) n f(πn/α)e iξ(x πn/α) sin(αx n) (αx n) f(x) f(πn/α) sampling theorem α α f(ξ) dξ < + f(x) x 42

43 12 P (a X b, c Y d) = P (a X b)p (c Y d). X + Y : P (a X + Y b) = = = a x+y b a u b b a ρ X (x)ρ Y (y) dxdy ρ X (v)ρ Y (u v) dudv ρ X ρ Y (u) du. uρ X ρ Y (u) du = u ρ X (v)ρ Y (u v) dv du = (x + y)ρ X (x)ρ Y (y) dxdy = xρ X (x) dx + yρ Y (y) dy = µ X + µ Y. f g f g = g f, (f g) h = f (g h) ρ j X j (1 j n) X X n ρ 1 ρ 2 ρ n µ σ µ = µ µ n, σ 2 = σ σ 2 n. X Z = X µ σ f X ρ Z f(z) = σρ(σz + µ) 43

44 X X n nµ, nσ Z n = X X n nµ nσ Y j = X j µ g(y) Y Y n g n = g g Z n h n (z) = nσg n ( nσz) nσ (g g)( nσ)e ixξ dx = ĝ = ĝ (g g)(y)e iyξ/( nσ) dy ( ξ nσ ) n ĝ(t) = 1 σ2 2 t ( ) n ) n ξ ĝ = (1 ξ2 nσ 2n +... e ξ2 /2 Z n n e ξ2 /2 e ixξ dξ = 1 e x2 / ( (central limit theorem)). [a, b] lim P (a Z n b) = n t = 0 b ĝ(t) = 1 σ2 2 t2 + o(t 2 ). 44 a e ξ2 /2 dξ.

45 Proof. y y 2 ( y 1) y g(y) dy 1 + y 2 g(y) dy < + ĝ ĝ(0) = 1, ĝ (0) = 0, ĝ (0) = σ 2 Taylor ĝ(t) = 1 + t 0 = 1 σ2 2 t2 + ĝ (s)(t s) ds t = 1 σ2 2 t2 + o(t 2 ) 0 (ĝ (s) + σ 2 )(t s) ds [α, β] Proof. n log ĝ lim ĥ n (ξ) = lim ĝ n n ( ξ nσ ) n = e ξ2 /2 ( ) ) ) ξ = n log (1 ξ2 nσ 2n + o(ξ2 /n) = n ( ξ2 2n + o(ξ2 /n) = ξ2 2 +no(ξ2 /n) n ξ [α, β] ξ 2 / f, g f L 1 (R), g L 1 (R) g(x)f(x) dx = 1 ĝ(ξ) f(ξ) dξ f, ĝ Proof. ( f ĝ) f 1 ĝ f 1 g 1 g f L 1 (R) L 1 (R) L 1 L 2 45

46 12.6. ĥn(ξ) 1 f L 1 (R) lim h n (x)f(x) = 1 e ξ2 /2 f(ξ) dξ n h(x) = e x2 /2 / [a, b] f 0 f ± n (x) 1 f n (x) f(x) f + n (x) f m ± L 1 1 ĥ n f m dξ = h n (x)fm(x) dx h n (x)f(x) dx h n (x)f m(x) + dx = 1 + ĥ n f m dξ h(x)fm(x) dx lim inf h n (x)f(x) dx lim sup h n (x)f(x) dx h(x)f + m(x) dx m b h(x) dx lim inf h n (x)f(x) dx lim sup h n (x)f(x) dx a a b h(x) dx 13 µ f = x f(x) 2 dx, σ f = 46 (x µ f ) 2 f(x) 2 dx.

47 (Quantum Probability), A = A, B = B A 0 = A (f Af), B 0 = B (f Bf) 0 (f (A 0 + itb 0 ) (A 0 + itb 0 )f) = (f A 2 0f) + t 2 (f B 2 0f) + it(f [A 0, B 0 ]f) σ A = 1 4 (f [A, B]f) σ Aσ B. (f A 2 0f), σ B = (f B0f) 2 A = x, B = i d dx [A, B] = i 1 4 (f f) σ Aσ B µ B = (f i d dx f) = ( f ξ f) = µ bf, σ 2 B = ( f (ξ µ bf ) 2 f) = σ 2 bf 13.1 ( (uncertainty principle)). f L 2 (R) σ f σ bf 1 4 f(x) = Ce tx2 +cx, t > 0, c, C C (B 0 + ita 0 )f = 0 f ( ) d dx tx f = cf c C f(x) = Ce tx2 /2+cx 47

48 t > 0 c = a + ib f(x) = ( ) 1/4 t e tx2 /2+cx a 2 /(2t)+iθ π σ f = 1 2t, σ b f = t Hz 20kHz localize test function (750nm) RGB (350nm) Digital Audio sampling frequency 8kHz, CD, 44.1kHz) 48

49 low-pass filter sampling () PCM (pulse code modulation) AM (amplitude modulation) FM (frequency modulation) f(t) ω AM FM f(t)e iωt Ae i(ω+f(t))t Radon CT CT (computer tomography) tomo (cut), anatomy Johann Radon ( ) f(ξ, η) = f(x, y)e ixξ iyη dxdy, R 2 f(x, y) = 1 () 2 = 1 () 2 R 2 0 f(ξ, η)e ixξ+iyη dξdη 0 F (r, θ)e ir(x cos θ+y sin θ) rdrdθ. F (r, θ) = f(x, y )e ir(x cos θ+y sin θ) dx dy R 2 + = du f(x, y )e iru. l u,θ l ρ,θ f(x, y )e irρ = + f(u cos θ v sin θ, u sin θ + v cos θ)dv 49

50 f(x, y) x cos θ + y sin θ = ρ (u, θ) f Radon R f (u, θ) F (r, θ) = + R f (u, θ)e iru du f(x, y) R f (u, θ) R f (u, θ+ π) = R f ( u, θ) A. Cormack G. Hounsfeld 16 N F (n + N) = F (n) (n Z) l N F C N = {z T; z N = 1} ζ n F (n) C ζ = e i/n 1 N f(θ + ) = f(θ) F (n) = f(n/n) (f g) = 0 f(θ)g(θ)dθ (F G) = N n=1 F (n)g(n) N 50

51 F (m) = n=1 f m = 0 f(θ)e imθ dθ N ( ) n imn/n f e N N = N N F (n)e imn/n F (m) F (m + N) = F (m) l N (discrete Fourier transform) N 1 N /N F m N N 1 /N 2N m F 2N 2 N N Cooley Tukey (Fast Fourier Transform) n=1 51

52 C N = {ζ C; ζ N = 1} N e ik/n F (k) F l N N l N M F l 2N G Ĝ 2M + 6N Proof. G l 2N G 0 (k) = G(2k), G 1 (k) = G(2k + 1) (1 k N) G j l N Ĝ0, Ĝ1 2M 2N Ĝ(m) = G(k)e imk/(2n) 2N k=1 ( = π N ) N G(2k)e imk/n + G(2k + 1)e imk/n e πim/n N k=1 k=1 = 1 ) (Ĝ0 (m) + 2 Ĝ1(m)e πim/n 1 m 2N 3 2N = 6N N = 1 = 2 0 M(0) = 0 N = 2 = 2 1 M(1) = 2M(0) N = 2 n l N M(n) M(n) M(n) = 2M(n 1) + 32 n, n = 1, 2,... 52

53 M(n) M(n 1) = n 2 n 1 M(n)/2 n M(n)/2 n = 3n M(n) = 3n2 n = 3N log 2 N 2N 2 n = 10, N = 2 10 = N log 2 N 2N 2 = 3n 2 n+1 = N N = d n (d 2) M d (n) M 2 (n) = 3n2 n 17 (isoperimetric problem) (isoperimetric inequality) A. Hurwitz 4πA l 2. C z(s) (0 s 1), z(0) = z(1) C 1 l = dz ds ds s t = s dz l ds ds

54 0 t dz dt = l l 2 = 0 dz dt C A = x dy = 0 z + z 2 2 d dt dt ( ) z z dt 2i z(0) = z() A = 1 (zdz zdz) = 1 4i 2 I z dz dt dt l 2 2A = z(t) 0 ( dz dz dt dt I z dz ) 0 dt dt 0 z(t) = n c n e int l 2 2A = n (n 2 n) c n 2 n 2 n 0 (n Z) n 2 n 0 n c n = 0 z(t) = c 0 + c 1 e int C ( c 0 c 1 ) 54

55 A X P (a X b) P (a X b) = b a ρ(x) dx = 1. ρ ρ(x) 0 ρ(x) dx = 1 µ = X = f(x) = P (a αx + β b) = f(x)ρ(x) dx. xρ(x) dx, σ 2 = (X µ) 2 = a αx+β b ρ(x) dx = b a (x µ) 2 ρ(x) dx. ( ) y β 1 ρ α α dy. X, Y P (a X a, b Y b ) = ρ(x, y) dxdy. a x a,b y b ρ X (x) = ρ Y (y) = 55 ρ(x, y) dy, ρ(x, y) dx.

56 X = ax + by, Y = cx + dy. ρ (x, y )dx dy = ρ (ax+by, cx+dy)(ad bc)dxdy = D D D ρ(x, y)dxdy (ad bc)ρ (ax + by, cx + dy) = ρ(x, y) ax + by = x ρ (x, y )dx dy = (ax + by)ρ (ax + by, cx + dy)(ad bc)dxdy = (ax + by)ρ(x, y)dxdy = a X + b Y µ X+Y = µ X + µ Y 56

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

2 2 L 5 2. L L L L k.....

2 2 L 5 2. L L L L k..... L 528 206 2 9 2 2 L 5 2. L........................... 5 2.2 L................................... 7 2............................... 9. L..................2 L k........................ 2 4 I 5 4. I...................................

More information

John K. Hunter nd B. Nchtergele, Applied Anlysis, World Scientific, 21. Wine cellr Applied Anlysis M. Reed nd B. Simon, Functionl Anlysis, Acdemic Pre

John K. Hunter nd B. Nchtergele, Applied Anlysis, World Scientific, 21. Wine cellr Applied Anlysis M. Reed nd B. Simon, Functionl Anlysis, Acdemic Pre 214 1 24 1 John K. Hunter nd B. Nchtergele, Applied Anlysis, World Scientific, 21. Wine cellr Applied Anlysis M. Reed nd B. Simon, Functionl Anlysis, Acdemic Press, 198. (fourier22, integrl27) (hilbert212)

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

A 2008 10 (2010 4 ) 1 1 1.1................................. 1 1.2..................................... 1 1.3............................ 3 1.3.1............................. 3 1.3.2..................................

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1) 1. 1.1...,. 1.1.1 V, V x, y, x y x + y x + y V,, V x α, αx αx V,, (i) (viii) : x, y, z V, α, β C, (i) x + y = y + x. (ii) (x + y) + z = x + (y + z). 1 (iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

( 12 ( ( ( ( Levi-Civita grad div rot ( ( = 4 : 6 3 1 1.1 f(x n f (n (x, d n f(x (1.1 dxn f (2 (x f (x 1.1 f(x = e x f (n (x = e x d dx (fg = f g + fg (1.2 d dx d 2 dx (fg = f g + 2f g + fg 2... d n n

More information

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x n= n 2 = π2 6 3 2 28 + 4 + 9 + = π2 6 2 f(z) f(z) 2 f(z) = u(z) + iv(z) * f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x f x = i f y * u, v 3 3. 3 f(t) = u(t) + v(t) [, b] f(t)dt = u(t)dt

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

Microsoft Word - 信号処理3.doc

Microsoft Word - 信号処理3.doc Junji OHTSUBO 2012 FFT FFT SN sin cos x v ψ(x,t) = f (x vt) (1.1) t=0 (1.1) ψ(x,t) = A 0 cos{k(x vt) + φ} = A 0 cos(kx ωt + φ) (1.2) A 0 v=ω/k φ ω k 1.3 (1.2) (1.2) (1.2) (1.1) 1.1 c c = a + ib, a = Re[c],

More information

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 -

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 - M3............................................................................................ 3.3................................................... 3 6........................................... 6..........................................

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: sin 6 5 ζ a, b Z: Q: R: C: 3 3 7 4 sin 6 5 ζ 9 6 6............................... 6............................... 6.3......................... 4 7 6 8 8 9 3 33 a, b a bc c b a a b 5 3 5 3 5 5 3 a a a a p > p p p, 3,

More information

Lebesgue Fubini L p Banach, Hilbert Höld

Lebesgue Fubini L p Banach, Hilbert Höld II (Analysis II) Lebesgue (Applications of Lebesgue Integral Theory) 1 (Seiji HIABA) 1 ( ),,, ( ) 1 1 1.1 1 Lebesgue........................ 1 1.2 2 Fubini...................... 2 2 L p 5 2.1 Banach, Hilbert..............................

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

ft. ft τfτdτ = e t.5.. fx = x [ π, π] n sinnx n n=. π a π a, x [ π, π] x = a n cosnx cosna + 4 n=. 3, x [ π, π] x 3 π x = n sinnx. n=.6 f, t gt n 3 n

ft. ft τfτdτ = e t.5.. fx = x [ π, π] n sinnx n n=. π a π a, x [ π, π] x = a n cosnx cosna + 4 n=. 3, x [ π, π] x 3 π x = n sinnx. n=.6 f, t gt n 3 n [ ]. A = IC X n 3 expx = E + expta t : n! n=. fx π x π. { π x < fx = x π fx F k F k = π 9 s9 fxe ikx dx, i =. F k. { x x fx = x >.3 ft = cosωt F s = s4 e st ftdt., e, s. s = c + iφ., i, c, φ., Gφ = lim

More information

振動と波動

振動と波動 Report JS0.5 J Simplicity February 4, 2012 1 J Simplicity HOME http://www.jsimplicity.com/ Preface 2 Report 2 Contents I 5 1 6 1.1..................................... 6 1.2 1 1:................ 7 1.3

More information

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p 2012 IA 8 I 1 10 10 29 1. [0, 1] n x = 1 (n = 1, 2, 3,...) 2 f(x) = n 0 [0, 1] 2. 1 x = 1 (n = 1, 2, 3,...) 2 f(x) = n 0 [0, 1] 1 0 f(x)dx 3. < b < c [, c] b [, c] 4. [, b] f(x) 1 f(x) 1 f(x) [, b] 5.

More information

2S III IV K A4 12:00-13:30 Cafe David 1 2 TA 1 appointment Cafe David K2-2S04-00 : C

2S III IV K A4 12:00-13:30 Cafe David 1 2 TA 1  appointment Cafe David K2-2S04-00 : C 2S III IV K200 : April 16, 2004 Version : 1.1 TA M2 TA 1 10 2 n 1 ɛ-δ 5 15 20 20 45 K2-2S04-00 : C 2S III IV K200 60 60 74 75 89 90 1 email 3 4 30 A4 12:00-13:30 Cafe David 1 2 TA 1 email appointment Cafe

More information

= M + M + M + M M + =.,. f = < ρ, > ρ ρ. ρ f. = ρ = = ± = log 4 = = = ± f = k k ρ. k

= M + M + M + M M + =.,. f = < ρ, > ρ ρ. ρ f. = ρ = = ± = log 4 = = = ± f = k k ρ. k 7 b f n f} d = b f n f d,. 5,. [ ] ɛ >, n ɛ + + n < ɛ. m. n m log + < n m. n lim sin kπ sin kπ } k π sin = n n n. k= 4 f, y = r + s, y = rs f rs = f + r + sf y + rsf yy + f y. f = f =, f = sin. 5 f f =.

More information

App. of Leb. Integral Theory (S. Hiraba) Lebesgue (X, F, µ) (measure space)., X, 2 X, F 2 X σ (σ-field), i.e., (1) F, (2) A F = A c F, (3)

App. of Leb. Integral Theory (S. Hiraba) Lebesgue (X, F, µ) (measure space)., X, 2 X, F 2 X σ (σ-field), i.e., (1) F, (2) A F = A c F, (3) Lebesgue (Applications of Lebesgue Integral Theory) (Seiji HIABA) 1 1 1.1 1 Lebesgue........................ 1 1.2 2 Fubini...................... 2 2 L p 5 2.1 Banach, Hilbert..............................

More information

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0. () 6 f(x) [, b] 6. Riemnn [, b] f(x) S f(x) [, b] (Riemnn) = x 0 < x < x < < x n = b. I = [, b] = {x,, x n } mx(x i x i ) =. i [x i, x i ] ξ i n (f) = f(ξ i )(x i x i ) i=. (ξ i ) (f) 0( ), ξ i, S, ε >

More information

phs.dvi

phs.dvi 483F 3 6.........3... 6.4... 7 7.... 7.... 9.5 N (... 3.6 N (... 5.7... 5 3 6 3.... 6 3.... 7 3.3... 9 3.4... 3 4 7 4.... 7 4.... 9 4.3... 3 4.4... 34 4.4.... 34 4.4.... 35 4.5... 38 4.6... 39 5 4 5....

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

4................................. 4................................. 4 6................................. 6................................. 9.................................................... 3..3..........................

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

body.dvi

body.dvi ..1 f(x) n = 1 b n = 1 f f(x) cos nx dx, n =, 1,,... f(x) sin nx dx, n =1,, 3,... f(x) = + ( n cos nx + b n sin nx) n=1 1 1 5 1.1........................... 5 1.......................... 14 1.3...........................

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

1 Fourier Fourier Fourier Fourier Fourier Fourier Fourier Fourier Fourier analog digital Fourier Fourier Fourier Fourier Fourier Fourier Green Fourier

1 Fourier Fourier Fourier Fourier Fourier Fourier Fourier Fourier Fourier analog digital Fourier Fourier Fourier Fourier Fourier Fourier Green Fourier Fourier Fourier Fourier etc * 1 Fourier Fourier Fourier (DFT Fourier (FFT Heat Equation, Fourier Series, Fourier Transform, Discrete Fourier Transform, etc Yoshifumi TAKEDA 1 Abstract Suppose that u is

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

u = u(t, x 1,..., x d ) : R R d C λ i = 1 := x 2 1 x 2 d d Euclid Laplace Schrödinger N := {1, 2, 3,... } Z := {..., 3, 2, 1,, 1, 2, 3

u = u(t, x 1,..., x d ) : R R d C λ i = 1 := x 2 1 x 2 d d Euclid Laplace Schrödinger N := {1, 2, 3,... } Z := {..., 3, 2, 1,, 1, 2, 3 2 2 1 5 5 Schrödinger i u t + u = λ u 2 u. u = u(t, x 1,..., x d ) : R R d C λ i = 1 := 2 + + 2 x 2 1 x 2 d d Euclid Laplace Schrödinger 3 1 1.1 N := {1, 2, 3,... } Z := {..., 3, 2, 1,, 1, 2, 3,... } Q

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f 22 A 3,4 No.3 () (2) (3) (4), (5) (6) (7) (8) () n x = (x,, x n ), = (,, n ), x = ( (x i i ) 2 ) /2 f(x) R n f(x) = f() + i α i (x ) i + o( x ) α,, α n g(x) = o( x )) lim x g(x) x = y = f() + i α i(x )

More information

v er.1/ c /(21)

v er.1/ c /(21) 12 -- 1 1 2009 1 17 1-1 1-2 1-3 1-4 2 2 2 1-5 1 1-6 1 1-7 1-1 1-2 1-3 1-4 1-5 1-6 1-7 c 2011 1/(21) 12 -- 1 -- 1 1--1 1--1--1 1 2009 1 n n α { n } α α { n } lim n = α, n α n n ε n > N n α < ε N {1, 1,

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

i

i i 3 4 4 7 5 6 3 ( ).. () 3 () (3) (4) /. 3. 4/3 7. /e 8. a > a, a = /, > a >. () a >, a =, > a > () a > b, a = b, a < b. c c n a n + b n + c n 3c n..... () /3 () + (3) / (4) /4 (5) m > n, a b >, m > n,

More information

text.dvi

text.dvi I kawazoe@sfc.keio.ac.jp chap. Fourier Jean-Baptiste-Joseph Fourier (768.3.-83.5.6) Auxerre Ecole Polytrchnique Napoleon G.Monge Isere Napoleon Academie Francaise [] [ ] [] [] [ ] [ ] [] chap. + + Fourier

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

Chap11.dvi

Chap11.dvi . () x 3 + dx () (x )(x ) dx + sin x sin x( + cos x) dx () x 3 3 x + + 3 x + 3 x x + x 3 + dx 3 x + dx 6 x x x + dx + 3 log x + 6 log x x + + 3 rctn ( ) dx x + 3 4 ( x 3 ) + C x () t x t tn x dx x. t x

More information

Z[i] Z[i] π 4,1 (x) π 4,3 (x) 1 x (x ) 2 log x π m,a (x) 1 x ϕ(m) log x 1.1 ( ). π(x) x (a, m) = 1 π m,a (x) x modm a 1 π m,a (x) 1 ϕ(m) π(x)

Z[i] Z[i] π 4,1 (x) π 4,3 (x) 1 x (x ) 2 log x π m,a (x) 1 x ϕ(m) log x 1.1 ( ). π(x) x (a, m) = 1 π m,a (x) x modm a 1 π m,a (x) 1 ϕ(m) π(x) 3 3 22 Z[i] Z[i] π 4, (x) π 4,3 (x) x (x ) 2 log x π m,a (x) x ϕ(m) log x. ( ). π(x) x (a, m) = π m,a (x) x modm a π m,a (x) ϕ(m) π(x) ϕ(m) x log x ϕ(m) m f(x) g(x) (x α) lim f(x)/g(x) = x α mod m (a,

More information

untitled

untitled 20010916 22;1017;23;20020108;15;20; 1 N = {1, 2, } Z + = {0, 1, 2, } Z = {0, ±1, ±2, } Q = { p p Z, q N} R = { lim a q n n a n Q, n N; sup a n < } R + = {x R x 0} n = {a + b 1 a, b R} u, v 1 R 2 2 R 3

More information

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C 8 ( ) 8 5 4 I II III A B C( ),,, 5 I II A B ( ),, I II A B (8 ) 6 8 I II III A B C(8 ) n ( + x) n () n C + n C + + n C n = 7 n () 7 9 C : y = x x A(, 6) () A C () C P AP Q () () () 4 A(,, ) B(,, ) C(,,

More information

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,,

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,, 01 10 18 ( ) 1 6 6 1 8 8 1 6 1 0 0 0 0 1 Table 1: 10 0 8 180 1 1 1. ( : 60 60 ) : 1. 1 e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1,

More information

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω ω α 3 3 2 2V 3 33+.6T m T 5 34m Hz. 34 3.4m 2 36km 5Hz. 36km m 34 m 5 34 + m 5 33 5 =.66m 34m 34 x =.66 55Hz, 35 5 =.7 485.7Hz 2 V 5Hz.5V.5V V

More information

mugensho.dvi

mugensho.dvi 1 1 f (t) lim t a f (t) = 0 f (t) t a 1.1 (1) lim(t 1) 2 = 0 t 1 (t 1) 2 t 1 (2) lim(t 1) 3 = 0 t 1 (t 1) 3 t 1 2 f (t), g(t) t a lim t a f (t) g(t) g(t) f (t) = o(g(t)) (t a) = 0 f (t) (t 1) 3 1.2 lim

More information

DVIOUT

DVIOUT A. A. A-- [ ] f(x) x = f 00 (x) f 0 () =0 f 00 () > 0= f(x) x = f 00 () < 0= f(x) x = A--2 [ ] f(x) D f 00 (x) > 0= y = f(x) f 00 (x) < 0= y = f(x) P (, f()) f 00 () =0 A--3 [ ] y = f(x) [, b] x = f (y)

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

B2 ( 19 ) Lebesgue ( ) ( ) 0 This note is c 2007 by Setsuo Taniguchi. It may be used for personal or classroom purposes, but not for commercia

B2 ( 19 ) Lebesgue ( ) ( ) 0 This note is c 2007 by Setsuo Taniguchi. It may be used for personal or classroom purposes, but not for commercia B2 ( 19) Lebesgue ( ) ( 19 7 12 ) 0 This note is c 2007 by Setsuo Taniguchi. It may be used for personal or classroom purposes, but not for commercial purposes. i Riemann f n : [0, 1] R 1, x = k (1 m

More information

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ = 1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A

More information

A S hara/lectures/lectures-j.html ϵ-n 1 ϵ-n lim n a n = α n a n α 2 lim a n = 0 1 n a k n n k= ϵ

A S hara/lectures/lectures-j.html ϵ-n 1 ϵ-n lim n a n = α n a n α 2 lim a n = 0 1 n a k n n k= ϵ A S1-20 http://www2.mth.kyushu-u.c.jp/ hr/lectures/lectures-j.html 1 1 1.1 ϵ-n 1 ϵ-n lim n n = α n n α 2 lim n = 0 1 n k n n k=1 0 1.1.7 ϵ-n 1.1.1 n α n n α lim n n = α ϵ N(ϵ) n > N(ϵ) n α < ϵ (1.1.1)

More information

B [ 0.1 ] x > 0 x 6= 1 f(x) µ 1 1 xn 1 + sin sin x 1 x 1 f(x) := lim. n x n (1) lim inf f(x) (2) lim sup f(x) x 1 0 x 1 0 (

B [ 0.1 ] x > 0 x 6= 1 f(x) µ 1 1 xn 1 + sin sin x 1 x 1 f(x) := lim. n x n (1) lim inf f(x) (2) lim sup f(x) x 1 0 x 1 0 ( . 28 4 14 [.1 ] x > x 6= 1 f(x) µ 1 1 xn 1 + sin + 2 + sin x 1 x 1 f(x) := lim. 1 + x n (1) lim inf f(x) (2) lim sup f(x) x 1 x 1 (3) lim inf x 1+ f(x) (4) lim sup f(x) x 1+ [.2 ] [, 1] Ω æ x (1) (2) nx(1

More information

(u(x)v(x)) = u (x)v(x) + u(x)v (x) ( ) u(x) = u (x)v(x) u(x)v (x) v(x) v(x) 2 y = g(t), t = f(x) y = g(f(x)) dy dx dy dx = dy dt dt dx., y, f, g y = f (g(x))g (x). ( (f(g(x)). ). [ ] y = e ax+b (a, b )

More information

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B 1 1.1 1 r 1 m A r/m i) t ii) m i) t Bt; m) Bt; m) = A 1 + r ) mt m ii) Bt; m) Bt; m) = A 1 + r ) mt m { = A 1 + r ) m } rt r m n = m r m n Bt; m) Aert e lim 1 + 1 n 1.1) n!1 n) e a 1, a 2, a 3,... {a n

More information

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { ( 5 5.1 [ ] ) d f(t) + a d f(t) + bf(t) : f(t) 1 dt dt ) u(x, t) c u(x, t) : u(x, t) t x : ( ) ) 1 : y + ay, : y + ay + by : ( ) 1 ) : y + ay, : yy + ay 3 ( ): ( ) ) : y + ay, : y + ay b [],,, [ ] au xx

More information

1 : f(z = re iθ ) = u(r, θ) + iv(r, θ). (re iθ ) 2 = r 2 e 2iθ = r 2 cos 2θ + ir 2 sin 2θ r f(z = x + iy) = u(x, y) + iv(x, y). (x + iy) 2 = x 2 y 2 +

1 : f(z = re iθ ) = u(r, θ) + iv(r, θ). (re iθ ) 2 = r 2 e 2iθ = r 2 cos 2θ + ir 2 sin 2θ r f(z = x + iy) = u(x, y) + iv(x, y). (x + iy) 2 = x 2 y 2 + 1.3 1.4. (pp.14-27) 1 1 : f(z = re iθ ) = u(r, θ) + iv(r, θ). (re iθ ) 2 = r 2 e 2iθ = r 2 cos 2θ + ir 2 sin 2θ r f(z = x + iy) = u(x, y) + iv(x, y). (x + iy) 2 = x 2 y 2 + i2xy x = 1 y (1 + iy) 2 = 1

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

1 yousuke.itoh/lecture-notes.html [0, π) f(x) = x π 2. [0, π) f(x) = x 2π 3. [0, π) f(x) = x 2π 1.2. Euler α

1   yousuke.itoh/lecture-notes.html [0, π) f(x) = x π 2. [0, π) f(x) = x 2π 3. [0, π) f(x) = x 2π 1.2. Euler α 1 http://sasuke.hep.osaka-cu.ac.jp/ yousuke.itoh/lecture-notes.html 1.1. 1. [, π) f(x) = x π 2. [, π) f(x) = x 2π 3. [, π) f(x) = x 2π 1.2. Euler dx = 2π, cos mxdx =, sin mxdx =, cos nx cos mxdx = πδ mn,

More information

2.2 ( y = y(x ( (x 0, y 0 y (x 0 (y 0 = y(x 0 y = y(x ( y (x 0 = F (x 0, y(x 0 = F (x 0, y 0 (x 0, y 0 ( (x 0, y 0 F (x 0, y 0 xy (x, y (, F (x, y ( (

2.2 ( y = y(x ( (x 0, y 0 y (x 0 (y 0 = y(x 0 y = y(x ( y (x 0 = F (x 0, y(x 0 = F (x 0, y 0 (x 0, y 0 ( (x 0, y 0 F (x 0, y 0 xy (x, y (, F (x, y ( ( (. x y y x f y = f(x y x y = y(x y x y dx = d dx y(x = y (x = f (x y = y(x x ( (differential equation ( + y 2 dx + xy = 0 dx = xy + y 2 2 2 x y 2 F (x, y = xy + y 2 y = y(x x x xy(x = F (x, y(x + y(x 2

More information

30 I .............................................2........................................3................................................4.......................................... 2.5..........................................

More information

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou (Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fourier) (Fourier Bessel).. V ρ(x, y, z) V = 4πGρ G :.

More information

B 38 1 (x, y), (x, y, z) (x 1, x 2 ) (x 1, x 2, x 3 ) 2 : x 2 + y 2 = 1. (parameter) x = cos t, y = sin t. y = f(x) r(t) = (x(t), y(t), z(t)), a t b.

B 38 1 (x, y), (x, y, z) (x 1, x 2 ) (x 1, x 2, x 3 ) 2 : x 2 + y 2 = 1. (parameter) x = cos t, y = sin t. y = f(x) r(t) = (x(t), y(t), z(t)), a t b. 2009 7 9 1 2 2 2 3 6 4 9 5 14 6 18 7 23 8 25 9 26 10 29 11 32 12 35 A 37 1 B 38 1 (x, y), (x, y, z) (x 1, x 2 ) (x 1, x 2, x 3 ) 2 : x 2 + y 2 = 1. (parameter) x = cos t, y = sin t. y = f(x) r(t) = (x(t),

More information

1

1 1 1 7 1.1.................................. 11 2 13 2.1............................ 13 2.2............................ 17 2.3.................................. 19 3 21 3.1.............................

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10 1 2007.4.13. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 0. 1. 1. 2. 3. 2. ɛ-δ 1. ɛ-n

More information

leb224w.dvi

leb224w.dvi 2 4 i Lebesgue Fourier 7 5 Lebesgue Walter. F. Riesz and B. Sz.-Nagy, Functional Analysis, Dover Publ. Inc., New York (99) ( 49 ) 2. ( 8 ) 3. A.2 Fourier Laplace (957 ) 4. (98 ) 5. G. G. Walter, Wavelets

More information

I , : ~/math/functional-analysis/functional-analysis-1.tex

I , : ~/math/functional-analysis/functional-analysis-1.tex I 1 2004 8 16, 2017 4 30 1 : ~/math/functional-analysis/functional-analysis-1.tex 1 3 1.1................................... 3 1.2................................... 3 1.3.....................................

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63> 通信方式第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/072662 このサンプルページの内容は, 第 2 版発行当時のものです. i 2 2 2 2012 5 ii,.,,,,,,.,.,,,,,.,,.,,..,,,,.,,.,.,,.,,.. 1990 5 iii 1 1

More information

1 a b = max{a, b}, a b = mi{a, b} a 1 a 2 a a 1 a = max{a 1,... a }, a 1 a = mi{a 1,... a }. A sup A, if A A A A A sup A sup A = + A if A = ± y = arct

1 a b = max{a, b}, a b = mi{a, b} a 1 a 2 a a 1 a = max{a 1,... a }, a 1 a = mi{a 1,... a }. A sup A, if A A A A A sup A sup A = + A if A = ± y = arct 27 6 2 1 2 2 5 3 8 4 13 5 16 6 19 7 23 8 27 N Z = {, ±1, ±2,... }, R =, R + = [, + ), R = [, ], C =. a b = max{a, b}, a b = mi{a, b}, a a, a a. f : X R [a < f < b] = {x X; a < f(x) < b}. X [f] = [f ],

More information

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2 1 1.1 R(x) = 0 y + P (x)y + Q(x)y = R(x)...(1) y + P (x)y + Q(x)y = 0...(2) 1 2 u(x) v(x) c 1 u(x)+ c 2 v(x) = 0 c 1 = c 2 = 0 c 1 = c 2 = 0 2 0 2 u(x) v(x) u(x) u (x) W (u, v)(x) = v(x) v (x) 0 1 1.2

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction 1 (1) (2) {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction 1 (1) (2) {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a % 100% 1 Introduction 2 (100%) 2.1 2.2 2.3 3 (100%) 3.1 3.2 σ- 4 (100%) 4.1 4.2 5 (100%) 5.1 5.2 5.3 6 (100%) 7 (40%) 8 Fubini (90%) 2007.11.5 1 8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory

More information

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x ( II (1 4 ) 1. p.13 1 (x, y) (a, b) ε(x, y; a, b) f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a x a A = f x (a, b) y x 3 3y 3 (x, y) (, ) f (x, y) = x + y (x, y) = (, )

More information

36 3 D f(z) D z f(z) z Taylor z D C f(z) z C C f (z) C f(z) f (z) f(z) D C D D z C C 3.: f(z) 3. f (z) f 2 (z) D D D D D f (z) f 2 (z) D D f (z) f 2 (

36 3 D f(z) D z f(z) z Taylor z D C f(z) z C C f (z) C f(z) f (z) f(z) D C D D z C C 3.: f(z) 3. f (z) f 2 (z) D D D D D f (z) f 2 (z) D D f (z) f 2 ( 3 3. D f(z) D D D D D D D D f(z) D f (z) f (z) f(z) D (i) (ii) (iii) f(z) = ( ) n z n = z + z 2 z 3 + n= z < z < z > f (z) = e t(+z) dt Re z> Re z> [ ] f (z) = e t(+z) = (Rez> ) +z +z t= z < f(z) Taylor

More information

Radiation from moving charges#1 Liénard-Wiechert potential Yuji Chinone 1 Maxwell Maxwell MKS E (x, t) + B (x, t) t = 0 (1) B (x, t) = 0 (2) B (x, t)

Radiation from moving charges#1 Liénard-Wiechert potential Yuji Chinone 1 Maxwell Maxwell MKS E (x, t) + B (x, t) t = 0 (1) B (x, t) = 0 (2) B (x, t) Radiation from moving harges# Liénard-Wiehert potential Yuji Chinone Maxwell Maxwell MKS E x, t + B x, t = B x, t = B x, t E x, t = µ j x, t 3 E x, t = ε ρ x, t 4 ε µ ε µ = E B ρ j A x, t φ x, t A x, t

More information

I 1

I 1 I 1 1 1.1 1. 3 m = 3 1 7 µm. cm = 1 4 km 3. 1 m = 1 1 5 cm 4. 5 cm 3 = 5 1 15 km 3 5. 1 = 36 6. 1 = 8.64 1 4 7. 1 = 3.15 1 7 1 =3 1 7 1 3 π 1. 1. 1 m + 1 cm = 1.1 m. 1 hr + 64 sec = 1 4 sec 3. 3. 1 5 kg

More information

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1 1/5 ( ) Taylor ( 7.1) (x, y) f(x, y) f(x, y) x + y, xy, e x y,... 1 R {(x, y) x, y R} f(x, y) x y,xy e y log x,... R {(x, y, z) (x, y),z f(x, y)} R 3 z 1 (x + y ) z ax + by + c x 1 z ax + by + c y x +

More information

y = f(x) y = f( + h) f(), x = h dy dx f () f (derivtive) (differentition) (velocity) p(t) =(x(t),y(t),z(t)) ( dp dx dt = dt, dy dt, dz ) dt f () > f x

y = f(x) y = f( + h) f(), x = h dy dx f () f (derivtive) (differentition) (velocity) p(t) =(x(t),y(t),z(t)) ( dp dx dt = dt, dy dt, dz ) dt f () > f x I 5 2 6 3 8 4 Riemnn 9 5 Tylor 8 6 26 7 3 8 34 f(x) x = A = h f( + h) f() h A (differentil coefficient) f f () y = f(x) y = f( + h) f(), x = h dy dx f () f (derivtive) (differentition) (velocity) p(t)

More information

prime number theorem

prime number theorem For Tutor MeBio ζ Eite by kamei MeBio 7.8.3 : Bernoulli Bernoulli 4 Bernoulli....................................................................................... 4 Bernoulli............................................................................

More information

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. tomocci 18 7 5...,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. M F (M), X(F (M)).. T M p e i = e µ i µ. a a = a i

More information

Fubini

Fubini 3............................... 3................................ 5.3 Fubini........................... 7.4.............................5..........................6.............................. 3.7..............................

More information

数値計算:フーリエ変換

数値計算:フーリエ変換 ( ) 1 / 72 1 8 2 3 4 ( ) 2 / 72 ( ) 3 / 72 ( ) 4 / 72 ( ) 5 / 72 sample.m Fs = 1000; T = 1/Fs; L = 1000; t = (0:L-1)*T; % Sampling frequency % Sample time % Length of signal % Time vector y=1+0.7*sin(2*pi*50*t)+sin(2*pi*120*t)+2*randn(size(t));

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy z fz fz x, y, u, v, r, θ r > z = x + iy, f = u + iv γ D fz fz D fz fz z, Rm z, z. z = x + iy = re iθ = r cos θ + i sin θ z = x iy = re iθ = r cos θ i sin θ x = z + z = Re z, y = z z = Im z i r = z = z

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2 filename=mathformula58.tex ax + bx + c =, x = b ± b 4ac, (.) a x + x = b a, x x = c a, (.) ax + b x + c =, x = b ± b ac. a (.3). sin(a ± B) = sin A cos B ± cos A sin B, (.) cos(a ± B) = cos A cos B sin

More information

2000年度『数学展望 I』講義録

2000年度『数学展望 I』講義録 2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53

More information

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P 1 1.1 (population) (sample) (event) (trial) Ω () 1 1 Ω 1.2 P 1. A A P (A) 0 1 0 P (A) 1 (1) 2. P 1 P 0 1 6 1 1 6 0 3. A B P (A B) = P (A) + P (B) (2) A B A B A 1 B 2 A B 1 2 1 2 1 1 2 2 3 1.3 A B P (A

More information

数学の基礎訓練I

数学の基礎訓練I I 9 6 13 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 3 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

[1] 1.1 x(t) t x(t + n ) = x(t) (n = 1,, 3, ) { x(t) : : 1 [ /, /] 1 x(t) = a + a 1 cos πt + a cos 4πt + + a n cos nπt + + b 1 sin πt + b sin 4πt = a

[1] 1.1 x(t) t x(t + n ) = x(t) (n = 1,, 3, ) { x(t) : : 1 [ /, /] 1 x(t) = a + a 1 cos πt + a cos 4πt + + a n cos nπt + + b 1 sin πt + b sin 4πt = a 13/7/1 II ( / A: ) (1) 1 [] (, ) ( ) ( ) ( ) etc. etc. 1. 1 [1] 1.1 x(t) t x(t + n ) = x(t) (n = 1,, 3, ) { x(t) : : 1 [ /, /] 1 x(t) = a + a 1 cos πt + a cos 4πt + + a n cos nπt + + b 1 sin πt + b sin

More information