Size: px
Start display at page:

Download ""

Transcription

1 A ( )

2

3 Taylor Taylor [ ] (chain rule) (Leibniz rule) x AM iii

4 iv Fourier Fourier Fourier Fourier Fourier Dirac Kronecker Dirac Fourier Fourier Fourier

5 v r = ix + jy + kz, f(r) = f(x, y, z), r = i x + j y + k z = grad =, 2 r = 2 r r = 2 = = 2 x y z, 2 df(r) = f(r + dr) f(r) = gradf(r) dr = f(r) dr = f(r) r dv = d 3 r = dx dy dz ( = dτ), dr, i = 1, ( ) z = x + iy = r e iθ, z = x iy = r e iθ, z = x 2 + y 2 = r, arg z = tan 1 y x = θ, ( ) ( ) ( ) Re z = x, Im z = y, ( ) ( )

6 vi A α a alpha B β b beta Γ γ g gamma δ d delta E ɛ, ε e epsilon Z ζ z zeta H η e eta Θ θ, ϑ th theta I ι i iota K κ k kappa Λ λ l lambda M µ m mu N ν n nu Ξ ξ x xi O o o omicron Π π p pi P ρ r rho Σ σ s sigma T τ t tau Υ υ u, y upsilon Φ φ, ϕ ph phi X χ ch chi Ψ ψ ps psi Ω ω o omega

7 ( ) vii

8 viii ( ) (ζ) (ξ)

9 e iθ θ e iθ = 1 e iθ = cos θ + i sin θ (1.1.1) z = x + iy z = x 2 + y 2 e iθ = cos 2 θ + sin 2 θ = 1 e iθ z z 2 = z 2 1

10 2 A ( ) 1.2 or z z = x + iy ; 2 z, z (modulus) r = z, r = z (argument) θ = arg z, θ = arg z z z z z = z z, arg(z z ) = arg(z) + arg(z ) z = x + iy i (arg i = π/2 = 90 ) 90 i i = i 2 = 1 1 =

11 z = 1 z θ = arg z z θ θ z = z 1 z θ z = f(θ) f(θ) f(θ ) = f(θ + θ ) θ θ θ + θ f(0) = 1 f(θ) z = f(θ) = e cθ c c θ z = e cθ ( ) 1 θ 0 2π z z = 1 z = 1 2π 2π 1 z = 1 (θ = 0) 1 θ = 0 ( ) i de cθ dθ = c = i, θ=0 c = i 1 θ z z = e iθ e iθ e iθ = cos θ + i sin θ ( )

12 4 A z r (= z ), θ (= arg z) z r (> 0) θ r e iθ z z = re iθ ( ) e iθ = 1 e iθ ( e i(α+β) = e iα e iβ ) i e iθ 0 θ z = 3 e iπ/6 z

13 5 1.4 x f(x) = e ikx k f(x) 1.5 z = i 1.6 z = 1 + i 1.7 z = 1 + i z z 7 = z 7 = 1 7 ω 0 = 1, ω 1 ω 2,..., ω ω 1 + ω ω 6 = 0, 1.10 z 11 = 1 11 ω 0 = 1, ω 1 ω 2,..., ω ω 1 + ω ω 10 = 0, 1.11 z z = z 2 z z 1.12 z = e a+ib a, b 1.13 z = e a+ib a, b 1.14 z = e iθ θ 0 π z 1.15 z = e iθ θ 0 π z 1.16 z = e iθ θ 0 3π/2 z 1.17 z = 2e iθ θ 0 2π z 1.18 θ 0 2π z (1) z = 1 + e iθ (2) z = i + e iθ (3) z = 1 + i + e iθ (4) z = 1 + i + 2 e iθ 1.19 θ 0 2π ( z 1 = 1 + θ ) ( e iθ z 2 = 2 + θ ) ie 2iθ 2π π

14 6 A 1.20 ( ) θ 0 2π 4 z = 3 + cos θ eiθ 1.21 ( ) θ z 1 = θ 2π eiθ (θ > 0) z 2 = e θ+iθ ( < θ < ) 1.22 ( ) z 2 α e α ( e iθ) 2 = e 2iθ cos, sin 1.24 ( e iθ) 3 = e 3iθ cos, sin 1.25 e i(α+β) = e iα e iβ cos, sin 1.26 sin θ, cos θ 1.27 α = α + β 2 β = α + β 2 + α β, 2 α β 2 e iα + e iβ, e iα e iβ

15 x = 0 x Taylor x 3 (1) e x (2) (1 + x) α 2.2 ( ) dy (1) dx = y d 2 y (2) dx = 2 ω2 y (ω > 0) 2.3 y = Ae x2 d 2 y/dx 2 A 2.4 x (i.e. x ) x 10, x 10, x 1/100, 1, e x, e x, ln x. 2.5 y = f(x) y = f(x) cos 6x y y = f(x) π 2 0 π 2 π 3π 2 2π 5π 2 x 2.6 e ax2 dx. (a > 0) 7

16 8 A e ξ2 dξ = π 2.7 f(x) [a, b] [a, b] N x n x n = a + (b a)n/n (n = 0, 1,, N) f(x) [a, b] lim N lim N 1 N N f(x n ), n=1 N f(x n ), n=1 lim N lim N N f(x n )(b a), n=1 1 N N f(x n )(b a). n=1 2.8 x-y (r, ϕ) (x = r cos ϕ, y = r sin ϕ.) 2.9 x-y-z (r, θ, ϕ) (x = r sin θ cos ϕ, y = r sin θ sin ϕ, z = r cos θ.) 2.2 Taylor = ( ) 2 = = =

17 = ( ) 3 = = = ( ) 3 = = x f(x) x x f(x) = c 0 + c 1 x + c 2 x 2 + c 3 x 3 + (2.2.1) f(x) x = 0.01 x 2 = 0.001, x 3 = x f(x) = 1/(1 + x) x (2.2.1) f(x) f(x)(1 + x) = 1 1 = (c 0 + c 1 x + c 2 x 2 + c 3 x 3 + )(1 + x) = c 0 + c 1 x + c 2 x 2 + c 3 x c 0 x + c 1 x 2 + c 2 x 3 + c 3 x 4 + = c 0 + (c 1 + c 0 )x + (c 2 + c 1 )x 2 + (c 3 + c 2 )x 3 +

18 10 A c n c 0 = 1, c 1 + c 0 = 0, c 2 + c 1 = 0, c 3 + c 2 = 0, c 0 = 1, c 1 = c 0 = 1, c 2 = c 1 = 1, c 3 = c 2 = 1, x = 1 x + x2 x 3 +. (2.2.2) x = = = x e x e ( e = lim n. (2.2.3) n n) x > 0 ( e x = lim ) nx n n = lim N ( 1 + x N ) N. N = nx N ( 1 + x ) N N x N(N 1) ( x ) 2 N(N 1)(N 2) ( x ) 3 = N 1! N ( 2! N 3! N = 1 + x ) ( 1 N 2! x ) ( 1 2 ) 1 N N 3! x3 + N e x = 1 + x + 1 2! x ! x3 + (2.2.4) x > 0 x e 0.1 3

19 Taylor 1/(1 + x) e x Taylor f(x) x = a Taylor f(x) = f(a) + f (a)(x a) + f (a) (x a) 2 + f (a) (x a) 3 + (2.2.5) 2! 3! f (n) (a) = (x a) n, n! n=0 a = 0 f(x) = f(0) + f (0)x + f (0) x 2 + f (0) x 3 + (2.2.6) 2! 3! f (n) (0) = x n. n! n=0 Taylor x f(x) = c 0 + c 1 x + c 2 x 2 + c 3 x 3 + (2.2.7) ( ) c n (2.2.7) x = 0 f(0) = c 0. (2.2.7) f (x) = c 1 + 2c 2 x + 3c 3 x 2 + (2.2.8) x = 0 f (0) = c 1. (2.2.8) f (x) = 2c c 3 x + 4 3c 4 x 2 + (2.2.9) x = 0 f (0) = 2c 2. (2.2.9) x = 0 f (0) = 3 2 c 3.

20 12 A f (n) (0) = n! c n, c n = f (n) (0) n! (2.2.7) (2.2.6). f(x) = e x f (n) (x) = e x f (n) (0) = 1. (2.2.4) e x = 1 + x + 1 2! x ! x3 + 1 = n! xn (2.2.10) n=0 (1 + x) α ( ) (1 + x) α α(α 1) = 1 + αx + x 2 α(α 1)(α 2) + x 3 + 2! 3! ( ) α = x n. (2.2.11) n n=0 α n ( ) α α(α 1)(α 2) (α n + 1) = n n! (2.2.12) α α = m m C n α α Taylor ( ) f(x) = f(0) + f (0) + 1 2! f (0) + 1 3! f (0) +, ( ) f(x) = f(x) + f (x)x + 1 2! f (x)x ! f (x)x

21 x = 0 (1 + x) x = 0 (1 + x) x = 0 (1 + x) x = 0 (1 + x) 1/ x = 0 (1 + x) 1/ x = 0 (1 x) 1/ (1 x 2 ) 1/2 x = m v E E = mc 2 1 v2 /c 2 c v c E (v 2 /c 2 ) 2.24 f(x) = (1 x) 1 f(0), f (0), f (0), f (0), 2.25 (1 x) 1 x = 0 Taylor 2.26 (1 x) 1 x

22 14 A 2.27 n 1 x k = 1 xn 1 x k=0 x < 1 n f(x) = ln(1 x) f(0), f (0), f (0), f (0), ln(1 x) x = x e x f(x) = e x2 x = f(x) = x x = 0 g(t) = t f(x) = 1 Taylor 1 + x ( ) x F x F = f(x) a x = a F = 0 f(a) = 0 F = f(x) x = a Taylor F = f(a) + f (a)(x a) + f (a) (x a) = f (a)(x a) + f (a) (x a) 2 +, 2 (x a) (x a) (x a) F f (a)(x a). k = f (a)

23 x (2x 1) 2 = 4x 2 4x + 1, 4x 2 4x + 1 = 2, (x + 1)(x 1) + 1 = 4x 2. 3x 9 = 0, x x x dy dx = F (x, y), y = y(x) F (x, y) y y = f(x) df(x) dx = F (x, f(x)), x ( ) f(x) (or ) (or ) x 2 = 6 1 x x 6 = 0

24 16 A x = 0 ± ( 6) 2 1 = ± 6 x = ± 6 ax 2 + bx + c = 0, (a 0) x 2 + b a x + c a = 0 ( x + b ) 2 b2 2a 4a + c 2 a = 0 ( x + b ) 2 = b2 4ac ( ) 2a 4a 2 x + b 2a = ± b2 4ac ( ) 2a x = b 2a ± b2 4ac = b ± b 2 4ac. 2a 2a ( ) ( ) x 2 = A x = ± A x 2 = 6 x = ± 6 x 2 = (1) dy dx = y (y = e x ) de x /dx = e x y = Ae x (A: ) y = e x + A dy/dx = d(e x + A)/dx = e x = e x + A A = y A y

25 17 ( ) dy y = dx dy y = dx ln y = x + C y = e C+x y = C e x C C = ±e C x 2 = 6 dy/y = ln y d ln y/dy = 1/y de x /dx = e x 2 dy = 2xy + x + 6y + 3 dx dy dx = x(2y + 1) + 3(2y + 1) = (x + 3)(2y + 1) dy 2y + 1 = (x + 3)dx 1 2 log 2y + 1 = 1 2 (x + 3)2 + C (C : ) 2y + 1 = ±e 2C e (x+3)2 y = Ae (x+3)2 1 2 (A = ±e 2C /2)

26 18 A ( ) a a R, ϕ a [ ] R l a/l = ϕ/2π a = l ϕ 2π = 2πR ϕ 2π = Rϕ log 2 5 [ ] x x = 2 log 2 5. log 2 log 2 x = log 2 2 log 2 5 = log 2 5 log 2 2 = log 2 5 log 2 x = 5, 2 log 2 5 = a < b 2 a < 2 b [ ] 2 a 2 b a b 2 a 2 b log 2 2 a log 2 2 b a log 2 2 b log 2 2 a b. log 2 x (x > 0) 2.2 (2) d 2 y dx 2 = ω2 y

27 19 x t y x d 2 x dt = 2 ω2 x m k = mω 2 m d2 x dt = kx 2 k m (sin cos ) x = sin αt α 2 = k/m = ω 2 x = sin ωt y = sin ωx cos y = A sin ωx + B cos ωx, y = A sin(ωx + ϕ), (A, B : ) (A, ϕ : ) y = Ae iωx + Be iωx. (A, B : ) ( ) y = e αx α 2 = ω 2, α = ±iω y = e ±iωx 2.38 d 2 y dx 2 = κ2 y. (κ > 0) 2.39 y = e 2x y = 2e x y = e x + 2 d 2 y dx 3dy + 2y = 0. 2 dx

28 20 A 2.40 m F = mgz z = 0 z g ( ) [ ] dy dx = 0 y = A (A = const.) d2 y dx = 0 dy 2 dx = A, (A = const.) y = Ax + B (B = const.). u(x, y) u(x, y) x = 0 u(x, y) = f(y), (f(y) y ) 2 u(x, y) u(x, y) = 0 = f(y), (f(y) y ) x 2 x u(x, y) = f(y)x + g(y). (g(y) y ) 2 1

29 u(x, t) = f(x vt) u t + v u x = 0, (v = const.) f 2.42 u(x, t) = f(x vt) + g(x + vt) 2 u t 2 = v2 2 u x 2, (v = const.) f, g [ ] dy = F (x, y), dx f(x) df(x) dx = F (x, f(x)), x ( ) f (x n ) f(x n+1) f(x n ). x x n x x = x n+1 x n a < x < b N n x n x n = a + b a N n = a + n x. (n = 0, 1,, N) a = x 0 x 1 x 2 x 3 x n x n+1 x N 1 x N = b x

30 22 A N x = (b a)/n f(x n+1 ) f(x n ) x F (x n, f(x n )), f(x n+1 ) f(x n ) + F (x n, f(x n )) x x = x n f(x n ) x = x n+1 f(x n+1 ) x = x 0 f(x 0 ) f(x 1 ), f(x 2 ) f(x n ) x = x 0 f(x 0 ) f(x) d 2 y dx 2 = F ( x, y, dy dx ). f (x) = F (x, f(x), f (x)) x f (x n ) f (x n+1 ) f (x n ) x f(x n+2) 2f(x n+1 ) + f(x n ) x 2. f(x n+2 ) 2f(x n+1 ) f(x n ) + F ( x n, f(x n ), f(x ) n+1 f(x n ) ( x) 2, x 2 x = x n x n+1 f(x n ), f(x n+1 ) x n+2 f(x n+2 ) x = x 0, x 1 f(x 0 ), f(x 1 ) f(x 2 ) f(x 2 ) f(x 1 ) f(x 3 ) f(x n ) f(x 0 ), f(x 1 ) f(x 0 ) f(x 1 ) f(x 0 ) f (x 0 ) = [f(x 1 ) f(x 0 )]/ x

31 23 u x = u y. x y u = u(x, y) f(x, y) f(x, y) f(x, y) = x y x x f x (x n, y) f(x n+1, y) f(x n, y). ( x = x n+1 x n ) x f(x n+1, y) f(x n, y) + f(x n, y) y x = x 0 f(x 0, y) g(y): y f(x n, y) f(x 0, y) y f(x 0, y)/ y f(x 0, y) f(x 1, y) f(x 1, y) y f(x 1, y) f(x 1, y)/ y f(x 2, y) n f(x n, y) x = x 0 f(x 0, y) = g(y) x (chain rule) y = f(x), z = g(y) dz dx = dz dy dy dx, (2.4.1) { g ( f(x) )} = g ( f(x) ) f (x), (2.4.2) { e f(x) } = f (x) e f(x),

32 24 A {ln f(x)} = f (x) f(x). y = f(x), z = g(y), u = h(z) du dx = du dz dz dy dy dx, { ( h g ( f(x) ))} ( = h g ( f(x) )) g ( f(x) ) f (x) x d dx ef(x) = f (x) e f(x) d dx exp [ g(x) 2] = 2g(x) g (x) exp [ g(x) 2] [ 2 sin 3 (5x + 1) + 7 ] x ln { sin ( e x2 )} (Leibniz rule) {f(x)g(x)} = f (x)g(x) + f(x)g (x), (2.4.3) {f(x)g(x)} = f (x)g(x) + 2f (x)g (x) + f(x)g (x). (2.4.4) 2.47 {f(x)g(x)} 2.48 {f(x)g(x)h(x)} 2.49 { e f(x)} { 2.50 e +x+1} 2x2

33 y = f 1 (x) x = f(y). dy dx = 1 dx dy = 1 f (y) ln x e x (ln x) = 1/x (e x ) = e x 2.52 x y dy/dx (1) y = tan 1 x (2) y = sin 1 x (3) y = cos 1 x x x > 0 a a > 0 x a dx a dx = axa 1 > 0. (a > 0, x > 0) a a < 0 x a a > 0 a x a a < 0 a (i.e. ) x a a, b x a < b x a < x b x 100 x 10 x 1/100 x 1/10 x 0 = 1

34 26 A e x x 1 x e x x e x 2 e x e x e x2 e ex, as x 2.53 A 1000 A A 1 (1) A (2) n (3) 11 A 1 ( 2 10 = ) 1 x e x 10 e x x 10 < e x (x ) r + r 2 + r r n 1 = rn 1 r 1

35 27 (4) 21 A 1 ( 2 20 = ) (5) A 1 (6) A kg 2 10 = = kg kg 2.55 B ( ) ln x (= log e x) ε > 0 x ε ln x x +0 y = e x x y x = ln y y x e x ln x ln x ln x ln x 1/100 = 1 ln x ln ln x, as x 100

36 28 A 2.56 x 1/10000 x > x x 2, e x2, (x 2 + 1)e x2, 1, x ( ln , ln ) e x, e x 2, 2 x, 10 x x e x, e x2, x x ( x = e ln x ) cm 1cm ( ) ( ) 10cm 10cm 10cm 2 10cm 5cm 15cm 15cm 15cm = 10cm + 5cm = ( ) 10cm cm 2 10cm cm + 10cm 3 = ( ) 10cm 2 1 : m 10cm m 10cm 1/2 2 : 1 10cm 1/3

37 29 1m ( m) 5m 6m n n n 1 1 dx = ln n x e , e , e , m, m AM 2.5 y = f(x) cos 6x cos 6x f(x) AM f(x) y y = A y = A cos 6x 0 π 2π x y = A y y = f(x) y = f(x) cos 6x 0 π 2π x y = f(x) f(x)

38 30 A cos 6x = ±1, 0 y = ±f(x). x y = cos 4x. x y = sin 10x. x x = 0 1/x x 0 sin x/x y = cos 10x + cos 8x ( cos α + cos β = 2 cos α β cos α + β ) y = xe x2 x e x2 = 1/e x2 x ± y = xe x2 0 y = 0 (x = 0), y ( ) (x < 0 y < 0 x > 0 y > 0) y y = x y = e x2 y = xe x2 O x 2.64 y = (x 1)e x y = (x 2 1)e x y = x(x 2 1)e x2

39 y = x(x 2 1)(x 2 4)e x y = xe x 2.69 y = (x 2 1)e x 2.70 y = 1 + x (x > 0). x 2.71 y = 1 x 2 + x2 (x > 0) y = f(x) x f (x) y = f(x) y = f (x) 2.72 y = f(x) f = f (x) y y = f(x) y y = f(x) y = 1x 2 O x x O (a) (b) y y = f(x) y O x O y = f(x) x (c) (d)

40 32 A f(x) [a, b] [a, b] N x n x n = a + (b a)n/n (n = 0, 1,, N) x = x n+1 x n = (b a)/n b a f(x)dx = lim N N f(x n ) x. (2.7.1), n=1 x dx, x ( ) dx ( ) [ ] b { b 2 {f(x)} 2 dx = f(x) dx}. a a 2 + b 2 + c 2 + = (a + b + c + ) e ax2 dx = a (e x2) ( a a dx = e dx) x2 = ( π ) a.

41 ax = ξ ( ) I = e ax2 dx = e dξ π ξ2 = a a. (dimensional analysis) x [ x ] = [ L ]. I [ I ] = [ e ax2 ] [ dx ] = 1 [ L ] = [ L ]. dx (2.7.1) x = x n+1 x n [dx] = [L] e e n [ e ax2 ] = 1. e e [ ax 2 ] = 1 a [ a ] = [ L 2 ]. x I x a I a I = const. a 1/2 const. a = 1 a = 1 I = π const. = π I = π a f(x) = 1 (k 2 + a 2 ) 2 eikx dk, [ x ] = [ L ] [ df(x) [ k ], [ a ], [ f(x) ], dx ].

42 34 A 2.75 I = x 2 e x2 /b 2 dx, [ x ] = [ L ] [ ] e x 2 /b 2, [ b ], [ I ] x 2 e x2 /b 2 dx = const. b 3. (b > 0) dx (x 2 + a 2 ) 2 = const. a 3. (a > 0) x 3 e x2 /a 2 dx = const. ( a ) (x 2 + a 2 ) f(x, y) dxdy { x = f(u, v) S y = g(u, v) ( ) ds = dxdy dudv dxdy = (x, y) (u, v) dudv (2.7.2) (x, y)/ (u, v) (Jacobian) x x (x, y) (u, v) = u v y y (2.7.3) u v

43 35 3 V f(x, y, z) dxdydz, x = f(u, v, w) y = g(u, v, w) z = h(u, v, w) ( ) dv = dxdydz dudvdw dxdydz = (x, y, z) (u, v, w) dudvdw (2.7.4) (x, y, z)/ (u, v, w) x u (x, y, z) (u, v, w) = y u z u x v y v z v x w y w z w (2.7.5) 2 (r, ϕ) (x = r cos ϕ, y = r sin ϕ) (x, y) (r, ϕ) = x/ r x/ ϕ y/ r y/ ϕ = cos ϕ r sin ϕ sin ϕ r cos ϕ = r. dxdy = rdrdϕ, (2.7.6) 3 (r, θ, ϕ) (x = r sin θ cos ϕ, y = r sin θ sin ϕ, z = r cos θ) (x, y, z) x/ r x/ θ x/ ϕ sin θ cos ϕ r cos θ cos ϕ r sin θ sin ϕ (r, θ, ϕ) = y/ r y/ θ y/ ϕ = sin θ sin ϕ r cos θ sin ϕ r sin θ cos ϕ = r 2 sin θ. z/ r z/ θ z/ ϕ cos θ r sin θ 0 dxdydz = r 2 sin θdrdθdϕ (2.7.7)

44 36 A [ ] z r sin θ dϕ dr r dϕ rdϕ θ dϕ r sin θ 0 ds = dr rdϕ dθ (x, y) x = u + v 2 y = u v 2 r rdθ dr dv = dr rdθ r sin θdϕ ds = dxdy (u, v) 2.80 R S = πr R V = 4 3 πr xy e x2 y 2 dxdy 2.8 Fourier 2.83 x L 2 u t 2 = T σ 2 u x 2

45 37 T σ u = u(x, t) t x (x = 0, L) x = 0 L u = 0 u x Fourier u(x, t) = q n (t) sin nπx L n=1 sin (u t t- Fourier q n ) t Fourier q n (t) (n = 1, 2, 3,... ) n=1 A n sin nπx L = n=1 B n sin nπx L A n = B n (n = 1, 2, 3,... ) Fourier 2.83 Fourier q n (t) d 2 q n (t) dt 2 = T σ ( nπ L ) 2 qn (t), (n = 1, 2, ) (2.8.1) [ ] n q n (t) n ω n q n T ω n = σ nπ L. u(x, t)

46 3 Fourier 3.1 Fourier e ikx L k L f(x) ( L ) f(x) = c n e iknx. n= k n = 2πn L (3.1.1) c n { 1 L/2 e ikmx e iknx 1 (n = m) dx = δ mn = L L/2 0 (n m). (3.1.2) (3.1.1) e ik mx x L/2 L/2 (3.1.2) 1 L/2 e ikmx f(x) = 1 L L/2 L n= = δ mn c n 3.1 f(x) [ π, π] f(x) = n= L/2 L/2 e ikmx e iknx dx c n = c m. (3.1.3) { 1 (0 < x < π) 1 ( π < x < 0), (3.1.4) 2π f(x) 38

47 39 c n (3.1.3) c n = 1 2π = 1 2π π π { 0 e inx f(x) dx π 1 e inx dx + = 1 iπn [1 ( 1)n ] = f(x) = 2 iπ odd n 1 n einx = 2 iπ π 0 } 1 e inx dx 0 (n: even) 2 iπn (n: odd) m=. (3.1.5) 1 2m + 1 ei(2m+1)x. (3.1.6) f(x) = 2 ( 1n iπ e inx + 1n ) einx odd n>0 = 4 1 sin(2m + 1)x (3.1.7) π 2m + 1 m=0 = 4 (sin x + 13 π sin 3x + 15 ) sin 5x + (3.1.8) y = 4 π sin x 1 y = 4 π ( sin x + 1 sin 3x) 3 π 0 π x -1 y = 4 1 sin 3x π f(x) 3.3 (3.1.2) Parseval 1 L/2 f(x) 2 dx = c n 2. (3.1.9) L L/2 n=

48 40 A Riemann-Lebesgue 3.5 Riemann-Lebesgue L/2 lim e 2iπnx/L f(x) dx = 0, (3.1.10) n ± L/ x, y, z L f(x, y, z) = f(r) f(x, y, z) = c nx,n y,n z e ikxx e ikyy e ikzz. n x = n y = n z = k i = 2πn i L (i = x, y, z) (3.1.11) f(r) = n cne ik r, k = 2πn L (3.1.12) n = (n x, n y, n z ) (3.1.2) { 1 e ik r e ik r d 3 r = δ L 3 kk = δnn = 1 (n = n ) 0 (n n ), (3.1.13) : cn = 1 e ik r f(r) d 3 r. (k = 2πn L 3 L ) (3.1.14) 3.6 (3.1.13) Parseval 1 f(r) 2 d 3 r = cn 2. (3.1.15) L 3 n

49 Fourier f(x) (3.1.1) L k n k n+1 k k = k n+1 k n = 2π/L 0 k n f(x) = 1 2π c(k) (3.1.3). c(k) = (3.1.1) L f(x) = lim c(k)e ikx dk, (3.2.1) e ikx f(x) dx, (3.2.2) L n= c n L (3.1.3) c n = 1 L L/2 L/2 e ik nx f(x) dx 1 L k n = 2πn/L L c n e iknx. (3.2.3) e ik nx f(x) dx 1 L c(k n) (3.2.4) k k n+1 k n = 2π L 0, (3.2.5) L n k n = 2π/L f(x) = lim L n= = 1 2π lim = 1 2π L n= c(k n )e iknx 1 L c(k n )e iknx k c(k)e ikx dk, (3.2.6)

50 42 A f(x) f(x) = 1 2π c(k)e ikx dk, (3.2.7) c(k) = e ikx f(x) dx. (3.2.8) c(k) f(k) = c(k)/ 2π x f(x) k f(k) f(x) = 1 2π f(k)e ikx dk, (3.2.9) f(k) = 1 2π e ikx f(x) dx. (3.2.10) f(k) f(x) (Fourier transform) (3.2.10) (3.2.9) 3.7 i) f 1 (x), f 2 (x) f 1 (k), f 2 (k) c 1 f 1 (x)+c 2 f 2 (x) c 1 f1 (k) + c 2 f2 (k) ii) f(x) f(k) f(x)/ x ik f(k) 3.8 L 3.3 Paraseval 3.9 f(x) = e x2 /2σ f(x, y, z) f(x, y, z) = 1 (2π) 3/2 e i(k xx+k y y+k z z) f(kx, k y, k z ) dk x dk y dk z, (3.2.11)

51 43 f(k x, k y, k z ) = 1 e i(k xx+k y y+k z z) f(x, y, z) dxdydz. (3.2.12) (2π) 3/2 1 f(r) = e ik r f(k) d 3 k, (3.2.13) (2π) 3/2 f(k) = 1 (2π) 3/2 e ik r f(r) d 3 r, (3.2.14) d 3 k = dk x dk y dk z, d 3 r = dxdydz k- r- 3.3 Fourier ψ(x) = Ae ik 0x, (k 0 = 2π/λ 0 = p 0 / ) ψ(x) = λ 0 = 2π/k 0 k 0 ψ 2 ψ(x) = λ 2π/k 0 ψ(x) ψ(x) = 1 A(k)e ikx dk (3.3.1) 2π Fourier, k 0 k k 0 A(k) k = k 0 A(k) = 0, if k k 0 > k.

52 44 A 3.2 k 0 ψ(x) { e ik 0x ( x x 0 a) ψ(x) = (3.3.2) 0 ( x x 0 > a) 2π/k 0 =. x 0 a x 0 + a ψ(x) = 1 2π A(k)e ikx dk Fourier 1 A(k) = ψ(x)e ikx dx 2π = = 1 x0 +a e ik0x e ikx dx 2π x 0 a 1 e i(k k 0)(x 0 +a) e i(k k 0)(x 0 a) 2π i(k k 0 ) sin(k k 0 )a e ikx 0. 2π (k k 0 ) = 2eik 0x 0 ψ(x) = eik 0x 0 π sin(k k 0 )a k k 0 e ik(x x 0) dk. (3.3.3) sin(k k 0 )a/(k k 0 ) k k k 0 π/a sin(k k 0 )a a k k 0 0 k 0 k 0 π/a k 0 + π/a k k π/a x a

53 45 x k π (3.3.4) 3.10 ψ(x) Fourier A(k) { e ikx 0 ( k k 0 k) A(k) = 0 (otherwise) (3.3.5) ψ(x) (3.3.4) ψ(x) Fourier A(k) Fourier I = r(k)e iφ(k) dk. (r(k), Φ(k) r(k) > 0) (3.4.1) r(k) k k 0 k r(k) Φ(k) Φ k (k 0) k π I 0, Φ k (k 0) k π I 0.

54 46 A k k 0 k k 0 + k n = Φ(k 0 + k) Φ(k 0 k) 2π n 1 n 1 n 1 n 1 r(k) r(k) k k r(k) r(k) n n 1 2π Φ k (k 0) 2 k Fourier ψ(x), ψ(x) = 1 2π A(k) A(k)e ikx dk, (3.4.2) A(k) = r(k)e iθ(k), (r(k), θ(k) r(k) > 0) (3.4.3) r(k) k k 0 k r(k) θ(k) ψ(x) Φ(k, x) ψ(x) = 1 2π r(k)e iφ(k,x) dk, (3.4.4) Φ(k, x) = kx θ(k) (3.4.5)

55 47 ψ(x) Φ k (k 0, x) k = x θ k (k 0) k π (3.4.6) Φ k (k 0, x) = 0, (3.4.7) x = θ k (k 0) (3.4.8) x π k (3.4.9) x k x k π (3.4.10) ψ(x, t) = 1 A(k)e i[kx ω(k)t] dk. (3.4.11) 2π k 0 k k 0 + k A(k) = 0 for k k 0 > k. ω = ω(k), (3.4.12) v ϕ (k) = ω(k) k. (3.4.13) v g A(k) A(k) = r(k)e iθ(k), (r(k), θ(k) r(k) > 0) (3.4.14) ψ(x, t) ψ(x, t) = 1 r(k)e iφ(k,x,t) dk, (3.4.15) 2π

56 48 A Φ(k, x, t) Φ(k, x, t) = kx ω(k) t θ(k) (3.4.16) Φ k (k 0, x, t) = 0, (3.4.17) x = ω k (k 0) t + θ k (k 0) v g t + x 0, (3.4.18) v g = ω k (k 0) (3.4.19) (3.4.6) x π k Φ(k, x) k t 0 t Φ (3.4.16) Φ(k, x, t) ω(k) t t or t = 0 x = x 0 x 1/ k t > 0 t = 0 t = ω(k) = k2 2m (3.4.20)

57 49 ψ(x, t) = e (k k 0) 2 /(2b 2) e i[kx ω(k)t] dk. (3.4.21) 3.5 Dirac Kronecker Dirac δ ij = { 1 (i = j) 0 (i j) (3.5.1) N f i δ ij = f j. (3.5.2) i=1 δ ij - δ(x a) = { (x = a) 0 (x a) (3.5.3) x = a δ(x a) dx = 1. (3.5.4) f(x) δ(x a) dx = f(a). (3.5.5)

58 50 A δ(x a) e 1, e 2, e 3 e i e j = δ ij (3.5.6) V 3 V = V i e i. (3.5.7) i=1 V j = e j V (3.5.8) e j V = e j 3 V i e i = i=1 3 V i e j e i = i=1 3 V i δ ji = V j. i= π f(x) Fourier f(x) = c n e inx, (3.5.9) n= Fourier c m c m = 1 π e imx f(x) dx. (3.5.10) 2π 1 2π π π π 1 π e imx e inx dx = δ mn 2π π e imx f(x) dx = 1 2π = = n= π e imx π n= π n= = c m. c n 1 2π c n δ mn π c n e inx dx e imx e inx dx

59 a parametrize {ϕ a (x)} ϕ a (x) ϕ b (x) dx = δ(a b) (3.5.11) ψ(x) ψ(x) = c(a) c(b) = c(a) ϕ a (x) da. (3.5.12) ϕ b (x) ψ(x) dx (3.5.13) ϕ b (x) ψ(x) dx = = = = c(b). ϕ b (x) c(a)ϕ a (x) da dx da c(a) da c(a)δ(b a) ϕ b (x) ϕ a (x) dx 3.12 n n P = (P ij ) P T P = I (= ) P (P T P ) n P ij P ik = δ jk i=1 n x i = P ij x j, y i = j=1 n x iy i = i=1 n P ik y k, k=1 n x i y i i=1

60 52 A N f i δ ij i=1 i (dummy index) j free index [ 1] N f i δ ij = i=1 N f k δ kj. k=1 [ 2] ( N ) 2 f i = i=1 N N f i f j = i=1 j=1 N N f i f j. i=1 j=1 [ 3] N N n=1 m=1 n 3 m 3 n 2 + m 2 = 0. n m m n = N N m=1 n=1 m 3 n 3 m 2 + n = N 2 N m=1 n=1 f(x)δ(x y) dx n 3 m 3 = = 0. n 2 + m2 x y f(x)δ(x y) dx = f(z)δ(z y) dz ( b 2 f(x) dx) = a b b a a f(x)f(y)dxdy.

61 53 [ 1] i j N f i δ? ij = i=1 N f j δ jj j=1 [ 3] N N f i f i i=1 i= ρ(x) M M = ρ(x) dx (3.5.14) ρ x = a { (x = a) ρ(x) = (3.5.15) 0 (x a) (3.5.14) ρ(x) = Mδ(x a). (3.5.16)

62 54 A, or } 1 (x a)2 δ(x a) = lim exp {. (3.5.17) σ 0 2πσ 2σ 2 σ (standard deviation) σ σ a x 1 ε δ(x a) = lim ε 0 π (x a) 2 + ε. (3.5.18) 2 2ε ε ε a x

63 55 step δ(x a) = lim ε 0 1 2ε ( x a ε) 0 ( x a > ε) (3.5.19) 1 2ε 0 a ε a a + ε x Fourier Fourier δ(x a) = 1 e ik(x a) dk. (3.5.20) 2π f(x) Fourier f(x) = 1 2π f(k) = 1 2π f(x) = 1 2π = dk dx f(x ) 1 2π f(k) e ikx dk, (3.5.21) f(x )e ikx dx, (3.5.22) dx f(x ) e ikx e ikx e ik(x x ) dk. (3.5.23) f(x) k δ(x x )

64 56 A (i) Fourier (5.22) f(x) = δ(x a) f(k) = (1/ 2π)e ika Fourier (5.21) (ii) (3.5.20) lim ε 0 1 2π e ik(x a) 1 e εk2 dk = lim e (x a)2 /4ε. (3.5.24) ε 0 4πε σ = 2ε exp ( εk 2 ) (damping factor) (iii) (3.5.20) exp ( ε k ) lim ε 0 1 2π e ik(x a) e ε k 1 dk = lim ε 0 π (iv) (3.5.20) ε (x a) 2 + ε 2. (3.5.25) lim L 1 L e ik(x a) L dk = lim 2π L L π sin L(x a). (3.5.26) L(x a) L (3.5.3), (3.5.4) ( 3.15)

65 57 L π a + π L 0 a x a π L Fourier Fourier f(x), g(x) Fourier f(k), g(k) f(x) = 1 2π g(x) = 1 2π f(k) e ikx dk, (3.5.27) g(k) e ikx dk, (3.5.28) f (x) g(x) dx = f (k) g(k) dk. (3.5.29) Fourier f (x) g(x) dx = = = = dx 1 2π dk dk f (k) e ikx dk dk f (k) g(k ) 1 2π 1 2π dk f (k) g(k )δ(k k) e i(k k)x dx g(k ) e ik x dk f (k) g(k) dk. (3.5.30) f(x) g(x) (3.5.27), (3.5.28) k k k

66 58 A 3.14 (3.5.25) 3.15 (3.5.26) (3.5.3) sin ξ dξ = π. ξ lim sin nx 0 n 1 (3.5.26) (3.5.4) δ( x) = δ(x), (3.5.31) δ(ax) = 1 δ(x), a (3.5.32) (x a)δ(x a) = 0, (3.5.33) f(x)δ(x a) = f(a)δ(x a), (3.5.34) δ(x y)δ(y a) dy = δ(x a). (3.5.35) Schwartz (distribution) δ(0) = ϕ(x) ϕ(x) δ(x a) dx = ϕ(a), (3.6.1) p.49 1

67 ϕ(x) (test function) 1/x (principal value) P/x : ϕ(x) P ϕ(x) = lim x ε 0 ( ε + +ε ) 1 x ϕ(x) dx. (3.6.2) f ϕ = fϕ + 0 [ ] F (x) x F x x ε x x 0 < ε F (x) x 0 F (x 0 ) F (x 0 ) = F (x) ϕ(x) dx, (3.6.3) ϕ(x) x x 0 < ε ϕ(x) dx = ε ε ϕ(x) dx = 1, (3.6.4) x 0 ϕ(x) ϕ(x) (3.6.3) F (x) 3.6.3

68 60 A F (x) ϕ(x) F (x) ϕ(x) dx (3.6.5) F (x) F (x) F (x) ϕ(x) dx = F (x) ϕ (x) dx. (3.6.6) F (x) δ (x a) ϕ(x) dx = δ (x a) Fourier δ(x a) ϕ (x) dx = ϕ (a). (3.6.7) δ ( x) = δ (x), (3.6.8) (x a) 2 δ (x a) = 0, (3.6.9) (x a)δ (x a) = δ(x a). (3.6.10) δ (x a) = 1 2π ik e ik(x a) dk, (3.6.11) (3.5.31) (3.5.35) (3.5.31) ϕ(x) δ( x)ϕ(x) dx = δ(y)ϕ( y) dy = ϕ( y) y=0 = ϕ(0) = y = x (3.5.32) ϕ(x) δ(ax)ϕ(x) dx = δ(y)ϕ( y a ) dy a = ϕ(0) a = y = ax δ(x)ϕ(x) dx. (3.6.12) 1 δ(x)ϕ(x) dx. (3.6.13) a

69 61 (3.5.34) ϕ(x) = f(x)δ(x a)ϕ(x) dx = δ(x a) (f(x)ϕ(x)) dx = f(a)ϕ(a) f(a)δ(x a)ϕ(x) dx. (3.6.14) 3.16 (3.5.33) 3.17 (3.6.8), (3.6.9), (3.6.10) 3.18 θ(x) θ(x) = { 0 (x < 0) 1 (x > 0) (3.6.15) ϕ(x) θ(x)ϕ(x) dx = 0 ϕ(x) dx, (3.6.16) θ (x) = δ(x) (3.6.17) 3.19 ε ( ε +0 ) (i) x x 2 + ε 2 = P x. (3.6.18) (ii) 1 x iε = P x + iπδ(x). (3.6.19)

70 4 4.1 n x 1, x 2,..., x n n ( ) x = x 1 x 2 : x n (4.1.1) n ( ) n n ( ) x = cx = x 1 x 2 : x n cx 1 cx 2 : cx n, y =. y 1 y 2 : y n, x + y = c : n ( ) R n (R ) x 1 + y 1 x 2 + y 2 : x n + y n. 62

71 R n x = x 1 x 2 :, y = y 1 y 2 :, x n y n (x, y) = x 1 y 1 + x 2 y 2 + x n y n = n x k y k (4.1.2) k=1 x y (inner product) ( 1) ( 2) x y (x, y) x, y ( ) (i) (x, y) = (y, x) (ii) (x 1 + x 2, y) = (x 1, y) + (x 2, y), (x, y 1 + y 2 ) = (x, y 1 ) + (x, y 2 ). (iii) (x, cy) = c(x, y), (cx, y) = c(x, y). (iv) (x, x) 0, x = 0 (= ) (Remark 1) x = (x, x) x x = 0 x (Remark 2) R n n n (Remark 3) (Remark 4) (x, y) = 0 x y x, y θ (x, y) = x y cos θ. (Remark 5) (ii),(iii), (x, y) x (linear) y (linear) x, y (bilinear)

72 64 A 4.1 x (4.1.1) x T = (x 1, x 2,, x n ) x y (x, y) (x, y) = x T y 4.2 n z 1, z 2,..., z n n z = z 1 z 2 : z n (4.2.1) n n n z = λz = z 1 z 2 : z n, w = λz 1 λz 2 : λz n. w 1 w 2 : w n, z + w = λ : n C n (C ) z 1 + w 1 z 2 + w 2 : z n + w n (Remark 1) C n z z z (λz) = λ z, (z + w) = z + w.

73 C n z = z 1 z 2 : z n, w = w 1 w 2 : w n, (z, w) = z 1w 1 + z 2w 2 + z nw n = n zk w k (4.2.2) k=1 z w ( 1) ( 2) ( (iv) Remark 2 ) 1 z = (z) = (x + iy) 2 (x, y) (z, z) = z z = x 2 + y 2 2 ( 3) (z, w) z, w z w ( ) (i) (z, w) = (w, z) (ii) (z 1 + z 2, w) = (z 1, w) + (z 2, w), (z, w 1 + w 2 ) = (z, w 1 ) + (z, w 2 ). (iii) (z, λw) = λ(z, w), (λz, w) = λ (z, w). (iv) (z, z) 0, z = 0 (= ) (Remark 2) z = (z, z) z z = 0 z (Remark 3) (z, w) = 0 z w (Remark 4) (i) (iii) z w iz w i(z, w) (iz, w)

74 66 A (Remark 5) (ii),(iii), (z, w) w (linear) z (anti-linear) 4.2 (4.2.1) z z = (z 1, z 2,, z n) z w (z, w) (z, w) = z w ( ) ( ) z =, w = z 2, w 2, (z, w) 1 i 4.4 z = ( 1 i ), w = ( 1 i ) z w 4.5 z = 1, w = 2, (z, w) = 3i (z + 2 iw, z) ψ(x), φ(x) [0, 1] [0, 1] N N (x 1 = 1/N, x 2 = 2/N,..., x N = 1) ψ, φ ψ(x 1 ) φ(x 1 ) ψ(x 2 ) ψ z N = :, φ w φ(x 2 ) N = :. ψ(x N ) φ(x N ) N ψ(x), φ(x) z N, w N C N ψ(x), φ(x) C [0, 1] [a, b] (, ) = R ψ(x), φ(x) C (Remark 1) (ψ + φ)(x) = ψ(x) + φ(x), (λψ)(x) = λψ(x),

75 [0, 1] N (z N, w N ) = N znw n = n=1 N ψ (x n )φ(x n ) N N n=1 1 (ψ, φ) lim N N (z N, w N ) = lim N 1/N = x n+1 x n = x (ψ, φ) = 1 0 N n=1 ψ (x n )φ(x n ) 1 N ψ (x)φ(x) dx (4.3.1) ( ) [0, 1] (, ) = R ψ(x), φ(x) ψ 0, φ 0 (ψ, φ) = ψ (x)φ(x) dx. (4.3.2) (Remark 2) ψ 0 (Remark 3) ( ) (Hilbert space) (Remark 4) (i),(ii),(iii),(iv) (Remark 5) ψ (ψ, ψ) = 1 ψ. (Remark 6) ψ a (x) x = a ψ b (x) x = b

76 68 A x = a, x = b ψ a (x) ψ b (x) (Remark 7) f(x) g(x) [a, b] (f, g) = b a f(x)g(x) dx, (4.3.3) (i),(ii),(iii),(iv) Schwarz (ψ, φ) 2 (ψ, ψ)(φ, φ), (4.3.4) ψ, φ 2 ψ(x) φ(x) dx ψ(x) 2 dx φ(x) 2 dx, ψ = λφ (Remak 2) (ψ, ψ) = ψ(x) 2 dx < + ψ(x) ψ φ Schwarz (ψ, φ) 4.6 (i),(ii),(iii),(iv) Schwarz (4.3.4) ( ) (iv) Φ(x) (Φ, Φ) 0 (φ, φ) 0 (φ, ψ) Φ = ψ λφ, λ = (φ, φ) Φ

77 69 thechapter.1 [ π, π] (f, g) f g (f, g) = f(x) = sin x, g(x) = cos x, π π f(x)g(x) dx = π sin x cos x f 2 = (f, f) = g 2 = (g, g) = π π π π sin 2 x dx = cos 2 x dx = π sin x cos x dx = 0. π π π π 1 cos 2x dx = π, cos 2x dx = π. 2 f = g = π. 4.7 [ π, π] f(x) = cos mx, g(x) = cos nx, (f, g) f g m, n m n 4.8 [ π, π] ϕ n (x) = 1 2π e inx, (n = 0, ±1, ±2, ±3, ) (ϕ n, ϕ m ) Fourier Fourier

78 70 A [ π, π] f(x) (Fourier ) f(x) = a (a n cos nx + b n sin nx). (4.3.5) n=1 a n, b n {1, cos x, sin x, cos 2x, sin 2x,, cos nx, sin nx, } [ π, π] (cos nx, cos nx) = (sin nx, sin nx) = π π π (1, cos nx) = (1, sin nx) = (cos nx, cos mx) = (sin nx, sin mx) = (cos nx, sin mx) = (1, 1) = π cos 2 nx dx = π, sin 2 nx dx = π, π π π π π π π π π π π π 1 cos nx dx = 0, 1 sin nx dx = 0, 1 cos nx cos mx dx = 0, (n m) 1 sin nx sin mx dx = 0, (n m) 1 cos nx sin mx dx = dx = 2π, (1, f) = a 0 2 (1, 1) + [ an (1, cos nx) + b n (1, sin nx) ] n=1 = πa 0, (4.3.6) (cos mx, f) = a 0 2 (cos mx, 1) + [ an (cos mx, cos nx) + b n (cos mx, sin nx) ] n=1 = πa m, (4.3.7) (sin mx, f) = a 0 2 (sin nx, 1) + [ an (sin mx, cos nx) + b n (sin mx, sin nx) ] n=1 = πb m, (4.3.8)

79 71 a n = 1 (cos nx, f), (n = 0, 1, 2, 3, ) (4.3.9) π b n = 1 (sin nx, f), (n = 1, 2, 3, ) (4.3.10) π V {e 1, e 2, e 3 } 3 V = V 1 e 1 + V 2 e 2 + V 3 e 3 = V n e n, e n e m = { n=1 0 (n m) 1 (n = m) V V n V n = e n V V f(x) e n cos nx sin nx V n a n, b n Fourier 3 Fourier [ π, π] ( ) f(x) e inx f(x) = c n e inx, (4.3.11) n= c n [ π, π] 5.8 { π (e imx, e inx ) = e i(n m)x 0 (m n) dx = (4.3.12) 2π (m = n) π (e imx, f) = c n n= c n = 1 2π (einx, f) = 1 2π c n (e imx, e inx ) = 2π c m. π π e inx f(x) dx, (4.3.13)

80 72 A 4.4 ψ(x) 1 = ψ(x) 2 dx = ψ (x)ψ(x) dx ψ ψ (ψ, ψ) = ψ 2 = 1 ψ. ψ 1, ψ 2 ψ 1 + ψ 2 c 1 ψ 1 + c 2 ψ 2 ψ, ϕ ψ ϕ ϕ (x)ψ(x) dx = (ϕ, ψ)

81 73 or ˆp x = i / x ψ(x) : ψ(x n 1 ) ψ ψ(x n ), ψ(x n+1 ) : ˆp x ψ i 2 x : ψ(x n 1 ) ψ(x n ) ψ(x n+1 ) : ψ ψ ψ (x n ) = 1 { ψ(xn+1 ) ψ(x n ) + ψ(x } n) ψ(x n 1 ) 2 x x 4.9 ˆxψ = xψ ˆx x n ˆx 0 x n 0, 0 0 x n+1 ψ ψ Â Â = ψ (x)âψ(x) dx = (ψ, Âψ),

82 74 A ψ  Âψ = aψ ψ  c a a  ψ  a (, eigenstate) 4.10 ˆp = ( /i)d/dx p ˆp

基礎数学I

基礎数学I I & II ii ii........... 22................. 25 12............... 28.................. 28.................... 31............. 32.................. 34 3 1 9.................... 1....................... 1............

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2 filename=mathformula58.tex ax + bx + c =, x = b ± b 4ac, (.) a x + x = b a, x x = c a, (.) ax + b x + c =, x = b ± b ac. a (.3). sin(a ± B) = sin A cos B ± cos A sin B, (.) cos(a ± B) = cos A cos B sin

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

: , 2.0, 3.0, 2.0, (%) ( 2.

: , 2.0, 3.0, 2.0, (%) ( 2. 2017 1 2 1.1...................................... 2 1.2......................................... 4 1.3........................................... 10 1.4................................. 14 1.5..........................................

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

phs.dvi

phs.dvi 483F 3 6.........3... 6.4... 7 7.... 7.... 9.5 N (... 3.6 N (... 5.7... 5 3 6 3.... 6 3.... 7 3.3... 9 3.4... 3 4 7 4.... 7 4.... 9 4.3... 3 4.4... 34 4.4.... 34 4.4.... 35 4.5... 38 4.6... 39 5 4 5....

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

v er.1/ c /(21)

v er.1/ c /(21) 12 -- 1 1 2009 1 17 1-1 1-2 1-3 1-4 2 2 2 1-5 1 1-6 1 1-7 1-1 1-2 1-3 1-4 1-5 1-6 1-7 c 2011 1/(21) 12 -- 1 -- 1 1--1 1--1--1 1 2009 1 n n α { n } α α { n } lim n = α, n α n n ε n > N n α < ε N {1, 1,

More information

( 12 ( ( ( ( Levi-Civita grad div rot ( ( = 4 : 6 3 1 1.1 f(x n f (n (x, d n f(x (1.1 dxn f (2 (x f (x 1.1 f(x = e x f (n (x = e x d dx (fg = f g + fg (1.2 d dx d 2 dx (fg = f g + 2f g + fg 2... d n n

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

確率論と統計学の資料

確率論と統計学の資料 5 June 015 ii........................ 1 1 1.1...................... 1 1........................... 3 1.3... 4 6.1........................... 6................... 7 ii ii.3.................. 8.4..........................

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

24.15章.微分方程式

24.15章.微分方程式 m d y dt = F m d y = mg dt V y = dy dt d y dt = d dy dt dt = dv y dt dv y dt = g dv y dt = g dt dt dv y = g dt V y ( t) = gt + C V y ( ) = V y ( ) = C = V y t ( ) = gt V y ( t) = dy dt = gt dy = g t dt

More information

II 2 II

II 2 II II 2 II 2005 yugami@cc.utsunomiya-u.ac.jp 2005 4 1 1 2 5 2.1.................................... 5 2.2................................. 6 2.3............................. 6 2.4.................................

More information

b3e2003.dvi

b3e2003.dvi 15 II 5 5.1 (1) p, q p = (x + 2y, xy, 1), q = (x 2 + 3y 2, xyz, ) (i) p rotq (ii) p gradq D (2) a, b rot(a b) div [11, p.75] (3) (i) f f grad f = 1 2 grad( f 2) (ii) f f gradf 1 2 grad ( f 2) rotf 5.2

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx i B5 7.8. p89 4. ψ x, tψx, t = ψ R x, t iψ I x, t ψ R x, t + iψ I x, t = ψ R x, t + ψ I x, t p 5.8 π π π F e ix + F e ix + F 3 e 3ix F e ix + F e ix + F 3 e 3ix dx πψ x πψx p39 7. AX = X A [ a b c d x

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a 3 3.1 3.1.1 A f(a + h) f(a) f(x) lim f(x) x = a h 0 h f(x) x = a f 0 (a) f 0 (a) = lim h!0 f(a + h) f(a) h = lim x!a f(x) f(a) x a a + h = x h = x a h 0 x a 3.1 f(x) = x x = 3 f 0 (3) f (3) = lim h 0 (

More information

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1) 1. 1.1...,. 1.1.1 V, V x, y, x y x + y x + y V,, V x α, αx αx V,, (i) (viii) : x, y, z V, α, β C, (i) x + y = y + x. (ii) (x + y) + z = x + (y + z). 1 (iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y

More information

基礎から学ぶトラヒック理論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

基礎から学ぶトラヒック理論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 基礎から学ぶトラヒック理論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/085221 このサンプルページの内容は, 初版 1 刷発行時のものです. i +α 3 1 2 4 5 1 2 ii 3 4 5 6 7 8 9 9.3 2014 6 iii 1 1 2 5 2.1 5 2.2 7

More information

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 -

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 - M3............................................................................................ 3.3................................................... 3 6........................................... 6..........................................

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

Chap11.dvi

Chap11.dvi . () x 3 + dx () (x )(x ) dx + sin x sin x( + cos x) dx () x 3 3 x + + 3 x + 3 x x + x 3 + dx 3 x + dx 6 x x x + dx + 3 log x + 6 log x x + + 3 rctn ( ) dx x + 3 4 ( x 3 ) + C x () t x t tn x dx x. t x

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy z fz fz x, y, u, v, r, θ r > z = x + iy, f = u + iv γ D fz fz D fz fz z, Rm z, z. z = x + iy = re iθ = r cos θ + i sin θ z = x iy = re iθ = r cos θ i sin θ x = z + z = Re z, y = z z = Im z i r = z = z

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x ( II (1 4 ) 1. p.13 1 (x, y) (a, b) ε(x, y; a, b) f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a x a A = f x (a, b) y x 3 3y 3 (x, y) (, ) f (x, y) = x + y (x, y) = (, )

More information

振動と波動

振動と波動 Report JS0.5 J Simplicity February 4, 2012 1 J Simplicity HOME http://www.jsimplicity.com/ Preface 2 Report 2 Contents I 5 1 6 1.1..................................... 6 1.2 1 1:................ 7 1.3

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

notekiso1_09.dvi

notekiso1_09.dvi 39 3 3.1 2 Ax 1,y 1 Bx 2,y 2 x y fx, y z fx, y x 1,y 1, 0 x 1,y 1,fx 1,y 1 x 2,y 2, 0 x 2,y 2,fx 2,y 2 A s I fx, yds lim fx i,y i Δs. 3.1.1 Δs 0 x i,y i N Δs 1 I lim Δx 2 +Δy 2 0 x 1 fx i,y i Δx i 2 +Δy

More information

http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n

http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 1 1 1.1 ɛ-n 1 ɛ-n lim n a n = α n a n α 2 lim a n = 1 n a k n n k=1 1.1.7 ɛ-n 1.1.1 a n α a n n α lim n a n = α ɛ N(ɛ) n > N(ɛ) a n α < ɛ

More information

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10 1 2007.4.13. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 0. 1. 1. 2. 3. 2. ɛ-δ 1. ɛ-n

More information

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) = 1 9 8 1 1 1 ; 1 11 16 C. H. Scholz, The Mechanics of Earthquakes and Faulting 1. 1.1 1.1.1 : - σ = σ t sin πr a λ dσ dr a = E a = π λ σ πr a t cos λ 1 r a/λ 1 cos 1 E: σ t = Eλ πa a λ E/π γ : λ/ 3 γ =

More information

I

I I 6 4 10 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

Ver.2.2 20.07.2 3 200 6 2 4 ) 2) 3) 4) 5) (S45 9 ) ( 4) III 6) 7) 8) 9) ) 2) 3) 4) BASIC 5) 6) 7) 8) 9) ..2 3.2. 3.2.2 4.2.3 5.2.4 6.3 8.3. 8.3.2 8.3.3 9.4 2.5 3.6 5 2.6. 5.6.2 6.6.3 9.6.4 20.6.5 2.6.6

More information

1

1 1 1 7 1.1.................................. 11 2 13 2.1............................ 13 2.2............................ 17 2.3.................................. 19 3 21 3.1.............................

More information

A

A A 2563 15 4 21 1 3 1.1................................................ 3 1.2............................................. 3 2 3 2.1......................................... 3 2.2............................................

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ II p = mv p x > h/4π λ = h p m v Ψ 2 Ψ Ψ Ψ 2 0 x P'(x) m d 2 x = mω 2 x = kx = F(x) dt 2 x = cos(ωt + φ) mω 2 = k ω = m k v = dx = -ωsin(ωt + φ) dt = d 2 x dt 2 0 y v θ P(x,y) θ = ωt + φ ν = ω [Hz] 2π

More information

( : December 27, 2015) CONTENTS I. 1 II. 2 III. 2 IV. 3 V. 5 VI. 6 VII. 7 VIII. 9 I. 1 f(x) f (x) y = f(x) x ϕ(r) (gradient) ϕ(r) (gradϕ(r) ) ( ) ϕ(r)

( : December 27, 2015) CONTENTS I. 1 II. 2 III. 2 IV. 3 V. 5 VI. 6 VII. 7 VIII. 9 I. 1 f(x) f (x) y = f(x) x ϕ(r) (gradient) ϕ(r) (gradϕ(r) ) ( ) ϕ(r) ( : December 27, 215 CONTENTS I. 1 II. 2 III. 2 IV. 3 V. 5 VI. 6 VII. 7 VIII. 9 I. 1 f(x f (x y f(x x ϕ(r (gradient ϕ(r (gradϕ(r ( ϕ(r r ϕ r xi + yj + zk ϕ(r ϕ(r x i + ϕ(r y j + ϕ(r z k (1.1 ϕ(r ϕ(r i

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9

0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9 1-1. 1, 2, 3, 4, 5, 6, 7,, 100,, 1000, n, m m m n n 0 n, m m n 1-2. 0 m n m n 0 2 = 1.41421356 π = 3.141516 1-3. 1 0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c),

More information

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2 1 1.1 R(x) = 0 y + P (x)y + Q(x)y = R(x)...(1) y + P (x)y + Q(x)y = 0...(2) 1 2 u(x) v(x) c 1 u(x)+ c 2 v(x) = 0 c 1 = c 2 = 0 c 1 = c 2 = 0 2 0 2 u(x) v(x) u(x) u (x) W (u, v)(x) = v(x) v (x) 0 1 1.2

More information

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d A 2. x F (t) =f sin ωt x(0) = ẋ(0) = 0 ω θ sin θ θ 3! θ3 v = f mω cos ωt x = f mω (t sin ωt) ω t 0 = f ( cos ωt) mω x ma2-2 t ω x f (t mω ω (ωt ) 6 (ωt)3 = f 6m ωt3 2.2 u ( v w) = v ( w u) = w ( u v) ma22-9

More information

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ = 1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B 1 1.1 1 r 1 m A r/m i) t ii) m i) t Bt; m) Bt; m) = A 1 + r ) mt m ii) Bt; m) Bt; m) = A 1 + r ) mt m { = A 1 + r ) m } rt r m n = m r m n Bt; m) Aert e lim 1 + 1 n 1.1) n!1 n) e a 1, a 2, a 3,... {a n

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f 22 A 3,4 No.3 () (2) (3) (4), (5) (6) (7) (8) () n x = (x,, x n ), = (,, n ), x = ( (x i i ) 2 ) /2 f(x) R n f(x) = f() + i α i (x ) i + o( x ) α,, α n g(x) = o( x )) lim x g(x) x = y = f() + i α i(x )

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

1 yousuke.itoh/lecture-notes.html [0, π) f(x) = x π 2. [0, π) f(x) = x 2π 3. [0, π) f(x) = x 2π 1.2. Euler α

1   yousuke.itoh/lecture-notes.html [0, π) f(x) = x π 2. [0, π) f(x) = x 2π 3. [0, π) f(x) = x 2π 1.2. Euler α 1 http://sasuke.hep.osaka-cu.ac.jp/ yousuke.itoh/lecture-notes.html 1.1. 1. [, π) f(x) = x π 2. [, π) f(x) = x 2π 3. [, π) f(x) = x 2π 1.2. Euler dx = 2π, cos mxdx =, sin mxdx =, cos nx cos mxdx = πδ mn,

More information

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a = II 6 ishimori@phys.titech.ac.jp 6.. 5.4.. f Rx = f Lx = fx fx + lim = lim x x + x x f c = f x + x < c < x x x + lim x x fx fx x x = lim x x f c = f x x < c < x cosmx cosxdx = {cosm x + cosm + x} dx = [

More information

数学の基礎訓練I

数学の基礎訓練I I 9 6 13 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 3 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

5 36 5................................................... 36 5................................................... 36 5.3..............................

5 36 5................................................... 36 5................................................... 36 5.3.............................. 9 8 3............................................. 3.......................................... 4.3............................................ 4 5 3 6 3..................................................

More information

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0. () 6 f(x) [, b] 6. Riemnn [, b] f(x) S f(x) [, b] (Riemnn) = x 0 < x < x < < x n = b. I = [, b] = {x,, x n } mx(x i x i ) =. i [x i, x i ] ξ i n (f) = f(ξ i )(x i x i ) i=. (ξ i ) (f) 0( ), ξ i, S, ε >

More information

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy f f x, y, u, v, r, θ r > = x + iy, f = u + iv C γ D f f D f f, Rm,. = x + iy = re iθ = r cos θ + i sin θ = x iy = re iθ = r cos θ i sin θ x = + = Re, y = = Im i r = = = x + y θ = arg = arctan y x e i =

More information

30 I .............................................2........................................3................................................4.......................................... 2.5..........................................

More information

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c)   yoshioka/education-09.html pdf 1 2009 1 ( ) ( 40 )+( 60 ) 1 1. 2. Schrödinger 3. (a) (b) (c) http://goofy.phys.nara-wu.ac.jp/ yoshioka/education-09.html pdf 1 1. ( photon) ν λ = c ν (c = 3.0 108 /m : ) ɛ = hν (1) p = hν/c = h/λ (2) h

More information

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K II. () 7 F 7 = { 0,, 2, 3, 4, 5, 6 }., F 7 a, b F 7, a b, F 7,. (a) a, b,,. (b) 7., 4 5 = 20 = 2 7 + 6, 4 5 = 6 F 7., F 7,., 0 a F 7, ab = F 7 b F 7. (2) 7, 6 F 6 = { 0,, 2, 3, 4, 5 },,., F 6., 0 0 a F

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

2S III IV K A4 12:00-13:30 Cafe David 1 2 TA 1 appointment Cafe David K2-2S04-00 : C

2S III IV K A4 12:00-13:30 Cafe David 1 2 TA 1  appointment Cafe David K2-2S04-00 : C 2S III IV K200 : April 16, 2004 Version : 1.1 TA M2 TA 1 10 2 n 1 ɛ-δ 5 15 20 20 45 K2-2S04-00 : C 2S III IV K200 60 60 74 75 89 90 1 email 3 4 30 A4 12:00-13:30 Cafe David 1 2 TA 1 email appointment Cafe

More information

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x 1 1.1 4n 2 x, x 1 2n f n (x) = 4n 2 ( 1 x), 1 x 1 n 2n n, 1 x n n 1 1 f n (x)dx = 1, n = 1, 2,.. 1 lim 1 lim 1 f n (x)dx = 1 lim f n(x) = ( lim f n (x))dx = f n (x)dx 1 ( lim f n (x))dx d dx ( lim f d

More information

DVIOUT

DVIOUT A. A. A-- [ ] f(x) x = f 00 (x) f 0 () =0 f 00 () > 0= f(x) x = f 00 () < 0= f(x) x = A--2 [ ] f(x) D f 00 (x) > 0= y = f(x) f 00 (x) < 0= y = f(x) P (, f()) f 00 () =0 A--3 [ ] y = f(x) [, b] x = f (y)

More information

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. tomocci 18 7 5...,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. M F (M), X(F (M)).. T M p e i = e µ i µ. a a = a i

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou (Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fourier) (Fourier Bessel).. V ρ(x, y, z) V = 4πGρ G :.

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

1 1 1 1 1 1 2 f z 2 C 1, C 2 f 2 C 1, C 2 f(c 2 ) C 2 f(c 1 ) z C 1 f f(z) xy uv ( u v ) = ( a b c d ) ( x y ) + ( p q ) (p + b, q + d) 1 (p + a, q + c) 1 (p, q) 1 1 (b, d) (a, c) 2 3 2 3 a = d, c = b

More information

Z: Q: R: C:

Z: Q: R: C: 0 Z: Q: R: C: 3 4 4 4................................ 4 4.................................. 7 5 3 5...................... 3 5......................... 40 5.3 snz) z)........................... 4 6 46 x

More information

Z: Q: R: C: 3. Green Cauchy

Z: Q: R: C: 3. Green Cauchy 7 Z: Q: R: C: 3. Green.............................. 3.............................. 5.3................................. 6.4 Cauchy..................... 6.5 Taylor..........................6...............................

More information

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i 1. 1 1.1 1.1.1 1.1.1.1 v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) R ij R ik = δ jk (4) δ ij Kronecker δ ij = { 1 (i = j) 0 (i j) (5) 1 1.1. v1.1 2011/04/10 1. 1 2 v i = R ij v j (6) [

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

i

i i 3 4 4 7 5 6 3 ( ).. () 3 () (3) (4) /. 3. 4/3 7. /e 8. a > a, a = /, > a >. () a >, a =, > a > () a > b, a = b, a < b. c c n a n + b n + c n 3c n..... () /3 () + (3) / (4) /4 (5) m > n, a b >, m > n,

More information

i 18 2H 2 + O 2 2H 2 + ( ) 3K

i 18 2H 2 + O 2 2H 2 + ( ) 3K i 18 2H 2 + O 2 2H 2 + ( ) 3K ii 1 1 1.1.................................. 1 1.2........................................ 3 1.3......................................... 3 1.4....................................

More information

ft. ft τfτdτ = e t.5.. fx = x [ π, π] n sinnx n n=. π a π a, x [ π, π] x = a n cosnx cosna + 4 n=. 3, x [ π, π] x 3 π x = n sinnx. n=.6 f, t gt n 3 n

ft. ft τfτdτ = e t.5.. fx = x [ π, π] n sinnx n n=. π a π a, x [ π, π] x = a n cosnx cosna + 4 n=. 3, x [ π, π] x 3 π x = n sinnx. n=.6 f, t gt n 3 n [ ]. A = IC X n 3 expx = E + expta t : n! n=. fx π x π. { π x < fx = x π fx F k F k = π 9 s9 fxe ikx dx, i =. F k. { x x fx = x >.3 ft = cosωt F s = s4 e st ftdt., e, s. s = c + iφ., i, c, φ., Gφ = lim

More information

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a 9 203 6 7 WWW http://www.math.meiji.ac.jp/~mk/lectue/tahensuu-203/ 2 8 8 7. 7 7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa,

More information

A S hara/lectures/lectures-j.html ϵ-n 1 ϵ-n lim n a n = α n a n α 2 lim a n = 0 1 n a k n n k= ϵ

A S hara/lectures/lectures-j.html ϵ-n 1 ϵ-n lim n a n = α n a n α 2 lim a n = 0 1 n a k n n k= ϵ A S1-20 http://www2.mth.kyushu-u.c.jp/ hr/lectures/lectures-j.html 1 1 1.1 ϵ-n 1 ϵ-n lim n n = α n n α 2 lim n = 0 1 n k n n k=1 0 1.1.7 ϵ-n 1.1.1 n α n n α lim n n = α ϵ N(ϵ) n > N(ϵ) n α < ϵ (1.1.1)

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z I 1 m 2 l k 2 x = 0 x 1 x 1 2 x 2 g x x 2 x 1 m k m 1-1. L x 1, x 2, ẋ 1, ẋ 2 ẋ 1 x = 0 1-2. 2 Q = x 1 + x 2 2 q = x 2 x 1 l L Q, q, Q, q M = 2m µ = m 2 1-3. Q q 1-4. 2 x 2 = h 1 x 1 t = 0 2 1 t x 1 (t)

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information