(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi

Size: px
Start display at page:

Download "(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi"

Transcription

1 I (Basics of Probability Theory ad Radom Walks) ( 4 ) (Preface),.,,,.,,,...,,.,.,,.,,. (,.) (Basics of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Law of Large Numbers) (Radom Walks) 8 2. (Markov Chais) d (d-dimesioal Radom Walks) (Oe-dimesioal Ati-symmetric Radom Walks) ( 2.2(iii)) (sup E[X] 4 < )

2 (Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-field); (2 Ω Ω ) (i) Ω F (ii) A F A c F (iii) A F ( =, 2,...) A F, A F (evet). P = P (dω) (Ω, F) (probability measure), i.e., ; P : F [0, ]. (i) P (Ω) = (ii) A F ( =, 2,...) P ( A ) = P (A ) (σ ). (Ω, F, P ),. (i) σ-., F σ- A, B, A F F, A B, A \ B, A B := (A \ B) (B \ A), A. lima lim sup A := A, lima lim if A := A F. N N N N (lim = if sup, lim = sup if.) = (ii) P ( ) = 0, A k F (k =, 2,..., ) P ( A k) = P (A k) ( ). (iii) A, B F; A B P (A) P (B) ( ). ( ) (iv) A F, A P A = lim P (A ). ( ) (v) A F, A P A = lim P (A ).. ( ) (vi) A F ( ) P A P (A ) ( ). (vii) (Borel-Catelli ) A F ( ), ( P (A ) < P ) lim sup A = 0, i.e., P ( ) lim if Ac =.

3 (Ω, F, P ) X = X(ω) : Ω R {X a} := {ω Ω; X(ω) a} F ( a R). (radom variable). X S = {a j } j R, {X = a j } F ( j ). X k (Ω, F, P ) (k =, 2,..., ). {X k } (idepedet) P (X a,, X ) = P (X a ) P (X ) ( a k R, k =,..., ). {X k } k N {X k } N. X k S = {a j } j, : P (X = b,, X = b ) = P (X = b ) P (X = b ) (b k S, k =,..., ). µ(a) = P (X A) X (distributio), F (x) = P (X x) X (distributio fuctio)..2, (Expectatios, Meas) X Z := Z {± }. X (expectatio) or (mea) EX = E[X] = XdP = X(ω)P (dω). () X 0 EX := P (X = ) + P (X = ). =0 (P (X = ) = 0 P (X = ) = 0. P (X = ) > 0 EX =.) (2) X X + := X 0, X := ( X) 0 ( X ± 0, X = X + X.) EX := EX + EX.,. EX = Z P (X = ), f : Z R, Ef(X) = f()p (X = ). (.) Z ;f()>0 ;f()<0 X, V (X) := E[(X EX) 2 ] = E[X 2 ] E[X] 2.. (Chebichev ) p. a > 0, P ( X a) E[ X p ] a p. [ ] P ( X a) = P ( X p a p ) p =. E X = P ( X = ) a P ( X = ) a a P ( X = ) = ap ( X a). Ω.2 X,..., X Z, E[Xk 2 ] < (k =,..., ). X,..., X, E[X j X k ] = E[X j ]E[X k ] (j k). 0 (E[X k ] = 0) ( ) 2 E X k = E[Xk]. 2 2

4 [ ] () j k P (X j = m, X k = ) = P (X j = m)p (X k = ) E[X j X k ] = m, mp (X j = m, X k = ) = m, mp (X j = m)p (X k = ) = E[X j ]E[X k ]. ( ) 2 (2) X k = X j X k () j k E[X j X k ] = E[X j ]E[X k ] = 0. X 2 k + j k.3 (Law of Large Numbers), /2.,., X =, X = 0. EX = /2 ( V (X ) = /2 )., X k,, /2..3 ( (Weak Law of Large Numbers)) X, X 2,... EX = m v := sup V (X ) < ϵ > 0, lim P ( ) X k m ϵ = 0, i.e., lim P ( ) X k m < ϵ =. [ ] {X } { X = X m} ( ). X k m = (X k m), X X m = 0, i.e., E[X ] = 0 V (X ) = E[X] 2, ( ) 2 E X k = E[Xk] 2 = V (X k ) sup V (X ) = v. ϵ > 0, ( P ) X k ϵ = P ( ) X k ϵ v ϵ 2 2 = v ϵ 2 0 E[( X k) 2 ] ϵ 2 2 ( )., ( ), ( )., X, X, ϵ > 0, P ( X X ϵ) 0 ( ), X X i pr., X X. P (X X) =, X X, P -a.s., X X. (a.s. almost surely ) 3

5 .2, i.e., X X, P -a.s. X X i pr.. ( P (X X) = P { X X < } = P k k N N k N N k, lim P { X X } = P N k N N N ( = k, lim P X N X ) lim N k P N N (, /k ϵ > 0. ) { X X k } = 0 { X X k } = 0 { X X k } = 0.,.,.,,..3, i.e., X X i pr. { k }; X k X a.s.. (, (?) { k }; P ( X k X 2 ) k 2 k. Borel-Catelli P { X k X < 2 } k =..) N,.. k N.4 ( (Strog Law of Large Numbers)) X, X 2,... EX = m v := sup V (X ) < ( ) P lim X k = m =..2,,. ( ) P lim (X k EX k ) = 0 =. [ ] EX = 0, S = (X k /k), (i) Kolmogorov sup k S k S 0 ( ) i pr. (ii), {S } Cauchy,. (iii) Kroecker X k 0 P -a.s.. Kolmogorov Kroecker,. 4

6 . (Kolmogorov ) {X }, EX = 0. S = X, a > 0 = a 2 P ( max N S a) E[ S N 2 ; max N S a] E[ S N 2 ] [ ] S (k+) = X k+ + + X N, A k = { S k a, S < a,..., S k < a}, S (k+) N S k Ak E[S k S (k+) ; A k ] = E[S k Ak ]E[S (k+) ] = 0. A = A k ( ). E[ S N 2 ; max N S a] = = N E[(S k + S (k+) ) 2 ; A k ] N E[Sk 2 + 2S k S (k+) + (S (k+) ) 2 ; A k ] N E[Sk; 2 A k ] N a 2 P (A k ) = a 2 P ( max N S a) (A k S k a ).2 (Kroecker ) {x } { }; 0 <, [ ] s 0 = 0, s =, lim x k a k exists = lim (x k /a k ) s. x k = a k x k a k = x k = 0 a k (s k s k ) = s s s (a k+ a k )s k s a k+ a k s k.. s = sup m s m < ε > 0, N; k N, s k s < ε, > N, N (a k+ a k )s k s k=n ( s = k=n (a k+ a k ) s k s + N ε a N + s a N a ε ( ) + a N s (a k+ a k )s + a N s (a k+ a k )(sup m ) s m ) + a N s 5

7 ε > 0 0. [ (.4) ] X X = X EX { X } V ( X ) = V (X ) v, EX = 0. E[X X m ] = E[X ]E[X m ] = 0 (m ), E[X] 2 X k = V (X ) v. S =, Kolmogorov k, a > 0, N,, a 2 P ( max <k N S k S a) E[ S N S 2 ] = N k=+ E[X 2 k ] k 2 k> v k 2. lim P (sup S k S a) = 0, i.e., sup k> S k S 0 ( ) i pr. k> { j } N; j, lim sup S k S j = 0 j k j P -a.s., m j S S m S S j + S m S j 0 (j ) P -a.s.,, {S } X k Cauchy, lim k = lim S. Kroecker, lim X k = 0 P -a.s... (S S.). {X } 0. V (X k ) < lim X k..2, δ > 0,. lim S +δ (X k EX k ) = 0 P -a.s. (X k / k +δ ). δ 0 ( ).. R ( ) µ(dx) = g(x)dx g(x) = e (x m)2 2v 2πv, m, v (ormal dist.), (Gaussia dist.), N(m, v).. X, Y a R, P (X a) = P (Y a), X (d) = Y. (X = Y i the sese of distributio ) 6

8 .5 ( (Cetral Limit Theorem)) {X } (idepedet idetically distributed = i.i.d. ). EX = m, V (X ) = v (X k m) 0, v N(0, v), i.e., a < b,, v lim P ( a (X k m) b ) = b 2πv a e x2 2v dx. (X k m) 0, N(0, v),,, Fourier,. (. 7

9 2 (Radom Walks),,.,,. d, d. Z d ( j = (j,..., j d )) d (lattice). (X, P ) d (simple radom walk),, 2d,. Y = X X ( ) {X 0, Y, Y 2,...}, {Y }, P (Y = k) = /(2d) ( k = ), = 0 ( k = ). k = (k,..., k d ), k = k k2 d. {X 0, Y, Y 2,...}, k 0, k,..., k Z, P (X 0 = k 0, Y = k,..., Y = k ) = P (X 0 = k 0 )P (Y = k ) P (Y = k ). Z d {p k } k Z d (p k 0, p k = ), (X, P ), d. P (Y = k) = p k (, k Z d ). P j (X = k,..., X = k ) := P (X = k,..., X = k X 0 = j) P j (X, P j ) j d. 2. P (A B) := P (A B)/P (B) P (B) > 0. A, B F P (A B) = P (A). 2. (Markov Chais),,.. 2. S,,.,,,.,.,,,,.. S, (X, P ) = (X (ω), P (dω)) ( = 0,, 2,...) S (Stochastic Processes), 0, X, i.e., j S, {X h = j} F. (X, P ) (Markov Chai) : 8

10 (M) [ ], j 0, j,..., j, j, k S, P (X + = k X 0 = j 0,..., X = j, X = j) = P (X + = k X = j).. (M2) [ ], j, k S, P (X + = k X = j) = P (X = k X 0 = j).,. 0, j, k S, q () j,k = P (X = k X 0 = j), Q () = (q () j,k ) ( ) (-step trasitio probability (trasitio matrix)),, Q () Q = (q j,k ),, ( ). 2.. (i) q () j,k 0, k q() j,k = (j S), (ii), j 0, j,..., j S. P (X = j,..., X = j X 0 = j 0 ) = P (X = j X = j )P (X = j X 2 = j 2 ) P (X = j X 0 = j 0 ) = q j0,j q j,j = P (X m+ = j,..., X m+ = j X m = j 0 ) (m 0) (iii) Q (0) = I := (δ jk ) ( ), Q () = Q ( ). (Q ) jk = q j,j q j,j 2 q j,k j,...,j X 0 µ = {µ j }; µ j = P (X 0 = j) (iitial distributio),, j S, P (X 0 = j) = P P j, (X, P j ) j. ( P (X 0 = j) > 0, P j ( ) := P ( X 0 = j),.) 2.2 P j0 : ( ) P j0 (X + = k X 0 = j 0,..., X = j, X = j) = P j0 (X + = k X = j) = P j0 (X 2 = k X = j) = q j,k 2.2 P j0 ( ) := P ( X 0 = j 0 ) P j0 (X 2 = k X = j) = q j,k. 2.3 µ = {µ j },. (i) P (X 0 = j 0, X = j,..., X = j ) = µ j0 q j0,j q j,j, (ii) P (X = k) = j S µ j q () j,k. 2.4 (i) {B k }, A, C, P (A B k) = P (A C) ( k ). P (A B k ) = P (A C). (ii) m,, j,..., j m, k 0, k,..., k S P (X + = j,..., X +m = j m X 0 = k 0, X = k,..., X = k ) = q k,j q j,j 2 q jm,j m ( 2.3 (i)),. P (X + = j,..., X +m = j m X 0 = k 0, X = k,..., X = k ) = P (X + = j,..., X +m = j m X = k ). 9

11 , j S (recurrece time): T j : T j = if{ ; X = j} (= if { } = ). j (recurret) j (trasiet) def P j (T j < ) =, def P j (T j < ) <. j, T j, j (positive-recurret) def E j [T j ] < ( P j (T j < ) = ), j (ull-recurret) def E j [T j ] =, P j (T j < ) =. E j [T j ] T j P j, : E j [T j ] = mp j (T j = m) + P j (T j = ). m= j (or,, ) (X ) (or,, ). 2.5 E j [T j ] < P j (T j < ) =. {X } Q = (q j,k ) π = {π j } π (statioary distributio) def π k = j π jq j,k (k S), π (reversible distributio) def π k q k,j = π j q j,k (j, k S) (i) π,, X π. (ii) π, {X } :, j 0,..., j S, P (X 0 = j 0,..., X = j ) = P (X 0 = j,..., X = j 0 ). {X } Q = (q j,k ) (irreducible) j, k,, q () j,k > 0.,,. (,.), : 2.2 j, k S. (i) j : a) q () j,j =. b) P j({x } j ) =. =0 (ii) j : 0

12 (iii) a) =0 q () j,j <. b) P j({x } j ) = 0. {X },,,,,. (π j ) [ k, j π jq j,k = π k ], π j = /E j [T j ] ( ). (i), (ii) b), a), (iii). (iii). 2. (i) j S P j ({X } j ) =. (ii) j S P j ({X } j ) = 0..,,,., 0. m j T (m) j. P j (T (m) j T () j = T j, T (m) j = mi{ > T (m ) j ; X = j} (= if { } = ). < ) = P j (T j < ) m. s, t,, P j (T (m) j = s + t T (m ) j = s) = P j (T j = t). (, [ ]= P j (X s+t = j, X s+u j ( u t ) T (m ) j = s), {T (m ) j = s} {X,..., X s } ( 2.4), ( 2. (ii)) [ ]= P j (X s+t = j, X s+u j ( u t ) X s = j) =[ ].)., P j (T (m) j P j (T (m ) j = s, T (m) j P j (T (m) j < ) = P j (T (m ) j = = s + t) = P j (T (m ) j = s)p j (T j = t) s=m t= < T (m) j < ) P j (T (m ) j = P j (T (m ) j < )P j (T j < ) < ) = P j (T j < ) m. P j ({X } j ) = P j ( m P j (T j < ) =, 0. = s, T (m) j = s + t) {T (m) j < }) = lim m P j(t (m) j < ) = lim m P j(t j < ) m.

13 ,. j, k S, f (m) j,k := P j(t k = m) (m ) Q jk (s) := =0 q () j,k s ( s < ), F jk (s) := m= f (m) j,k sm ( s ). {q () j,k } 0, {f (m) j,k } m (geeratig fuctios). F jk () = P j (T k < ). 2. j, k S, : q () j,k = m= f (m) j,k q( m) k,k ( ), Q jk (s) = δ jk + F jk (s)q kk (s) ( s < ). {T k = m} = {X m = k, X s k ( s m )}, m= Q jk (s) = δ jk + f (m) j,k q( m) k,k = = = = P j (T k = m)p j (X = k X m = k) m= P j (T k = m)p j (X = k T k = m) m= P j (X = k, T k = m) m= q () j,k s = δ jk + = P j (X = k) = q () j,k. f (m) j,k q( m) k,k = m= s = δ jk + F jk (s)q kk (s). 2.2 j S =0 q () j,j =. Q jj (s)( F jj (s)) = ( s < ) F jj () = P j (T j < ) lim Q jj (s) = s =0 q () j,j ( ) s. (s < F jj (s) <, Q jj (s) = /( F jj (s)).) q () j,j ( P j(t j < )) =, P j (T j < ) = q () j,j =,, q () j,j =0 < P j(t j < ) <. 2.8 j k j S =0 q () k,j < ( k S),. k S; =0 q () k,j = j :. ( q() k,j = F kj() q() j,j.) 2

14 2.2 j j k [i.e., ; q () j,k > 0] P k(t j < ) =., i, j S P i (T j < ) = q i,j +. (, k S;k j q i,k P k (T j < ) P i (X = k, T j = ) = q i,k P k (T j = ) P i (T j < ) = P i (X = k, T j = ) = k S.) i = j j, k ; q j,k > 0, P k (T j < ) =., k 2 ; q k,k 2 > 0, i.e, q (2) j,k 2 > 0, P k2 (T j < ) =., q () j,k > 0 (k,..., k ); q j,k q k,k 2 q k2,k 3 q k,k > 0, : j, j k =0 q () k,j =. j, k S j k k j j k. 2.3 j, k S; j k, j,, k.,,,. l, m 0; q (l) j,k > 0, q(m) k,j > 0. j, =0 q (l+m+) j,j q (l) j,k q() k,k q(m) k,j ( 0) Q jj (s) s l+m q (l) j,k q(m) k,j Q kk(s). lim Q jj (s) = s =0 q () j,j < q () k,k <, k. j, k.. 2. Q jj (s)( F jj (s)) = F jj (s) = Q jj (s)/q jj(s) 2. j lim s Q jj (s) Q jj (s) 2 = F jj( ) = E j [T j ] <. Q kk (s) s l+m q (m) k,j q(l) j,k Q jj(s), Q jj(s) (l + m + )s l+m+ q (l+m+) =0 3 j,j s l+m q (l) j,k q(m) k,j Q kk(s)

15 . Q kk (s) Q kk (s) 2 Q jj (s) s 3(l+m) (q (l) j,k )3 (q (m) k,j )3 Q jj (s) 2. E k [T k ] = F kk( ) Q kk = lim (s) s Q kk (s) 2 < k. j, k. 2.0 k S E k [T k ] = F kk ( ) , 2.9 j, k S, q() j,k =. j, k S, q() j,k <., j, k S, q() j,k,. 2.2 d (d-dimesioal Radom Walks) (X, P ) d., {p k } k Z d Z d, {X 0, X X 0, X 2 X,...}, P (X X = k) = p k (, k Z d ). ( p k = /(2d).), d. Q = (q j,k ) q j,k = p k j [,,, ] 2. (X, P ) d. (i) X + X (X 0, X,..., X ), i.e., P (X + X = j, X 0 = k 0, X = k,..., X = k ) = P (X + X = j)p (X 0 = k 0, X = k,..., X = k ). k 0, k,..., k Z d, X + X X. (ii) P (X + = j X 0 = k 0, X = k,..., X = k ) = P (X + = j X = k ) = p j k {X }, q j,k = p k j.. (iii). ( j k := j k + + j d k d j k, j = k.), Q = (q j,k ) = (p k j ),,,., : 2.3 d (i) d =, 2 (i.e., E j [T j ] = P j (T j < )), (ii) d 3. 4

16 3. ( ), q () 0,0. q (2+) 0,0 = 0, q (2) 0,0.. ( 2.2.) 2.4 d Q = (q j,k ) (i) d =, 2 q (2) 0,0 { / π (d = ) /(π) (d = 2) (ii) d = 3 C q (2) 0,0 C 3/2. 2.4,, : (d = 3 (3/π) 3 /4) q (2) 0,0 2 d d d/2 (π) d/2 ( ). b ( ) def /b ( ). 2.2 { }, {b }, b ( ) c, c 2 > 0; c b c 2 b ( ).. [ (Stirlig s formula)]! 2π +/2 e ( ). 2.4 d =, : ( ) q (2) 2 0,0 = 2 2. d = 2, j=0 d = 3 ( ) 2 = k, 3 q (2) 0,0 = j,k 0;j+k= (2)! (j!k!) = ( 2 ( ) 2. q (2) 0,0 = j,k,m 0;j+k+m= ) j=0 (2)! (j!k!m!) ( ) k q (2) (2)! 0,0 c 3 6 2!. c = max j,k,m 0;j+k+m= (j!k!m!). c,,. c c3 +3/2 3/2 e (c > 0 ). () 5

17 , 3 (m!) 3 ( = 3m) c (m!) 2 ((m + )!) ( = 3m + ) (m!) ((m + )!) 2 ( = 3m + 2) (2),, c, c 2 > 0 c +/2 e! c 2 +/2 e (2), (), d = 3 ( ). d =, 2,. 2.5 d =, 2 Z d (i.e., E 0 [T 0 ] = ). 2.3 (i) α > α s Γ(α + ) ( s) α+ (s ). = (ii) α = s = log s. = α > log(/s) s (s ) : α = log. 0 x α s x dx = ( log s ) α Γ(α + ) F 00(s) = Q 00(s)/Q 00 (s) 2, d =, q (2) 0,0 / π ( ), s Q 00 (s) = + = s 2 q (2) 0,0 + = s 2 Γ(/2) π π ( s 2 ), /2 Q 00(s) = = 2s 2 q (2) 0,0 = 2s 2 2 Γ(3/2) π π ( s 2 ). 3/2 F 00(s) = Q 00(s) Q 00 (s) 2 2 πγ(3/2) Γ(/2) 2 s (s ). s 2 E 0 [T 0 ] = lim s F 00(s) =. 6

18 d = 2 q (2) 0,0 /(π) ( ), s Q 00(s) E 0 [T 0 ] = lim s 2 Q 00 (s) π log s 2, [ 2 πs( s 2 ) 2 π( s 2 ) π( s 2 ) ( ) ] 2 log s 2 =. 2.3 (Oe-dimesioal Ati-symmetric Radom Walks) Z {X } p (0 < p < ), p. p /2, {X = X (p) }. d, d, ( 0 ). q j,j+ = q 0, = p, q j,j = q 0, = p, q () j,k = ( ) +j k p ( j+k)/2 ( p) (+j k)/2 ( + j k 2Z) 2 0 ( + j k 2Z + ) [ + l, m, l + m =. l m = k j.] q (2) 0,0 = ( ) 2 (p( p)) (4p( p)) ( ) π 2.6. p /2 4p( p) < : 2.4 {X = X (p) } (0 < p <, p /2)., Y := X X EY = 2p, : ( ) X P lim = 2p =.,, ε > 0, N, N, (2p ε) < X < (2p +ε). 7

19 2.7 p > /2 j, u j (s) := F j0 (s) = m sm P j (T 0 = m) (0 < s < ) u (s) = psu 2 (s) + ( p)s u j (s) = psu j+ (s) + ( p)su j (s) (j 2) lim j u j(s) = 0,,.. ( ) j 4p( p)s F j0 (s) = 2 (0 < s < ) 2ps ( ) j p P j (T 0 < ) = (j ) p [ {X = j + }, {X = j }., P j (T 0 = m) = P j (T 0 = m X = j + )P j (X = j + ) + P j (T 0 = m X = j )P j (X = j ), P j (T 0 = m X = j ) j 2 P j (T 0 = m ), j = P (T 0 = m X = 0) = δ m., { P j (T 0 = m) = pp j+ (T 0 = m ) + ( p)p j (T 0 = m ) (j 2) pp 2 (T 0 = m ) + ( p)δ m (j = ) lim j P j (T 0 = m) = 0 ( m ). psx 2 x + ( p)s = 0 x = α, β (α < β), 0 < α < < β ( 2ps < 4p( p)s 2 ) u 2 αu = β(u α), u 2 βu = α(u β) u j+ αu j = β(u j αu j ), u j+ βu j = α(u j βu j ) (j 2), u j = (β j (u α) α j (u β))/(β α) j u = α. ] 2.8 u j := P j (T 0 < ) (j Z). p > /2 j, u j = P j (T 0 < ) =, j = 0 u 0 = pu + ( p), P 0 (T 0 < ) = u 0 = 2( p) <. 8

20 3.,. 3. ( 2.2 (iii)) 3.. π = (π j ) π j = /E j [T j ] > 0,. 0 s <. i, j S, 2. Q ij (s) = δ ij + F ij (s)q jj (s), F jj () = P j (T j < ), lim( s)q jj (s) = lim s s, F jj () =, s F jj (s) lim s lim( s)q jj (s) = s E j [T j ]. i j Q ij (s) = F ij (s)q jj (s), s F jj () F jj (s) = F jj ( ) = E j [T j ]. lim( s)q ij (s) F ij() s E j [T j ] (, )., 2.2 F ij () = P i (T j < ) = i, j S, lim( s)q ij (s) = s E j [T j ] (=: π j ). E j [T j ] < 0 < π j. ( s)q ij (s) = Fatou π j j S j S, k S, Fatou, π j q j,k lim if ( s)q ij (s)q j,k s j S j S lim( s) s =0 s q (+) i,k = lim s ( s)s (Q ik (s) δ ik ) = π k, k, π j q j,k = π k (k S) j S. π j ( s)q jk (s) = ( s) j S =0 s j S π j q () j,k = π k. (3) s Lebesgue j π = (π j ). π j π k = π k j π j =. 9

21 π = (π j ), (3) s, π k F jk () π j E k [T k ] + π k E k [T k ] E k [T k ] j k. k; π k > 0 E k [T k ] <,. k S E k [T k ] <, 2.2 F jk () = P j (T k < ) = ( j, k S),., π k = /E k [T k ] > 0 (k S). π = (π j ). 3. Fubii s)q ij (s) =. Fubii j S(,. 3.2 Fatou Lebsgue. 3.2 (sup E[X 4 ] < ) sup E[X 4 ] <,. X, X 2,.... Borel f,..., f 3.3. E[f (X ) f (X )] = E[f (X )] E[f (X )]. (f k 0, f k = Ak (A k ),.) [ sup E[X 4 ] < ] X X = X m m = 0, i.e., E[X ] = 0 ( ) 4 X k 0 Hölder E[Y 2 ] (E[Y 4 ]) /2 ( ) 4 E X k = E[Xk] 4 + = = i j, i,j ( ) 4 ( E ) 4 X k = 4 E X k P ( lim ) X k = 0 = E[Xi 2 ]E[Xj 2 ] 2 sup E[Xk] 4 k 2 sup E[Xk] 4 < k = [], ( ),

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi II (Basics of Probability Theory ad Radom Walks) (Preface),.,,,.,,,...,,.,.,,.,,. (Basics of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios, Meas).............................

More information

(Basic of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Weak Law

(Basic of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Weak Law I (Radom Walks ad Percolatios) 3 4 7 ( -2 ) (Preface),.,,,...,,.,,,,.,.,,.,,. (,.) (Basic of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios, Meas).............................

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

³ÎΨÏÀ

³ÎΨÏÀ 2017 12 12 Makoto Nakashima 2017 12 12 1 / 22 2.1. C, D π- C, D. A 1, A 2 C A 1 A 2 C A 3, A 4 D A 1 A 2 D Makoto Nakashima 2017 12 12 2 / 22 . (,, L p - ). Makoto Nakashima 2017 12 12 3 / 22 . (,, L p

More information

I (Analysis I) Lebesgue (Lebesgue Integral Theory) 1 (Seiji HIRABA) 1 ( ),,, ( )

I (Analysis I) Lebesgue (Lebesgue Integral Theory) 1 (Seiji HIRABA) 1 ( ),,, ( ) I (Analysis I) Lebesgue (Lebesgue Integral Theory) 1 (Seiji HIRABA) 1 ( ),,, ( ) 1 (Introduction) 1 1.1... 1 1.2 Riemann Lebesgue... 2 2 (Measurable sets and Measures) 4 2.1 σ-... 4 2.2 Borel... 5 2.3...

More information

III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). T

III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). T III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). Theorem 1.3 (Lebesgue ) lim n f n = f µ-a.e. g L 1 (µ)

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í Markov 2009 10 2 Markov 2009 10 2 1 / 25 1 (GA) 2 GA 3 4 Markov 2009 10 2 2 / 25 (GA) (GA) L ( 1) I := {0, 1} L f : I (0, ) M( 2) S := I M GA (GA) f (i) i I Markov 2009 10 2 3 / 25 (GA) ρ(i, j), i, j I

More information

Lebesgue Fubini L p Banach, Hilbert Höld

Lebesgue Fubini L p Banach, Hilbert Höld II (Analysis II) Lebesgue (Applications of Lebesgue Integral Theory) 1 (Seiji HIABA) 1 ( ),,, ( ) 1 1 1.1 1 Lebesgue........................ 1 1.2 2 Fubini...................... 2 2 L p 5 2.1 Banach, Hilbert..............................

More information

II Brown Brown

II Brown Brown II 16 12 5 1 Brown 3 1.1..................................... 3 1.2 Brown............................... 5 1.3................................... 8 1.4 Markov.................................... 1 1.5

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,.

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,. (1 C205) 4 10 (2 C206) 4 11 (2 B202) 4 12 25(2013) http://www.math.is.tohoku.ac.jp/~obata,.,,,..,,. 1. 2. 3. 4. 5. 6. 7. 8. 1., 2007 ( ).,. 2. P. G., 1995. 3. J. C., 1988. 1... 2.,,. ii 3.,. 4. F. ( ),..

More information

B [ 0.1 ] x > 0 x 6= 1 f(x) µ 1 1 xn 1 + sin sin x 1 x 1 f(x) := lim. n x n (1) lim inf f(x) (2) lim sup f(x) x 1 0 x 1 0 (

B [ 0.1 ] x > 0 x 6= 1 f(x) µ 1 1 xn 1 + sin sin x 1 x 1 f(x) := lim. n x n (1) lim inf f(x) (2) lim sup f(x) x 1 0 x 1 0 ( . 28 4 14 [.1 ] x > x 6= 1 f(x) µ 1 1 xn 1 + sin + 2 + sin x 1 x 1 f(x) := lim. 1 + x n (1) lim inf f(x) (2) lim sup f(x) x 1 x 1 (3) lim inf x 1+ f(x) (4) lim sup f(x) x 1+ [.2 ] [, 1] Ω æ x (1) (2) nx(1

More information

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3 II (Percolation) 12 9 27 ( 3-4 ) 1 [ ] 2 [ ] 3 [ ] 4 [ ] 1992 5 [ ] G Grimmett Percolation Springer-Verlag New-York 1989 6 [ ] 3 1 3 p H 2 3 2 FKG BK Russo 2 p H = p T (=: p c ) 3 2 Kesten p c =1/2 ( )

More information

1 a b = max{a, b}, a b = mi{a, b} a 1 a 2 a a 1 a = max{a 1,... a }, a 1 a = mi{a 1,... a }. A sup A, if A A A A A sup A sup A = + A if A = ± y = arct

1 a b = max{a, b}, a b = mi{a, b} a 1 a 2 a a 1 a = max{a 1,... a }, a 1 a = mi{a 1,... a }. A sup A, if A A A A A sup A sup A = + A if A = ± y = arct 27 6 2 1 2 2 5 3 8 4 13 5 16 6 19 7 23 8 27 N Z = {, ±1, ±2,... }, R =, R + = [, + ), R = [, ], C =. a b = max{a, b}, a b = mi{a, b}, a a, a a. f : X R [a < f < b] = {x X; a < f(x) < b}. X [f] = [f ],

More information

populatio sample II, B II? [1] I. [2] 1 [3] David J. Had [4] 2 [5] 3 2

populatio sample II, B II?  [1] I. [2] 1 [3] David J. Had [4] 2 [5] 3 2 (2015 ) 1 NHK 2012 5 28 2013 7 3 2014 9 17 2015 4 8!? New York Times 2009 8 5 For Today s Graduate, Just Oe Word: Statistics Google Hal Varia I keep sayig that the sexy job i the ext 10 years will be statisticias.

More information

6.1 (P (P (P (P (P (P (, P (, P.

6.1 (P (P (P (P (P (P (, P (, P. (011 30 7 0 ( ( 3 ( 010 1 (P.3 1 1.1 (P.4.................. 1 1. (P.4............... 1 (P.15.1 (P.16................. (P.0............3 (P.18 3.4 (P.3............... 4 3 (P.9 4 3.1 (P.30........... 4 3.

More information

V 0 = + r pv (H) + qv (T ) = + r ps (H) + qs (T ) = S 0 X n+ (T ) = n S n+ (T ) + ( + r)(x n n S n ) = ( + r)x n + n (d r)s n = ( + r)v n + V n+(h) V

V 0 = + r pv (H) + qv (T ) = + r ps (H) + qs (T ) = S 0 X n+ (T ) = n S n+ (T ) + ( + r)(x n n S n ) = ( + r)x n + n (d r)s n = ( + r)v n + V n+(h) V I (..2) (0 < d < + r < u) X 0, X X = 0 S + ( + r)(x 0 0 S 0 ) () X 0 = 0, P (X 0) =, P (X > 0) > 0 0 H, T () X 0 = 0, X (H) = 0 us 0 ( + r) 0 S 0 = 0 S 0 (u r) X (T ) = 0 ds 0 ( + r) 0 S 0 = 0 S 0 (d r)

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

( )/2 hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1

( )/2   hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1 ( )/2 http://www2.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html 1 2011 ( )/2 2 2011 4 1 2 1.1 1 2 1 2 3 4 5 1.1.1 sample space S S = {H, T } H T T H S = {(H, H), (H, T ), (T, H), (T, T )} (T, H) S

More information

(JAIST) (JSPS) PD URL:

(JAIST) (JSPS) PD URL: (JAIST) (JSPS) PD URL: http://researchmap.jp/kihara Email: kihara.takayuki.logic@gmail.com 2012 9 5 ii 2012 9 4 7 2012 JAIST iii #X X X Y X

More information

6.1 (P (P (P (P (P (P (, P (, P.101

6.1 (P (P (P (P (P (P (, P (, P.101 (008 0 3 7 ( ( ( 00 1 (P.3 1 1.1 (P.3.................. 1 1. (P.4............... 1 (P.15.1 (P.15................. (P.18............3 (P.17......... 3.4 (P................ 4 3 (P.7 4 3.1 ( P.7...........

More information

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d )

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d ) 23 M R M ϕ : R M M ϕt, x) ϕ t x) ϕ s ϕ t ϕ s+t, ϕ 0 id M M ϕ t M ξ ξ ϕ t d ϕ tx) ξϕ t x)) U, x 1,...,x n )) ϕ t x) ϕ 1) t x),...,ϕ n) t x)), ξx) ξ i x) d ϕi) t x) ξ i ϕ t x)) M f ϕ t f)x) f ϕ t )x) fϕ

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

「産業上利用することができる発明」の審査の運用指針(案)

「産業上利用することができる発明」の審査の運用指針(案) 1 1.... 2 1.1... 2 2.... 4 2.1... 4 3.... 6 4.... 6 1 1 29 1 29 1 1 1. 2 1 1.1 (1) (2) (3) 1 (4) 2 4 1 2 2 3 4 31 12 5 7 2.2 (5) ( a ) ( b ) 1 3 2 ( c ) (6) 2. 2.1 2.1 (1) 4 ( i ) ( ii ) ( iii ) ( iv)

More information

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ = 1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A

More information

ii 3.,. 4. F. (), ,,. 8.,. 1. (75% ) (25% ) =9 7, =9 8 (. ). 1.,, (). 3.,. 1. ( ).,.,.,.,.,. ( ) (1 2 )., ( ), 0. 2., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75% ) (25% ) =9 7, =9 8 (. ). 1.,, (). 3.,. 1. ( ).,.,.,.,.,. ( ) (1 2 )., ( ), 0. 2., 1., 0,. 23(2011) (1 C104) 5 11 (2 C206) 5 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 ( ). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5.. 6.. 7.,,. 8.,. 1. (75%

More information

Kullback-Leibler

Kullback-Leibler Kullback-Leibler 206 6 6 http://www.math.tohoku.ac.jp/~kuroki/latex/206066kullbackleibler.pdf 0 2 Kullback-Leibler 3. q i.......................... 3.2........... 3.3 Kullback-Leibler.............. 4.4

More information

(I) (II) 2 (I) 2 (II) 2 (III) (I) (II) (II) : 2 Typeset by Akio Namba usig Powerdot. 2 / 47

(I) (II) 2 (I) 2 (II) 2 (III) (I) (II) (II) : 2 Typeset by Akio Namba usig Powerdot. 2 / 47 4 Typeset by Akio Namba usig Powerdot. / 47 (I) (II) 2 (I) 2 (II) 2 (III) (I) (II) (II) : 2 Typeset by Akio Namba usig Powerdot. 2 / 47 (I) (II) 2 (I) 2 (II) 2 (III) (I) (II) (II) : 2 (radom variable):

More information

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i 1. 1 1.1 1.1.1 1.1.1.1 v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) R ij R ik = δ jk (4) δ ij Kronecker δ ij = { 1 (i = j) 0 (i j) (5) 1 1.1. v1.1 2011/04/10 1. 1 2 v i = R ij v j (6) [

More information

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,. 24(2012) (1 C106) 4 11 (2 C206) 4 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 (). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5... 6.. 7.,,. 8.,. 1. (75%)

More information

i ii iii iv v vi vii ( ー ー ) ( ) ( ) ( ) ( ) ー ( ) ( ) ー ー ( ) ( ) ( ) ( ) ( ) 13 202 24122783 3622316 (1) (2) (3) (4) 2483 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 11 11 2483 13

More information

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n ( 3 n nc k+ k + 3 () n C r n C n r nc r C r + C r ( r n ) () n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (4) n C n n C + n C + n C + + n C n (5) k k n C k n C k (6) n C + nc

More information

数理統計学Iノート

数理統計学Iノート I ver. 0/Apr/208 * (inferential statistics) *2 A, B *3 5.9 *4 *5 [6] [],.., 7 2004. [2].., 973. [3]. R (Wonderful R )., 9 206. [4]. ( )., 7 99. [5]. ( )., 8 992. [6],.., 989. [7]. - 30., 0 996. [4] [5]

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

名称未設定

名称未設定 2007 12 19 i I 1 1 3 1.1.................... 3 1.2................................ 4 1.3.................................... 7 2 9 2.1...................................... 9 2.2....................................

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc 013 6 30 BCS 1 1.1........................ 1................................ 3 1.3............................ 3 1.4............................... 5 1.5.................................... 5 6 3 7 4 8

More information

I II III IV V

I II III IV V I II III IV V N/m 2 640 980 50 200 290 440 2m 50 4m 100 100 150 200 290 390 590 150 340 4m 6m 8m 100 170 250 µ = E FRVβ β N/mm 2 N/mm 2 1.1 F c t.1 3 1 1.1 1.1 2 2 2 2 F F b F s F c F t F b F s 3 3 3

More information

I

I I io@hiroshima-u.ac.jp 27 6 A A. /a δx = lim a + a exp π x2 a 2 = lim a + a = lim a + a exp a 2 π 2 x 2 + a 2 2 x a x = lim a + a Sic a x = lim a + a Rect a Gaussia Loretzia Bilateral expoetial Normalized

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

ルベーグ積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

ルベーグ積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. ルベーグ積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/005431 このサンプルページの内容は, 初版 1 刷発行時のものです. Lebesgue 1 2 4 4 1 2 5 6 λ a

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

Feynman Encounter with Mathematics 52, [1] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull

Feynman Encounter with Mathematics 52, [1] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull Feynman Encounter with Mathematics 52, 200 9 [] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull. Sci. Math. vol. 28 (2004) 97 25. [2] D. Fujiwara and

More information

newmain.dvi

newmain.dvi 数論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/008142 このサンプルページの内容は, 第 2 版 1 刷発行当時のものです. Daniel DUVERNEY: THÉORIE DES NOMBRES c Dunod, Paris, 1998, This book is published

More information

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 p µ γ µ + mp ν γ ν + m 5.1 γ p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 1 2 p µp ν {γ µ, γ ν } + m 2 5.2 p m p p µ γ µ {, } 10 γ {γ µ, γ ν } 2η µν 5.3 p µ γ µ + mp

More information

2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =

More information

n 2 + π2 6 x [10 n x] x = lim n 10 n n 10 k x 1.1. a 1, a 2,, a n, (a n ) n=1 {a n } n=1 1.2 ( ). {a n } n=1 Q ε > 0 N N m, n N a m

n 2 + π2 6 x [10 n x] x = lim n 10 n n 10 k x 1.1. a 1, a 2,, a n, (a n ) n=1 {a n } n=1 1.2 ( ). {a n } n=1 Q ε > 0 N N m, n N a m 1 1 1 + 1 4 + + 1 n 2 + π2 6 x [10 n x] x = lim n 10 n n 10 k x 1.1. a 1, a 2,, a n, (a n ) n=1 {a n } n=1 1.2 ( ). {a n } n=1 Q ε > 0 N N m, n N a m a n < ε 1 1. ε = 10 1 N m, n N a m a n < ε = 10 1 N

More information

st.dvi

st.dvi 9 3 5................................... 5............................. 5....................................... 5.................................. 7.........................................................................

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

untitled

untitled 3 3. (stochastic differential equations) { dx(t) =f(t, X)dt + G(t, X)dW (t), t [,T], (3.) X( )=X X(t) : [,T] R d (d ) f(t, X) : [,T] R d R d (drift term) G(t, X) : [,T] R d R d m (diffusion term) W (t)

More information

B2 ( 19 ) Lebesgue ( ) ( ) 0 This note is c 2007 by Setsuo Taniguchi. It may be used for personal or classroom purposes, but not for commercia

B2 ( 19 ) Lebesgue ( ) ( ) 0 This note is c 2007 by Setsuo Taniguchi. It may be used for personal or classroom purposes, but not for commercia B2 ( 19) Lebesgue ( ) ( 19 7 12 ) 0 This note is c 2007 by Setsuo Taniguchi. It may be used for personal or classroom purposes, but not for commercial purposes. i Riemann f n : [0, 1] R 1, x = k (1 m

More information

III ϵ-n ϵ-n lim n a n = α n a n α 1 lim a n = 0 1 n a k n n k= ϵ-n 1.1

III ϵ-n ϵ-n lim n a n = α n a n α 1 lim a n = 0 1 n a k n n k= ϵ-n 1.1 III http://www2.mth.kyushu-u.c.jp/~hr/lectures/lectures-j.html 1 1 1.1 ϵ-n ϵ-n lim n = α n n α 1 lim n = 0 1 n k n k=1 0 1.1.7 ϵ-n 1.1.1 n α n n α lim n = α ϵ Nϵ n > Nϵ n α < ϵ 1.1.1 ϵ n > Nϵ n α < ϵ 1.1.2

More information

1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l

1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l 1 1 ϕ ϕ ϕ S F F = ϕ (1) S 1: F 1 1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l : l r δr θ πrδr δf (1) (5) δf = ϕ πrδr

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

untitled

untitled 2 : n =1, 2,, 10000 0.5125 0.51 0.5075 0.505 0.5025 0.5 0.4975 0.495 0 2000 4000 6000 8000 10000 2 weak law of large numbers 1. X 1,X 2,,X n 2. µ = E(X i ),i=1, 2,,n 3. σi 2 = V (X i ) σ 2,i=1, 2,,n ɛ>0

More information

読めば必ずわかる 分散分析の基礎 第2版

読めば必ずわかる 分散分析の基礎 第2版 2 2003 12 5 ( ) ( ) 2 I 3 1 3 2 2? 6 3 11 4? 12 II 14 5 15 6 16 7 17 8 19 9 21 10 22 11 F 25 12 : 1 26 3 I 1 17 11 x 1, x 2,, x n x( ) x = 1 n n i=1 x i 12 (SD ) x 1, x 2,, x n s 2 s 2 = 1 n n (x i x)

More information

December 28, 2018

December 28, 2018 e-mail : kigami@i.kyoto-u.ac.jp December 28, 28 Contents 2............................. 3.2......................... 7.3..................... 9.4................ 4.5............. 2.6.... 22 2 36 2..........................

More information

行列代数2010A

行列代数2010A (,) A (,) B C = AB a 11 a 1 a 1 b 11 b 1 b 1 c 11 c 1 c a A = 1 a a, B = b 1 b b, C = AB = c 1 c c a 1 a a b 1 b b c 1 c c i j ij a i1 a i a i b 1j b j b j c ij = a ik b kj b 1j b j AB = a i1 a i a ik

More information

1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)? (2) () f(x)? b lim a f n (x)dx = b

1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)? (2) () f(x)? b lim a f n (x)dx = b 1 Introduction 2 2.1 2.2 2.3 3 3.1 3.2 σ- 4 4.1 4.2 5 5.1 5.2 5.3 6 7 8. Fubini,,. 1 1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)?

More information

基礎から学ぶトラヒック理論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

基礎から学ぶトラヒック理論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 基礎から学ぶトラヒック理論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/085221 このサンプルページの内容は, 初版 1 刷発行時のものです. i +α 3 1 2 4 5 1 2 ii 3 4 5 6 7 8 9 9.3 2014 6 iii 1 1 2 5 2.1 5 2.2 7

More information

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction 1 (1) (2) {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction 1 (1) (2) {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a % 100% 1 Introduction 2 (100%) 2.1 2.2 2.3 3 (100%) 3.1 3.2 σ- 4 (100%) 4.1 4.2 5 (100%) 5.1 5.2 5.3 6 (100%) 7 (40%) 8 Fubini (90%) 2007.11.5 1 8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory

More information

linearal1.dvi

linearal1.dvi 19 4 30 I 1 1 11 1 12 2 13 3 131 3 132 4 133 5 134 6 14 7 2 9 21 9 211 9 212 10 213 13 214 14 22 15 221 15 222 16 223 17 224 20 3 21 31 21 32 21 33 22 34 23 341 23 342 24 343 27 344 29 35 31 351 31 352

More information

2011 8 26 3 I 5 1 7 1.1 Markov................................ 7 2 Gau 13 2.1.................................. 13 2.2............................... 18 2.3............................ 23 3 Gau (Le vy

More information

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ SO(3) 71 5.7 5.7.1 1 ħ L k l k l k = iϵ kij x i j (5.117) l k SO(3) l z l ± = l 1 ± il = i(y z z y ) ± (z x x z ) = ( x iy) z ± z( x ± i y ) = X ± z ± z (5.118) l z = i(x y y x ) = 1 [(x + iy)( x i y )

More information

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z B 4 24 7 9 ( ) :,..,,.,. 4 4. f(z): D C: D a C, 2πi C f(z) dz = f(a). z a a C, ( ). (ii), a D, a U a,r D f. f(z) = A n (z a) n, z U a,r, n= A n := 2πi C f(ζ) dζ, n =,,..., (ζ a) n+, C a D. (iii) U a,r

More information

2

2 1 2 3 4 5 6 7 8 9 10 I II III 11 IV 12 V 13 VI VII 14 VIII. 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 _ 33 _ 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 VII 51 52 53 54 55 56 57 58 59

More information

,,,,., = (),, (1) (4) :,,,, (1),. (2),, =. (3),,. (4),,,,.. (1) (3), (4).,,., () : = , ( ) : = F 1 + F 2 + F 3 + ( ) : = i Fj j=1 2

,,,,., = (),, (1) (4) :,,,, (1),. (2),, =. (3),,. (4),,,,.. (1) (3), (4).,,., () : = , ( ) : = F 1 + F 2 + F 3 + ( ) : = i Fj j=1 2 6 2 6.1 2 2, 2 5.2 R 2, 2 (R 2, B, µ)., R 2,,., 1, 2, 3,., 1, 2, 3,,. () : = 1 + 2 + 3 + (6.1.1).,,, 1 ,,,,., = (),, (1) (4) :,,,, (1),. (2),, =. (3),,. (4),,,,.. (1) (3), (4).,,., () : = 1 + 2 + 3 +,

More information

untitled

untitled i ii iii iv v 43 43 vi 43 vii T+1 T+2 1 viii 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 a) ( ) b) ( ) 51

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120) 2.6 2.6.1 mẍ + γẋ + ω 0 x) = ee 2.118) e iωt Pω) = χω)e = ex = e2 Eω) m ω0 2 ω2 iωγ 2.119) Z N ϵω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j 2.120) Z ω ω j γ j f j f j f j sum j f j = Z 2.120 ω ω j, γ ϵω) ϵ

More information

App. of Leb. Integral Theory (S. Hiraba) Lebesgue (X, F, µ) (measure space)., X, 2 X, F 2 X σ (σ-field), i.e., (1) F, (2) A F = A c F, (3)

App. of Leb. Integral Theory (S. Hiraba) Lebesgue (X, F, µ) (measure space)., X, 2 X, F 2 X σ (σ-field), i.e., (1) F, (2) A F = A c F, (3) Lebesgue (Applications of Lebesgue Integral Theory) (Seiji HIABA) 1 1 1.1 1 Lebesgue........................ 1 1.2 2 Fubini...................... 2 2 L p 5 2.1 Banach, Hilbert..............................

More information

Peano-Jordan-Borel Lebesgue Archimedes Gallilei, Pascal, Torricelli, Fermat Newton Leibniz Cauchy Daniell (1963) ( 4,200) 1

Peano-Jordan-Borel Lebesgue Archimedes Gallilei, Pascal, Torricelli, Fermat Newton Leibniz Cauchy Daniell (1963) ( 4,200) 1 2007 5 23 Peao-Jorda-Borel Lebesgue Archimedes Gallilei, Pascal, Torricelli, Fermat Newto Leibiz Cauchy Daiell (1963) ( 4,200) 1 (1965) ( 2,600) (1966) (1972) ( 2,700) (1980) (1995) (2000) ( 2,500) (2000)

More information

平成 29 年度 ( 第 39 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 29 ~8 年月 73 月日開催 31 日 Riemann Riemann ( ). π(x) := #{p : p x} x log x (x ) Hadamard de

平成 29 年度 ( 第 39 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 29 ~8 年月 73 月日開催 31 日 Riemann Riemann ( ). π(x) := #{p : p x} x log x (x ) Hadamard de Riemann Riemann 07 7 3 8 4 ). π) : #{p : p } log ) Hadamard de la Vallée Poussin 896 )., f) g) ) lim f) g).. π) Chebychev. 4 3 Riemann. 6 4 Chebychev Riemann. 9 5 Riemann Res). A :. 5 B : Poisson Riemann-Lebesgue

More information

( ) Loewner SLE 13 February

( ) Loewner SLE 13 February ( ) Loewner SLE 3 February 00 G. F. Lawler, Conformally Invariant Processes in the Plane, (American Mathematical Society, 005)., Summer School 009 (009 8 7-9 ) . d- (BES d ) d B t = (Bt, B t,, Bd t ) (d

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + 2.6 2.6.1 ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.121) Z ω ω j γ j f j

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

1 I

1 I 1 I 3 1 1.1 R x, y R x + y R x y R x, y, z, a, b R (1.1) (x + y) + z = x + (y + z) (1.2) x + y = y + x (1.3) 0 R : 0 + x = x x R (1.4) x R, 1 ( x) R : x + ( x) = 0 (1.5) (x y) z = x (y z) (1.6) x y =

More information

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz 1 2 (a 1, a 2, a n ) (b 1, b 2, b n ) A (1.1) A = a 1 b 1 + a 2 b 2 + + a n b n (1.1) n A = a i b i (1.2) i=1 n i 1 n i=1 a i b i n i=1 A = a i b i (1.3) (1.3) (1.3) (1.1) (ummation convention) a 11 x

More information

数学Ⅱ演習(足助・09夏)

数学Ⅱ演習(足助・09夏) II I 9/4/4 9/4/2 z C z z z z, z 2 z, w C zw z w 3 z, w C z + w z + w 4 t R t C t t t t t z z z 2 z C re z z + z z z, im z 2 2 3 z C e z + z + 2 z2 + 3! z3 + z!, I 4 x R e x cos x + sin x 2 z, w C e z+w

More information

i

i 14 i ii iii iv v vi 14 13 86 13 12 28 14 16 14 15 31 (1) 13 12 28 20 (2) (3) 2 (4) (5) 14 14 50 48 3 11 11 22 14 15 10 14 20 21 20 (1) 14 (2) 14 4 (3) (4) (5) 12 12 (6) 14 15 5 6 7 8 9 10 7

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C 8 ( ) 8 5 4 I II III A B C( ),,, 5 I II A B ( ),, I II A B (8 ) 6 8 I II III A B C(8 ) n ( + x) n () n C + n C + + n C n = 7 n () 7 9 C : y = x x A(, 6) () A C () C P AP Q () () () 4 A(,, ) B(,, ) C(,,

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................

More information

数学概論I

数学概論I {a n } M >0 s.t. a n 5 M for n =1, 2,... lim n a n = α ε =1 N s.t. a n α < 1 for n > N. n > N a n 5 a n α + α < 1+ α. M := max{ a 1,..., a N, 1+ α } a n 5 M ( n) 1 α α 1+ α t a 1 a N+1 a N+2 a 2 1 a n

More information

Microsoft Word - 表紙.docx

Microsoft Word - 表紙.docx 黒住英司 [ 著 ] サピエンティア 計量経済学 訂正および練習問題解答 (206/2/2 版 ) 訂正 練習問題解答 3 .69, 3.8 4 (X i X)U i i i (X i μ x )U i ( X μx ) U i. i E [ ] (X i μ x )U i i E[(X i μ x )]E[U i ]0. i V [ ] (X i μ x )U i i 2 i j E [(X i

More information

第5章 偏微分方程式の境界値問題

第5章 偏微分方程式の境界値問題 October 5, 2018 1 / 113 4 ( ) 2 / 113 Poisson 5.1 Poisson ( A.7.1) Poisson Poisson 1 (A.6 ) Γ p p N u D Γ D b 5.1.1: = Γ D Γ N 3 / 113 Poisson 5.1.1 d {2, 3} Lipschitz (A.5 ) Γ D Γ N = \ Γ D Γ p Γ N Γ

More information

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1) 1. 1.1...,. 1.1.1 V, V x, y, x y x + y x + y V,, V x α, αx αx V,, (i) (viii) : x, y, z V, α, β C, (i) x + y = y + x. (ii) (x + y) + z = x + (y + z). 1 (iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y

More information