統計的データ解析

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "統計的データ解析"

Transcription

1 統計的データ解析 林田清 ( 大阪大学大学院理学研究科 )

2 連続確率分布の平均値 分散 比較のため

3 P(c ) c 分布 自由度 の ( カイ c 平均値 0, 標準偏差 1の正規分布 に従う変数 xの自乗和 c x =1 が従う分布を自由度 の分布と呼ぶ 一般に自由度の分布は f /1 c / / ( c ) {( c ) e }/ ( / ) 期待値 二乗 ) 分布 c c E( c ) 分散 V ( c ) ( x ) 平均値, 標準偏差 の正規分布に従う も自由度 のc 分布 =1 ( x x) はしかし自由度 1の c 分布 c 分布の加算 : 自由度 mの c 分布に従う変数と自由度 lの c 分布に従う 変数の和は 自由度 m lの c 分布に従う = c dstrbuto c dof=1 dof=4 dof= dof=6

4 カイ二乗分布の確率分布の積分あてはめの良さの検定 reduced-c の値の表 ( 対応する c の値を超える確率 P と自由度 の関数として表示されている ) 最小二乗フィットによりモデルパラメータを最適化した際の c 値を求める 上記の c 値 ( 以上の値 ) を得る確率を表から調べる 確率があまりにも小さければ何か間違っている ( 例えばモデルが適当でない ) Data Reducto ad Error Aalyss for the Physcal Sceces, Bevgto & Robso より

5 htt://cluster.f7.ems.okayama-u.ac./~ya/scscd/table/ch.html にも同様の表 ( 但し reduced ch-squared ではなく ch-squared の値 ) が掲載されている Excel なら CHIDIST,CHIINV

6 統計的検定 (statstcal test) 例 )xの10 回の測定平均値が0.45 標準偏差が0.05 仮説 H:( 例 ) 母集団での平均値は0.5である 本当は対立仮説 H': 母集団での平均値は0.5でない を示したいので Hを帰無仮説という H': 母集団での平均値は0.5より小さい ( 大きい ) の場合も有り得る 両側検定 片側検定 平均値 0.5 標準偏差 0.05の母集団から10 個の標本をサンプルした場合に平均値が0.45 以下になる ( あるいは0.45 以下 0.55 以上になる ) 確率 Pは? Pが定められた危険率 ( 有意水準 )aより 小さい : 仮説は誤り 正しい可能性を棄てる危険性 aを伴って 大きい : 仮説は否定できない 危険率 ( 有意水準 )=sgfcace level

7 フィットのよさに関するカイ二乗検定 [ 問題例 ] 7 組の測定データ (x,y ) (=1,..,7) で X の誤差は無視できるほど小さく y の誤差は とする これを y=ax+b の直線モデルを仮定し a,b をフリーパラメータとしてカイ二乗フィットする 自由度は 7-=5 c m の値 によって どのような判断をするか? 例えば c m=15.1を得た場合 自由度 5のc 分布で15.1 以上の値を得る確率は0.99% 結論例 1: 危険率 1%( 以上 ) でこのモデルは棄却される 結論例 : 危険率 0.5% ではこのモデルは棄却されない c m=6.0を得た場合 自由度 5 の c 分布で 6.0 以上の値を得る確率は 31% 結論例 : ( 危険率 10% では ) このモデルは棄却されない c m=0.55 を得た場合 自由度 5 の c 分布で 0.55 以下の値を得る確率は 1% 結論例 : c m の値が小さすぎる ( と危険率 1% で結論できる ) 誤差の評価が不適当である可能性が大きい

8 パラメータの推定誤差 最適化したパラメータはあくまでもパラメータの真の値の推定値 必ず推定誤差がある 直線モデルの場合 誤差伝播側より計算できる a 1 1 a 1 y b 1 x b 1 y c y( x ) y ax b P( a, b) を最大にする=c を最小にする c 0, c 0 a b からc を最小にするab, として 1 b y x y x y a ただし x y x x y 1 x x

9 任意関数の最小二乗 ( カイ二乗 ) フィット 任意の関数形 yx ( ) をモデルに採用した場合でも y y( x) c 1 を最小にするようパラメータを決定する パラメータの数をmとしてc は自由度 = mの c 分布に従うことが期待される パラメータの誤差の推定 : c を最小にするパラメータ値 a に対して c を1だけ増加させる c m ( ) aの値 a a a a を探す c 1 cm cm aの誤差範囲 (1パラメータ68% 信頼水準 ) はacm aから acm a

10 カイ二乗フィットのパラメータ推定誤差 1 回の測定でデータの組 ( x, y ),...,( x y ) が得られたとし y,..., y の測定誤差 1 1, 1 ( ただし正規分布するランダム誤差 ) を,..., とする これらのデータ点は 個のパラメータで指定されるモデルf ( x; a,..., a ) に 正規分布に従う誤差が 付加されたデータで構成される母集団から採取されたと仮定する パラメータの真の値 ( これは不可知 ) を( a,..., a ) と仮定すると尤度 ( データ点の組が得られる確率は ) は 1 P( a,..., a ) ex y f ( x; a1,..., a ) y f ( x; a1,..., a ) exの中身をc と定義する c は自由度 の c 分布に従う 1 一方 P( a,..., a ) を最大にするようなパラメータの組 (= 最適パラメータ ) を( aˆ,..., aˆ ) と y ˆ ˆ f ( x; a1,..., a ) するとこれはc の最小値 cm を与える 1 c m は 個のパラメータによって調整して最小化を行ったので自由度が 減って 自由度 - の c 分布に従う

11 カイ二乗フィットのパラメータ推定誤差 f x a a a a aˆ aˆ ; 1,..., が 1,..., の線形関数の場合 ( 1,..., ) がc の最小値を与えることに 注意すると y ; 1 ˆ ˆ f x a,..., a y f x; a1,..., a c A ˆ a a 1 1 c 1 という形にかけるはず ( =0) とすると a A P( a,..., a ) F( a,..., a を含まない関数 ) 1 1 m ; 1 1 m 1 1 ex a aˆ これからc c c は自由度 の c 分布に従うことがわかる f x a,..., a がa,..., a の線形関数でない場合は このような形にはかけないが c c c は自由度 の c 分布で近似する

12 区間推定 例 ) 平均値 標準偏差 の正規分布に従う母集団 から 1 回の測定で測定値 xを採取する操作を 考える の真の値は知らず は何らかの方法で 推定できていたとする ( 例えば測定誤差に等しい z ( ) など ) の存在する範囲はどのように推定できるか? - z( / ) 1- / z( / ) z zを平均 0 標準偏差 1の正規分布に従う変数だとして 確率 1-となる区間は - z( /) ( x )/ z( /) 変形して x - z( / ) x z( / ) が信頼係数 100 (1- ) % でのの信頼区間 信頼区間 =cofdece terval 信頼係数 =cofdece level

13 信頼区間の推定 正規分布の場合 -<x-< にくる確率 68.3% -<x-< にくる確率 95.5% -3<x-<3 にくる確率 99.7% -1.96<x-<1.96 にくる確率 95% -.58<x-<.58 にくる確率 99%

14 カイ二乗フィットのパラメータ誤差推定 ( パラメータの数による信頼区間の違い ) パラメータ a 1,a それぞれのの 68% 信頼区間は Δχ =1 であるが (a 1,a ) の組の 68% 信頼区間は Δχ =.3 の楕円で囲まれた領域になる Numercal Reces C, 技術評論社より転載 上の表で自由度とは ( 注目する ) パラメータの数

15 相関が 0 でない例 ラインスペクトルをガウシアンモデルでフィットするモデルとして次の形式のガウシアン関数を仮定 F( x) Aex して A, B, C, x C フィッティングプログラムはA, B, Cの最適値と その誤差,, を出力してくれる A B C B をフィッティングにより求める このラインの積分強度はI A B I I I A B 共分散を無視して と計算すると A B 誤差を過大評価する恐れがある I x C Gx ( ) ex B B というモデル式を使えば このような問題は回避できる

16 最小二乗 ( カイ二乗 ) フィットのまとめ 最尤法が根拠 ただし 測定値 y のモデル点からのばらつきが正規分布で近似できる場合に限定 c を最小にするパラメータが最良推定値 あてはめの良さ モデルの妥当性は c の値が自由度 -m に近いかどうかで評価できる パラメータの誤差 ( 信頼区間 ) は c から推定できる

17 宿題 D デルタカイ 乗 =1 がパラメータの推定誤差になることを y(x)=b のモデルの例で示せ xsec のフィッティングの出力結果に関して 具体的な例を使い どのような定義の値がかかれているか説明せよ x にも誤差がある場合どのように扱うべきか?x,y が独立で それぞれ正規分布に従う誤差をもっているとして 直線モデルの場合を例にとって考えよ ( ヒント : 下の式 ) x xˆ y yˆ x y y 1 1 P( a, b; x,,, ) ˆ y x y dx ex ex x ただし xˆ, yˆ はyˆ axˆ bであらわされる直線モデル上の点 ˆ ˆ 1 x x y ax b y ax b P( a, b; x,,, ) ˆ y x y dx ex ex x y x y a x y

Microsoft PowerPoint - stat-2014-[9] pptx

Microsoft PowerPoint - stat-2014-[9] pptx 統計学 第 17 回 講義 母平均の区間推定 Part-1 014 年 6 17 ( )6-7 限 担当教員 : 唐渡 広志 ( からと こうじ ) 研究室 : 経済学研究棟 4 階 43 号室 email: kkarato@eco.u-toyama.ac.j website: htt://www3.u-toyama.ac.j/kkarato/ 1 講義の目的 標本平均は正規分布に従うという性質を

More information

解析センターを知っていただく キャンペーン

解析センターを知っていただく キャンペーン 005..5 SAS 問題設定 目的 PKパラメータ (AUC,Cmax,Tmaxなど) の推定 PKパラメータの群間比較 PKパラメータのバラツキの評価! データの特徴 非反復測定値 個体につき 個の測定値しか得られない plasma concentration 非反復測定値のイメージ図 測定時点間で個体の対応がない 着目する状況 plasma concentration 経時反復測定値のイメージ図

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション Partner logo サイエンス右揃え上部に配置 XLfit のご紹介 マーケティング部 15 年 3 月 23 日 概要 1. XLfit 機能の確認 - 特徴 3 Step Wizard - 主なツールについて - 主なグラフの表現 2. 実用例 % Inhibition 9 7 6 5 3 1-1 Comparison 1 Concentration 2 1. 基本編 1 特徴 (3 Step

More information

Microsoft PowerPoint - A1.ppt [互換モード]

Microsoft PowerPoint - A1.ppt [互換モード] 011/4/13 付録 A1( 推測統計学の基礎 ) 付録 A1 推測統計学の基礎 1. 統計学. カイ 乗検定 3. 分散分析 4. 相関係数 5. 多変量解析 1. 統計学 3 統計ソフト 4 記述統計学 推測統計学 検定 ノンパラメトリック検定名義 / 分類尺度順序 / 順位尺度パラメトリック検定間隔 / 距離尺度比例 / 比率尺度 SAS SPSS R R-Tps (http://cse.aro.affrc.go.jp/takezawa/r-tps/r.html)

More information

2. 時系列分析 プラットフォームの使用法 JMP の 時系列分析 プラットフォームでは 一変量の時系列に対する分析を行うことができます この章では JMP のサンプルデ ータを用いて このプラットフォームの使用法をご説明します JMP のメニューバーより [ ヘルプ ] > [ サンプルデータ ]

2. 時系列分析 プラットフォームの使用法 JMP の 時系列分析 プラットフォームでは 一変量の時系列に対する分析を行うことができます この章では JMP のサンプルデ ータを用いて このプラットフォームの使用法をご説明します JMP のメニューバーより [ ヘルプ ] > [ サンプルデータ ] JMP を用いた ARIMA モデルのあてはめ SAS Institute Japan 株式会社 JMP ジャパン事業部 2013 年 2 月作成 1. はじめに JMP の時系列分析では 一変量の時系列データに対する分析や予測を行うことができ 時系列データに対するグラフ表示 時系列モデルのあてはめ モデルの評価 予測まで 対話的に分析を実行することができます 時系列データにあてはめるモデルとしては

More information

分析のステップ Step 1: Y( 目的変数 ) に対する値の順序を確認 Step 2: モデルのあてはめ を実行 適切なモデルの指定 Step 3: オプションを指定し オッズ比とその信頼区間を表示 以下 このステップに沿って JMP の操作をご説明します Step 1: Y( 目的変数 ) の

分析のステップ Step 1: Y( 目的変数 ) に対する値の順序を確認 Step 2: モデルのあてはめ を実行 適切なモデルの指定 Step 3: オプションを指定し オッズ比とその信頼区間を表示 以下 このステップに沿って JMP の操作をご説明します Step 1: Y( 目的変数 ) の JMP によるオッズ比 リスク比 ( ハザード比 ) の算出と注意点 SAS Institute Japan 株式会社 JMP ジャパン事業部 2011 年 10 月改定 1. はじめに 本文書は JMP でロジスティック回帰モデルによるオッズ比 比例ハザードモデルによるリスク比 それぞれに対する信頼区間を求める操作方法と注意点を述べたものです 本文書は JMP 7 以降のバージョンに対応しております

More information

8. 自由曲線と曲面の概要 陽関数 陰関数 f x f x x y y y f f x y z g x y z パラメータ表現された 次元曲線 パラメータ表現は xyx 毎のパラメータによる陽関数表現 形状普遍性 座標独立性 曲線上の点を直接に計算可能 多価の曲線も表現可能 gx 低次の多項式は 計

8. 自由曲線と曲面の概要 陽関数 陰関数 f x f x x y y y f f x y z g x y z パラメータ表現された 次元曲線 パラメータ表現は xyx 毎のパラメータによる陽関数表現 形状普遍性 座標独立性 曲線上の点を直接に計算可能 多価の曲線も表現可能 gx 低次の多項式は 計 8. 自由曲線 曲面. 概論. ベジエ曲線 曲面. ベジエ曲線 曲面の数学. OeGLによる実行. URS. スプライン関数. スプライン曲線 曲面. URS 曲線 曲面 4. OeGLによる実行 8. 自由曲線と曲面の概要 陽関数 陰関数 f x f x x y y y f f x y z g x y z パラメータ表現された 次元曲線 パラメータ表現は xyx 毎のパラメータによる陽関数表現 形状普遍性

More information

経営戦略研究_1.indb

経営戦略研究_1.indb 56 経営戦略研究 vol.1 図 4 1971 年度入社と 1972 年度入社の複合的競争 徴である Ⅳ 昇格と異動に関する回帰分析 1 回帰分析の変数 ここでは高い資格に到達 昇格 した人がどのような異動傾向を有しているかを回帰分 析で推定する 資格毎に 理事 10 参事 9 主幹 2 級 8.5 副参事 8 主幹 3 級 7.5 主事 技師 7 E 等級主任 6 P 等級主任 5 P 等級 4

More information

OpRisk VaR3.2 Presentation

OpRisk VaR3.2 Presentation オペレーショナル リスク VaR 計量の実施例 2009 年 5 月 SAS Institute Japan 株式会社 RI ビジネス開発部羽柴利明 オペレーショナル リスク計量の枠組み SAS OpRisk VaR の例 損失情報スケーリング計量単位の設定分布推定各種調整 VaR 計量 内部損失データ スケーリング 頻度分布 規模分布 分布の補正相関調整外部データによる分布の補正 損失シナリオ 分布の統合モンテカルロシミュレーション

More information

例 e 指数関数的に減衰する信号を h( a < + a a すると, それらのラプラス変換は, H ( ) { e } e インパルス応答が h( a < ( ただし a >, U( ) { } となるシステムにステップ信号 ( y( のラプラス変換 Y () は, Y ( ) H ( ) X (

例 e 指数関数的に減衰する信号を h( a < + a a すると, それらのラプラス変換は, H ( ) { e } e インパルス応答が h( a < ( ただし a >, U( ) { } となるシステムにステップ信号 ( y( のラプラス変換 Y () は, Y ( ) H ( ) X ( 第 週ラプラス変換 教科書 p.34~ 目標ラプラス変換の定義と意味を理解する フーリエ変換や Z 変換と並ぶ 信号解析やシステム設計における重要なツール ラプラス変換は波動現象や電気回路など様々な分野で 微分方程式を解くために利用されてきた ラプラス変換を用いることで微分方程式は代数方程式に変換される また 工学上使われる主要な関数のラプラス変換は簡単な形の関数で表されるので これを ラプラス変換表

More information

314 図 10.1 分析ツールの起動 図 10.2 データ分析ウィンドウ [ データ ] タブに [ 分析 ] がないときは 以下の手順で表示させる 1. Office ボタン をクリックし Excel のオプション をクリックする ( 図 10.3) 図 10.3 Excel のオプション

314 図 10.1 分析ツールの起動 図 10.2 データ分析ウィンドウ [ データ ] タブに [ 分析 ] がないときは 以下の手順で表示させる 1. Office ボタン をクリックし Excel のオプション をクリックする ( 図 10.3) 図 10.3 Excel のオプション 313 第 10 章 Excel を用いた統計処理 10.1 Excel の統計処理レポートや卒業研究などでは 大量のデータを処理 分析し 報告しなければならない場面が数多く登場する このような場合 手計算では多くの時間を要するため現在では計算機を用いて一括処理することが一般的である これにより 時間短縮だけでなく手軽に詳細な分析を行うことができる Excel ではこのような大量のデータに対する分析を容易に行えるよう

More information

第4回

第4回 Excel で度数分布表を作成 表計算ソフトの Microsoft Excel を使って 度数分布表を作成する場合 関数を使わなくても 四則演算(+ */) だけでも作成できます しかし データ数が多い場合に度数を求めたり 度数などの合計を求めるときには 関数を使えばデータを処理しやすく なります 度数分布表の作成で使用する関数 合計は SUM SUM( 合計を計算する ) 書式 :SUM( 数値数値

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 非線形カルマンフィルタ ~a. 問題設定 ~ 離散時間非線形状態空間表現 x k + 1 = f x k y k = h x k + bv k + w k f : ベクトル値をとるx k の非線形関数 h : スカラ値をとるx k の非線形関数 v k システム雑音 ( 平均値 0, 分散 σ v 2 k ) x k + 1 = f x k,v k w k 観測雑音 ( 平均値 0, 分散 σ w

More information

Microsoft Word - 計量研修テキスト_第5版).doc

Microsoft Word - 計量研修テキスト_第5版).doc Q3-1-1 テキスト P59 10.8.3.2.1.0 -.1 -.2 10.4 10.0 9.6 9.2 8.8 -.3 76 78 80 82 84 86 88 90 92 94 96 98 R e s i d u al A c tual Fi tte d Dependent Variable: LOG(TAXH) Date: 10/26/05 Time: 15:42 Sample: 1975

More information

Microsoft Word - 計量研修テキスト_第5版).doc

Microsoft Word - 計量研修テキスト_第5版).doc Q10-2 テキスト P191 1. 記述統計量 ( 変数 :YY95) 表示変数として 平均 中央値 最大値 最小値 標準偏差 観測値 を選択 A. 都道府県別 Descriptive Statistics for YY95 Categorized by values of PREFNUM Date: 05/11/06 Time: 14:36 Sample: 1990 2002 Included

More information

演習2

演習2 神戸市立工業高等専門学校電気工学科 / 電子工学科専門科目 数値解析 2017.6.2 演習 2 山浦剛 (tyamaura@riken.jp) 講義資料ページ h t t p://clim ate.aic s. riken. jp/m embers/yamaura/num erical_analysis. html 曲線の推定 N 次多項式ラグランジュ補間 y = p N x = σ N x x

More information

まず y t を定数項だけに回帰する > levelmod = lm(topixrate~1) 次にこの出力を使って先ほどのレジームスイッチングモデルを推定する 以下のように入力する > levelswmod = msmfit(levelmod,k=,p=0,sw=c(t,t)) ここで k はレジ

まず y t を定数項だけに回帰する > levelmod = lm(topixrate~1) 次にこの出力を使って先ほどのレジームスイッチングモデルを推定する 以下のように入力する > levelswmod = msmfit(levelmod,k=,p=0,sw=c(t,t)) ここで k はレジ マルコフレジームスイッチングモデルの推定 1. マルコフレジームスイッチング (MS) モデルを推定する 1.1 パッケージ MSwM インスツールする MS モデルを推定するために R のパッケージ MSwM をインスツールする パッケージとは通常の R には含まれていない 追加的な R のコマンドの集まりのようなものである R には追加的に 600 以上のパッケージが用意されており それぞれ分析の目的に応じて標準の

More information

今日の要点 あぶない 時系列データ解析は やめましょう! 統計モデル のあてはめ (危 1) 時系列データの GLM あてはめ (危 2) 時系列Yt 時系列 Xt 各時刻の個体数 気温 とか

今日の要点 あぶない 時系列データ解析は やめましょう! 統計モデル のあてはめ (危 1) 時系列データの GLM あてはめ (危 2) 時系列Yt 時系列 Xt 各時刻の個体数 気温 とか 時系列データ解析でよく見る あぶない モデリング 久保拓弥 (北海道大 環境科学) 1/56 今日の要点 あぶない 時系列データ解析は やめましょう! 統計モデル のあてはめ (危 1) 時系列データの GLM あてはめ (危 2) 時系列Yt 時系列 Xt 各時刻の個体数 気温 とか (危 1) 時系列データを GLM で (危 2) 時系列Yt 時系列 Xt 相関は因果関係ではない 問題の一部

More information

umeda_1118web(2).pptx

umeda_1118web(2).pptx 選択的ノード破壊による ネットワーク分断に耐性のある 最適ネットワーク設計 関西学院大学理工学部情報科学科 松井知美 巳波弘佳 選択的ノード破壊によるネットワーク分断に耐性のある最適ネットワーク設計 0 / 20 現実のネットワーク 現実世界のネットワークの分析技術の進展! ネットワークのデータ収集の効率化 高速化! 膨大な量のデータを解析できる コンピュータ能力の向上! インターネット! WWWハイパーリンク構造

More information

<4D F736F F D204A4D5082C982E682E991CE B A F2E646F63>

<4D F736F F D204A4D5082C982E682E991CE B A F2E646F63> JMP による対話的パーティショニング SAS Institute Japan 株式会社 JMP ジャパン事業部 2009 年 5 月 1. はじめに JMP では メニュー パーティション により 決定木の分析を行うことができます 本文書は このパーティションのメニューに関 する技術的事項を述べます 2. パーティションに関する Q&A この章では JMP のパーティションについての疑問を Q&A

More information

Microsoft Word - regression.doc

Microsoft Word - regression.doc 007, OGAWA, Hrosh Santa 回帰分析とソルバー つの変量を散布図に描いた場合 変量の間に関係が深いと点の散らばりが狭い範囲に集中する 狭い範囲に散らばったデータ点を特定の関数で表現して縮約することを回帰とよぶ 線形関数への回帰は 結果を人間が理解しやすいため比較的よく使われる 関数への回帰を求める方法は一つではないが Excel 自体は最小 乗法だけをサポートしている ソルバーと呼ばれる

More information

第1章 単 位

第1章  単  位 H. Hamano,. 長柱の座屈 - 長柱の座屈 長い柱は圧縮荷重によって折れてしまう場合がある. この現象を座屈といい, 座屈するときの荷重を座屈荷重という.. 換算長 長さ の柱に荷重が作用する場合, その支持方法によって, 柱の理論上の長さ L が異なる. 長柱の計算は, この L を用いて行うと都合がよい. この L を換算長 ( あるいは有効長さという ) という. 座屈荷重は一般に,

More information

ディジタル信号処理

ディジタル信号処理 ディジタルフィルタの設計法. 逆フィルター. 直線位相 FIR フィルタの設計. 窓関数法による FIR フィルタの設計.5 時間領域での FIR フィルタの設計 3. アナログフィルタを基にしたディジタル IIR フィルタの設計法 I 4. アナログフィルタを基にしたディジタル IIR フィルタの設計法 II 5. 双 次フィルタ LI 離散時間システムの基礎式の証明 [ ] 4. ] [ ]*

More information

Excelによる統計分析検定_知識編_小塚明_1_4章.indd

Excelによる統計分析検定_知識編_小塚明_1_4章.indd 第2章 1 変量データのまとめ方 本章では, 記述統計の手法について説明します 具体的には, 得られたデータから表やグラフを作成し, 意昧のある統計量を算出する方法など,1 変量データのまとめ方について学びます 本章から理解を深めるための数式が出てきますが, 必ずしも, これらの式を覚える必要はありません それぞれのデータの性質や統計量の意義を理解することが重要です 円グラフと棒グラフ 1 変量質的データをまとめる方法としてよく使われるグラフは,

More information

システムデザイン System Design

システムデザイン System Design 01/5/7 北海道大学工学部情報エレクトロニクス学科システム情報コース システムマネジメント System Maagemet ー品質のマネジメントー 担当 : 小野里雅彦 品質 (Quality) とは JIS 品物又はサービスが, 使用目的を満たしているかどうかを決定するための評価の対象となる固有の性質 性能の全体 ISO9000 ( 国際標準 ) Degree to which a set of

More information

Microsoft PowerPoint - kyoto

Microsoft PowerPoint - kyoto 研究集会 代数系アルゴリズムと言語および計算理論 知識の証明と暗号技術 情報セキュリティ大学大学院学院 有田正剛 1 はじめに 暗号技術の面白さとむずかしさ システムには攻撃者が存在する 条件が整ったときのベストパフォーマンスより 条件が整わないときの安全性 攻撃者は約束事 ( プロトコル ) には従わない 表面上は従っているふり 放置すると 正直者が損をする それを防ぐには 知識の証明 が基本手段

More information

MT UNDP HDI Langville and Meyer., pp. -, Gowers, Barrow-Green, and Leader., pp. -. なおこれら 参 考 文 献 の 参 考 ページ 数 は 翻 訳 書 の 該 当 ページ 数 に 拠 った.

MT UNDP HDI Langville and Meyer., pp. -, Gowers, Barrow-Green, and Leader., pp. -. なおこれら 参 考 文 献 の 参 考 ページ 数 は 翻 訳 書 の 該 当 ページ 数 に 拠 った. MT UNDP HDI Langville and Meyer., pp. -, Gowers, Barrow-Green, and Leader., pp. -. なおこれら 参 考 文 献 の 参 考 ページ 数 は 翻 訳 書 の 該 当 ページ 数 に 拠 った. http://hdr.undp.org/en/-report. HDI MT Mahalanobis- Taguchi Method

More information

Microsoft PowerPoint - Ⅱ(リスク計量化入門).ppt

Microsoft PowerPoint - Ⅱ(リスク計量化入門).ppt Ⅱ. 統計 確率の基礎知識 リスク計量化の前提となる統計 確率の基礎知識について整理 復習します 図解中心の説明ですので 統計 確率は苦手だと感じている方も理解度アップに繋がります 1 目 次 1. 基本統計量 (1 変量 ) 2. 基本統計量 (2 変量 ) 3. 確率変数と確率分布 4. 推定と検定 2 1. 基本統計量 (1 変量 ) (1) 平均 (2) 分散 (3) 標準偏差 (4) パーセント点

More information

win版8日目

win版8日目 8 日目 : 項目のチェック (2) 1 日 30 分くらい,30 日で何とか R をそこそこ使えるようになるための練習帳 :Win 版 昨日は, 平均値などの基礎統計量を計算する試行錯誤へご招待しましたが (?), 今日は簡 単にやってみます そのためには,psych というパッケージが必要となりますが, パッケー ジのインストール & 読み込みの詳しい方法は, 後で説明します 以下の説明は,psych

More information

受信機時計誤差項の が残ったままであるが これをも消去するのが 重位相差である. 重位相差ある時刻に 衛星 から送られてくる搬送波位相データを 台の受信機 でそれぞれ測定する このとき各受信機で測定された衛星 からの搬送波位相データを Φ Φ とし 同様に衛星 からの搬送波位相データを Φ Φ とす

受信機時計誤差項の が残ったままであるが これをも消去するのが 重位相差である. 重位相差ある時刻に 衛星 から送られてくる搬送波位相データを 台の受信機 でそれぞれ測定する このとき各受信機で測定された衛星 からの搬送波位相データを Φ Φ とし 同様に衛星 からの搬送波位相データを Φ Φ とす RTK-GPS 測位計算アルゴリズム -FLOT 解 - 東京海洋大学冨永貴樹. はじめに GPS 測量を行う際 実時間で測位結果を得ることが出来るのは今のところ RTK-GPS 測位のみである GPS 測量では GPS 衛星からの搬送波位相データを使用するため 整数値バイアスを決定しなければならず これが測位計算を複雑にしている所以である この整数値バイアスを決定するためのつの方法として FLOT

More information

講義資料 P2 文献の種類 著書論文 学会誌紀要報告書市販雑誌 その他学会発表 種類具体例注意すること出版社 保育学研究 ( 日本保育学会 ) 児童学研究 ( 聖徳大学 ) 児童心理 日本学術会議協力学術研究団体 / 査読付大学のレベル / 査読付 (2) 論文の書式 * 各研究科 指導教官によって

講義資料 P2 文献の種類 著書論文 学会誌紀要報告書市販雑誌 その他学会発表 種類具体例注意すること出版社 保育学研究 ( 日本保育学会 ) 児童学研究 ( 聖徳大学 ) 児童心理 日本学術会議協力学術研究団体 / 査読付大学のレベル / 査読付 (2) 論文の書式 * 各研究科 指導教官によって 講義資料 P1 第 1 回ガイダンス 1 受講にあたって (1) 担当者宮本友弘 ( 東北大学高度教養教育 学生支援機構准教授 ) E-mail: tomohiro@tohoku.ac.jp 専門 : 心理学 / 教育情報学 (2) 授業の概要 ( シラバス参照 ) (3) 教材 1 授業用の Web サイトを開設しています http://www16.plala.or.jp/tm-home/rm2016/

More information

Š§’΂Š‡è/A6212D

Š§’΂Š‡è/A6212D êêû êê ê strictions 0の帰無仮説は強く棄却されている を選択する ダイアログに制約式 このことから我が国の輸入市場は ドル建てに c 4 c 5 0 ついてみると円安 ドル高 YENDOLLの値が大 を書き入れる Eviewsは説明変数の順番をc 1 きくなる では速やかな輸入の減少をもたらして c 2 c 3 と し て 認 識 す る こ の 例 で はJIL-

More information

Microsoft Word - 計量研修テキスト_第5版).doc

Microsoft Word - 計量研修テキスト_第5版).doc Q8-1 テキスト P131 Engle-Granger 検定 Dependent Variable: RM2 Date: 11/04/05 Time: 15:15 Sample: 1967Q1 1999Q1 Included observations: 129 RGDP 0.012792 0.000194 65.92203 0.0000 R -95.45715 11.33648-8.420349

More information

Microsoft Word - 操作マニュアル-Excel-2.doc

Microsoft Word - 操作マニュアル-Excel-2.doc Excel プログラム開発の練習マニュアルー 1 ( 関数の学習 ) 作成 2015.01.31 修正 2015.02.04 本マニュアルでは Excel のプログラム開発を行なうに当たって まずは Excel の関数に関する学習 について記述する Ⅰ.Excel の関数に関する学習 1. 初めに Excel は単なる表計算のソフトと思っている方も多いと思います しかし Excel には 一般的に使用する

More information

Microsoft PowerPoint - fuseitei_6

Microsoft PowerPoint - fuseitei_6 不静定力学 Ⅱ 骨組の崩壊荷重の計算 不静定力学 Ⅱ では, 最後の問題となりますが, 骨組の崩壊荷重の計算法について学びます 1 参考書 松本慎也著 よくわかる構造力学の基本, 秀和システム このスライドの説明には, 主にこの参考書の説明を引用しています 2 崩壊荷重 構造物に作用する荷重が徐々に増大すると, 構造物内に発生する応力は増加し, やがて, 構造物は荷重に耐えられなくなる そのときの荷重を崩壊荷重あるいは終局荷重という

More information

PowerPoint Presentation

PowerPoint Presentation 応用数学 Ⅱ (7) 7 連立微分方程式の立て方と解法. 高階微分方程式による解法. ベクトル微分方程式による解法 3. 演算子による解法 連立微分方程式 未知数が複数個あり, 未知数の数だけ微分方程式が与えられている場合, これらを連立微分方程式という. d d 解法 () 高階微分方程式化による解法 つの方程式から つの未知数を消去して, 未知数が つの方程式に変換 のみの方程式にするために,

More information

情報基礎論Ⅱ(担当:二宮智子先生)・後期最終課題

情報基礎論Ⅱ(担当:二宮智子先生)・後期最終課題 情報基礎論 Ⅱ( 担当 : 二宮智子先生 ) 後期最終課題 過去 5 年間のプロ野球勝利要因分析 ~ どの指標の組み合わせが最も勝利に影響したのか ~ () はじめに ( 目的 ) 私は千葉出身という事もあって 小さい時から大の千葉ロッテマリーンズのファンで 昨年は見事 3 年ぶりの優勝を果たす事が出来 念願の勝利の美酒を味わう事が出来た 昨年の千葉ロッテは ボビー マジック と呼ばれるボビー バレンタイン監督の采配の元

More information

カメラレディ原稿

カメラレディ原稿 IS2-A2 カメラを回転させた時の特徴点軌跡を用いた魚眼カメラの内部パラメータ推定 - モデルと評価関数の変更による改良 - 田中祐輝, 増山岳人, 梅田和昇 Yuki TANAKA, Gakuto MASUYAMA, Kazunori UMEDA : 中央大学大学院理工学研究科,y.tanaka@sensor.mech.chuo-u.ac.jp 中央大学理工学部,{masuyama, umeda}@mech.chuo-u.ac.jp

More information

- 2 -

- 2 - 計算機工学 第1回 計算機利用の基礎1 計算機の仕組み 1 1 計算機はどのようなハードウェアによって構成されているのか 1 2 計算機の五大装置 制御の流れ データの流れ 制御装置 記憶装置に記録されているプログラムを解読し その指示に従ってその他の装置 を制御する 演算装置 四則演算 条件判断 論理演算を行う 上記2つを合わせて CPU(Central Processing Unit)と呼ぶ 記憶装置

More information

Taro-H22T3金沢工大eの導入訂正版

Taro-H22T3金沢工大eの導入訂正版 数学 Ⅲ での対数 e の導入 T3 第 4 回年会於金沢工業大学岡山市立岡山後楽館高校河合伸昭一部対数数学 Ⅱ の復習 作ってみようあなただけの対数表 対数の原理の理解と記号に慣れる.A. グラフ電卓で検算しながら 次の表を完成させよう 3 4 5 6 7 8 9 0 3 4 5 6 B. 暗算で次の値を計算しよう ( ヒント A の表を活用しよう ) 6 3 3 64 3 56 6 4 8 64

More information

書式に示すように表示したい文字列をダブルクォーテーション (") の間に書けば良い ダブルクォーテーションで囲まれた文字列は 文字列リテラル と呼ばれる プログラム中では以下のように用いる プログラム例 1 printf(" 情報処理基礎 "); printf("c 言語の練習 "); printf

書式に示すように表示したい文字列をダブルクォーテーション () の間に書けば良い ダブルクォーテーションで囲まれた文字列は 文字列リテラル と呼ばれる プログラム中では以下のように用いる プログラム例 1 printf( 情報処理基礎 ); printf(c 言語の練習 ); printf 情報処理基礎 C 言語についてプログラミング言語は 1950 年以前の機械語 アセンブリ言語 ( アセンブラ ) の開発を始めとして 現在までに非常に多くの言語が開発 発表された 情報処理基礎で習う C 言語は 1972 年にアメリカの AT&T ベル研究所でオペレーションシステムである UNIX を作成するために開発された C 言語は現在使われている多数のプログラミング言語に大きな影響を与えている

More information

改訂履歴

改訂履歴 V4.3 ConMas i-reporter i-reporter EXCEL 関数機能概要説明書 Rev.1.0.0 2015.01.16 改訂履歴 目次 EXCEL 関数機能の強化について 使用可能なEXCEL 関数 論理関数統計関数数学 三角関数検索 行列関数文字列操作関数 入れ子の計算式 年月日 / 時刻の計算 年月日 / 時刻の計算結果表示 計算結果データ型 旧形式と新形式の計算式クラスター

More information

次に示す数値の並びを昇順にソートするものとする このソートでは配列の末尾側から操作を行っていく まず 末尾の数値 9 と 8 に着目する 昇順にソートするので この値を交換すると以下の数値の並びになる 次に末尾側から 2 番目と 3 番目の 1

次に示す数値の並びを昇順にソートするものとする このソートでは配列の末尾側から操作を行っていく まず 末尾の数値 9 と 8 に着目する 昇順にソートするので この値を交換すると以下の数値の並びになる 次に末尾側から 2 番目と 3 番目の 1 4. ソート ( 教科書 p.205-p.273) 整列すなわちソートは アプリケーションを作成する際には良く使われる基本的な操作であり 今までに数多くのソートのアルゴリズムが考えられてきた 今回はこれらソートのアルゴリズムについて学習していく ソートとはソートとは与えられたデータの集合をキーとなる項目の値の大小関係に基づき 一定の順序で並べ替える操作である ソートには図 1 に示すように キーの値の小さいデータを先頭に並べる

More information

1. はじめにこれまで 我々は社会システム分析ソフトウェア College Analysis において 統計分析 数学 経営科学 意思決定手法などを中心にプログラムを作成してきたが 今回は シミュレーションや統計的な母数推定に利用される乱数の生成と検定の問題について考える 乱数は一様分布を元にして

1. はじめにこれまで 我々は社会システム分析ソフトウェア College Analysis において 統計分析 数学 経営科学 意思決定手法などを中心にプログラムを作成してきたが 今回は シミュレーションや統計的な母数推定に利用される乱数の生成と検定の問題について考える 乱数は一様分布を元にして 社会システム分析のための統合化プログラム 21 - 乱数生成と検定 - 福井正康 * 孟紅燕 * 呉夢 * 崔永杰 福山平成大学経営学部経営学科 * 福山平成大学大学院経営学研究科経営情報学専攻 概要 我々は教育分野での利用を目的に社会システム分析に用いられる様々な手法を統合化したプログラム College Analysis を作成してきた 今回は 様々なシミュレーションや統計的な母数推定などに用いられる乱数生成とその検定についてプログラムを作成した

More information

syuryoku

syuryoku 248 24622 24 P.5 EX P.212 2 P271 5. P.534 P.690 P.690 P.690 P.690 P.691 P.691 P.691 P.702 P.702 P.702 P.702 1S 30% 3 1S 3% 1S 30% 3 1S 3% P.702 P.702 P.702 P.702 45 60 P.702 P.702 P.704 H17.12.22 H22.4.1

More information

土壌環境行政の最新動向(環境省 水・大気環境局土壌環境課)

土壌環境行政の最新動向(環境省 水・大気環境局土壌環境課) 201022 1 18801970 19101970 19201960 1970-2 1975 1980 1986 1991 1994 3 1999 20022009 4 5 () () () () ( ( ) () 6 7 Ex Ex Ex 8 25 9 10 11 16619 123 12 13 14 5 18() 15 187 1811 16 17 3,000 2241 18 19 ( 50

More information

untitled

untitled 20 7 1 22 7 1 1 2 3 7 8 9 10 11 13 14 15 17 18 19 21 22 - 1 - - 2 - - 3 - - 4 - 50 200 50 200-5 - 50 200 50 200 50 200 - 6 - - 7 - () - 8 - (XY) - 9 - 112-10 - - 11 - - 12 - - 13 - - 14 - - 15 - - 16 -

More information

untitled

untitled 19 1 19 19 3 8 1 19 1 61 2 479 1965 64 1237 148 1272 58 183 X 1 X 2 12 2 15 A B 5 18 B 29 X 1 12 10 31 A 1 58 Y B 14 1 25 3 31 1 5 5 15 Y B 1 232 Y B 1 4235 14 11 8 5350 2409 X 1 15 10 10 B Y Y 2 X 1 X

More information

画像解析論(2) 講義内容

画像解析論(2) 講義内容 画像解析論 画像解析論 東京工業大学長橋宏 主な講義内容 信号処理と画像処理 二次元システムとその表現 二次元システムの特性解析 各種の画像フィルタ 信号処理と画像処理 画像解析論 処理の応答 記憶域 入出力の流れ 信号処理系 実時間性が求められる メモリ容量に対する制限が厳しい オンラインでの対応が厳しく求められる 画像処理系 ある程度の処理時間が許容される 大容量のメモリ使用が容認され易い オフラインでの対応が容認され易い

More information

正常 正常 正常 正常 正常 正常 正常 正常 正常 正常 正常 正常 正常 220

正常 正常 正常 正常 正常 正常 正常 正常 正常 正常 正常 正常 正常 220 5. 判別分析 5. 判別分析の原理 判別分析は後ろ向き研究から得られたデータに適用する手法 () 判別分析 医学分野では病気の診断を必要とする場面が多い ある検査項目を用いて被験者が疾患かどうかを判断したいまたはある検査項目が疾患の診断に寄与するかどうかを検討したい 判別分析は多種類のデータに基いて被験者を特定の群に判別したり 判別に強い影響を及ぼ すデータを探索したりするための手法 後ろ向き研究から得られたデータに適用する

More information

21 年 1 月 29 日発行 TVI( タス空室インデックス )( 過去 2 年推移 ) ポイント 1 都 3 県 TVI 推移 ( 過去 2 年間 ) 全域 23 区市部神奈川県埼玉県千葉県 年月 東京都全域 23 区市部 神奈川県 埼玉県 千葉県 28 年

21 年 1 月 29 日発行 TVI( タス空室インデックス )( 過去 2 年推移 ) ポイント 1 都 3 県 TVI 推移 ( 過去 2 年間 ) 全域 23 区市部神奈川県埼玉県千葉県 年月 東京都全域 23 区市部 神奈川県 埼玉県 千葉県 28 年 21 年 1 月 29 日発行 21 年 8 月期 1 都 3 県賃貸住宅指標 ~ 意外と広い? 東京 23 区内の賃貸住宅専有面積 ~ 1. 賃貸住宅指標概況 東京都 全域 23 区 市部 会社名 : 株式会社タス所在地 : 東京都中央区八丁堀 2-25-9 トヨタ八丁堀ビル 7F 3-6222-123( 代表 ) 3-6222-124(FAX) http://www.tas-japan.com/

More information

JPS_draft.pptx

JPS_draft.pptx LHC-ATLAS 実験における高い運動量を持つジェットの b- タグの開発及び評価 小林愛音 江成祐二 A 川本辰男 A 東大理 東大素セ A 9pSK-6 9th September 4 日本物理学会 4 年秋季大会 Introduction 5 年から始まる LHC の運転では高い運動量を持った物理の解析が重要 新しい重いレゾナンスの探索 (à WW, tt, hhà jets) VHà bb

More information

. 実験方法 ヒノキ板を断面形状を高さ 8mm および 16mm の 種類としいずれも幅 mm として用意した 試験片長さを 1mm mm 3mm mm mm に切断し 写真 1, のように万能試験機で垂直になるように設置後 圧縮荷重をかけ最大圧縮荷重値を最大座屈荷重値としてデータを収集した 折れ曲

. 実験方法 ヒノキ板を断面形状を高さ 8mm および 16mm の 種類としいずれも幅 mm として用意した 試験片長さを 1mm mm 3mm mm mm に切断し 写真 1, のように万能試験機で垂直になるように設置後 圧縮荷重をかけ最大圧縮荷重値を最大座屈荷重値としてデータを収集した 折れ曲 研究結果報告書 公益財団法人長野県学校科学教育奨励基金 理事長小根山克雄様 1 研究テーマ 座屈現象の測定について 平成 8 年 1 月 1 日 学校名長野工業高等学校 校長森本克則印 研究グループ名 長野工業高等学校機械班 西村神之将 丸山颯斗 酒井達也 塚田郁哉 3 指導者土屋善裕 研究の動機及び目標工業 機械科の教科書 機械設計 には様々な公式が記載されているが なかには式の由来について説明もなくいきなり出てくる場合もあり日常生活の実体験とイメージしにくいものがある

More information

<4D F736F F D2089FC92E82D D4B CF591AA92E882C CA82C982C282A282C42E727466>

<4D F736F F D2089FC92E82D D4B CF591AA92E882C CA82C982C282A282C42E727466> 11 Application Note 光測定と単位について 1. 概要 LED の性質を表すには 光の強さ 明るさ等が重要となり これらはその LED をどのようなアプリケーションに使用するかを決定するために必須のものになることが殆どです しかし 測定の方法は多種存在し 何をどのような測定器で測定するかにより 測定結果が異なってきます 本書では光測定とその単位について説明していきます 2. 色とは

More information

文章のトピック 文章には様々なトピックが存在する Cuomo to Push for Broader Ban on Assault Weapons 2012 Was Hottest Year in U.S. History 2

文章のトピック 文章には様々なトピックが存在する Cuomo to Push for Broader Ban on Assault Weapons 2012 Was Hottest Year in U.S. History 2 自然言語処理プログラミング勉強会 7 - トピックモデル Graham Neubig 奈良先端科学技術大学院大学 (NAIST) 1 文章のトピック 文章には様々なトピックが存在する Cuomo to Push for Broader Ban on Assault Weapons 2012 Was Hottest Year in U.S. History 2 文章のトピック 文章には様々なトピックが存在する

More information

DVIOUT-mem

DVIOUT-mem 統計学講義メモ (1): 記述統計 高木真吾, 北海道大学 目次 1 データの全体像を見る 1 1.1 全体像を把握する : ヒストグラム.................................. 1 1. 分布状態を比較する : ローレンツ曲線................................ 3 データを要約する 8.1 データを代表する尺度 : 代表値...................................

More information

第9回 配列(array)型の変数

第9回 配列(array)型の変数 第 12 回 配列型の変数 情報処理演習 ( テキスト : 第 4 章, 第 8 章 ) 今日の内容 1. 配列の必要性 2. 配列の宣言 3. 配列変数のイメージ 4. 配列変数を使用した例 5. 範囲を超えた添字を使うと? 6. 多次元配列変数 7. 多次元配列変数を使用した例 8. データのソーティング 9. 今日の練習問題 多数のデータ処理 1. 配列の必要性 ( テキスト 31 ページ )

More information

xyr x y r x y r u u

xyr x y r x y r u u xyr x y r x y r u u y a b u a b a b c d e f g u a b c d e g u u e e f yx a b a b a b c a b c a b a b c a b a b c a b c a b c a u xy a b u a b c d a b c d u ar ar a xy u a b c a b c a b p a b a b c a

More information

PowerPoint Presentation

PowerPoint Presentation . カーネル法への招待 正定値カーネルによるデータ解析 - カーネル法の基礎と展開 - 福水健次統計数理研究所 / 総合研究大学院大学 統計数理研究所公開講座 0 年 月 34 日 概要 カーネル法の基本 線形データ解析と非線形データ解析 カーネル法の原理 カーネル法の つの例 カーネル主成分分析 : PCA の非線形拡張 リッジ回帰とそのカーネル化 概要 カーネル法の基本 線形データ解析と非線形データ解析

More information

WTENK5-6_26265.pdf

WTENK5-6_26265.pdf 466 2014年秋季 極域 寒冷域研究連絡会 の報告 海 カラ海 北大西洋 北米大陸の北部 東アジアで が多重に見られることが多い 南極昭和基地 69.0 S, 寒気質量の減少傾向が 中央シベリアの内陸部とベー 39.6 E における PANSY レーダー Sato et al.2014 リング海で寒気質量の増加傾向が5つの再解析データ のデータは このような小さな に共通して見られた 中央シベリアの内陸部の寒気質

More information

untitled

untitled 1 211022 2 11150 211022384 3 1000 23% 77% 10% 10% 5% 20% 15% 40% 5% 3% 8% 16% 15% 42% 5% 6% 4 =1000 = 66 5 =1000 = 59 6 52%(42% 1000 7 56% 41% 40% 97% 3% 11%, 2% 3%, 41 7% 49% 30%, 18%, 40%, 83% =1000

More information

以下のように整理できる ( 個人の添え字 n は省略 ). Ordered Logit exp Z exp Z exp Z exp Z Ordered Probit P P F Z P P F Z F Z P 3 P3 F Z あとは通常の MNL と同様, 以下の尤度関数を最大化すればよい. L

以下のように整理できる ( 個人の添え字 n は省略 ). Ordered Logit exp Z exp Z exp Z exp Z Ordered Probit P P F Z P P F Z F Z P 3 P3 F Z あとは通常の MNL と同様, 以下の尤度関数を最大化すればよい. L 平成 3 年 06 月 6 日 兵藤哲朗 Ordered Logit/ Ordered Probit モデルとその推定 Ordered とは? 顧客満足度データや, 車の保有台数など, その数字に順序だった関係がある場合, それら変数を,Ordered ( 順序 ) 変数という.Ordered 変数を被説明変数とした回帰モデルを推定することも考えられるが, 暗に, 満足度 =3 は, 満足度 = の

More information

画像参照画像送り 5 画像下部に再生ボタンが表示されます 再生ボタンをクリックすると 自動コマ送りされます 1

画像参照画像送り 5 画像下部に再生ボタンが表示されます 再生ボタンをクリックすると 自動コマ送りされます 1 画像参照画像送り 画像参照の画像送り方法について説明します 画像上にカーソルを表示した状態で マウスのホイールボタンでスクロールする またはマウスの左ボタンで上下にドラックすると アクティブなシリーズの画像送りができます 1 カルテ タブや 画像 レポート タブから 画像アイコンをクリックします 画像が表示されます 3 画像が切り替わって表示されます シリーズの位置はバー上の で表示されます 2 画像上にカーソルを表示した状態で

More information

C#の基本

C#の基本 C# の基本 ~ 開発環境の使い方 ~ C# とは プログラミング言語のひとつであり C C++ Java 等に並ぶ代表的な言語の一つである 容易に GUI( グラフィックやボタンとの連携ができる ) プログラミングが可能である メモリ管理等の煩雑な操作が必要なく 比較的初心者向きの言語である C# の利点 C C++ に比べて メモリ管理が必要ない GUIが作りやすい Javaに比べて コードの制限が少ない

More information

WagbySpec7

WagbySpec7 3 WEB ブラウザ上 で業務データを扱 うことができます 資 格 名 取 得 日 備 考 1 2 4 3 35 業務データ間の 関連 も自由に 設定できます 絞 込 項 目 名 営 業 担 当 部 署 (dept) 参 照 先 項 目 名 ( 社 員 の) 部 署 (dept) 46 業務データの集計 処理を行うことが できます

More information

Section1_入力用テンプレートの作成

Section1_入力用テンプレートの作成 入力用テンプレートの作成 1 Excel には 効率よく かつ正確にデータを入力するための機能が用意されています このセクションでは ユーザー設定リストや入力規則 関数を利用した入力用テンプレートの作成やワークシート操作について学習します STEP 1 ユーザー設定リスト 支店名や商品名など 頻繁に利用するユーザー独自の連続データがある場合には ユーザー設定リスト に登録しておけば オートフィル機能で入力することができ便利です

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 担当教員名 単位数西田健 2 単位 教室 時間 4-1A 教室火曜 4 限 目的不確定性を有する対象の制御に有効な確率システム制御理論について解説する また 確率的要因を考慮した状態推定のために 宇宙ロケットや自律ロボットなどの幅広い分野で利用されているカルマンフィルタやパーティクルフィルタについて解説し それらを用いる制御系の構成手法を教授する 授業計画 (1) ガイダンスと導入 (2) 線形動的システムの時系列モデリング

More information

Microsoft Word - 池田様本文確定

Microsoft Word - 池田様本文確定 , 300 100., 1, 2 100,,, 3,.,,.,,.,,,, I.,, 1., 2. 1,,. 25 特集 ワーク ライフ バランス と 男女雇用機会均等,,,.,,.., 1992,,., 3., 2004, 2009. 300 2005,. 2011 100, 100 4.,..,., 5.,,. 2, JILPT 2007-2011., 2012b,,,.,, JILPT.,..

More information

) また 経済学者の ( ) はアイデンティティ経済学のフレームワークから次のように説明する 経済主体は以下のようなアイデンティティ が組み込まれた効用関数 を持っている = (a a ) ( ) = (a a c ε P) ( ) ここで は個人 の効用 は個人 のアイデンティティもしくは自己イメ

) また 経済学者の ( ) はアイデンティティ経済学のフレームワークから次のように説明する 経済主体は以下のようなアイデンティティ が組み込まれた効用関数 を持っている = (a a ) ( ) = (a a c ε P) ( ) ここで は個人 の効用 は個人 のアイデンティティもしくは自己イメ 共稼ぎ夫婦の家事労働分担行動に関するジェンダー ディスプレイ : 家事生産アプローチからの実証分析 Dual-Earner Couples' Gender Display in Housework-Sharing Behavior : Empirical Evidence from Home Production Approach 安藤潤 * 本論文は 共稼ぎ夫婦の間で家事労働時間分担に関するジェンダー

More information

FileMaker Go 12 Technical Brief

FileMaker Go 12 Technical Brief TECH BRIEF FileMaker G 12 Technical Brief FileMaker G 12 FileMaker G 12 Technical Brief 2 FileMaker G 12 Technical Brief 3 FileMaker G 12 Technical Brief 4 FileMaker G 12 Technical Brief 5 FileMaker G

More information

要約 鍋谷 (2007) では2001 年 ~2005 年の高校野球 プロ野球における各プレーの貢献度を 得点 勝敗を被説明変数 各プレーを説明変数とした重回帰モデル 2 項ロジットモデル 2 項プロビットモデルを用いて分析し 犠打 ( 犠牲バント 犠牲フライ ) は得点に対しては有意ではないが勝敗

要約 鍋谷 (2007) では2001 年 ~2005 年の高校野球 プロ野球における各プレーの貢献度を 得点 勝敗を被説明変数 各プレーを説明変数とした重回帰モデル 2 項ロジットモデル 2 項プロビットモデルを用いて分析し 犠打 ( 犠牲バント 犠牲フライ ) は得点に対しては有意ではないが勝敗 平成 26 年度卒業論文 高校野球における各プレーの貢献度 所属ゼミ 村澤ゼミ 学籍番号 1110402082 氏 名 野村剛志 大阪府立大学経済学部 要約 鍋谷 (2007) では2001 年 ~2005 年の高校野球 プロ野球における各プレーの貢献度を 得点 勝敗を被説明変数 各プレーを説明変数とした重回帰モデル 2 項ロジットモデル 2 項プロビットモデルを用いて分析し 犠打 ( 犠牲バント

More information

Microsoft PowerPoint - chap10_OOP.ppt

Microsoft PowerPoint - chap10_OOP.ppt プログラミング講義 Chapter 10: オブジェクト指向プログラミング (Object-Oriented Programming=OOP) の入り口の入り口の入り口 秋山英三 F1027 1 例 : 部屋のデータを扱う // Test.java の内容 public class Test { public static void main(string[] args) { double length1,

More information

EPSON エプソンプリンタ共通 取扱説明書 ネットワーク編

EPSON エプソンプリンタ共通 取扱説明書 ネットワーク編 K L N K N N N N N N N N N N N N L A B C N N N A AB B C L D N N N N N L N N N A L B N N A B C N L N N N N L N A B C D N N A L N A L B C D N L N A L N B C N N D E F N K G H N A B C A L N N N N D D

More information

ありがとうございました

ありがとうございました - 1 - - 2 - - 3 - - 4 - - 5 - 1 2 AB C A B C - 6 - - 7 - - 8 - 10 1 3 1 10 400 8 9-9 - 2600 1 119 26.44 63 50 15 325.37 131.99 457.36-10 - 5 977 1688 1805 200 7 80-11 - - 12 - - 13 - - 14 - 2-1 - 15 -

More information

EPSON エプソンプリンタ共通 取扱説明書 ネットワーク編

EPSON エプソンプリンタ共通 取扱説明書 ネットワーク編 K L N K N N N N N N N N N N N N L A B C N N N A AB B C L D N N N N N L N N N A L B N N A B C N L N N N N L N A B C D N N A L N A L B C D N L N A L N B C N N D E F N K G H N A B C A L N N N N D D

More information

公務員人件費のシミュレーション分析

公務員人件費のシミュレーション分析 47 50 (a) (b) (c) (7) 11 10 2018 20 2028 16 17 18 19 20 21 22 20 90.1 9.9 20 87.2 12.8 2018 10 17 6.916.0 7.87.4 40.511.6 23 0.0% 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2.0% 4.0% 6.0% 8.0%

More information

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 A B (A/B) 1 1,185 17,801 6.66% 2 943 26,598 3.55% 3 3,779 112,231 3.37% 4 8,174 246,350 3.32% 5 671 22,775 2.95% 6 2,606 89,705 2.91% 7 738 25,700 2.87% 8 1,134

More information

橡hashik-f.PDF

橡hashik-f.PDF 1 1 1 11 12 13 2 2 21 22 3 3 3 4 4 8 22 10 23 10 11 11 24 12 12 13 25 14 15 16 18 19 20 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 144 142 140 140 29.7 70.0 0.7 22.1 16.4 13.6 9.3 5.0 2.9 0.0

More information

198

198 197 198 199 200 201 202 A B C D E F G H I J K L 203 204 205 A B 206 A B C D E F 207 208 209 210 211 212 213 214 215 A B 216 217 218 219 220 221 222 223 224 225 226 227 228 229 A B C D 230 231 232 233 A

More information

1

1 1 2 3 4 5 (2,433 ) 4,026 2710 243.3 2728 402.6 6 402.6 402.6 243.3 7 8 20.5 11.5 1.51 0.50.5 1.5 9 10 11 12 13 100 99 4 97 14 A AB A 12 14.615/100 1.096/1000 B B 1.096/1000 300 A1.5 B1.25 24 4,182,500

More information

ネットショップ・オーナー2 ユーザーマニュアル

ネットショップ・オーナー2  ユーザーマニュアル 1 1-1 1-2 1-3 1-4 1 1-5 2 2-1 A C 2-2 A 2 C D E F G H I 2-3 2-4 2 C D E E A 3 3-1 A 3 A A 3 3 3 3-2 3-3 3-4 3 C 4 4-1 A A 4 B B C D C D E F G 4 H I J K L 4-2 4 C D E B D C A C B D 4 E F B E C 4-3 4

More information

進捗状況の確認 1. gj も gjp も動いた 2. gj は動いた 3. gj も動かない 2

進捗状況の確認 1. gj も gjp も動いた 2. gj は動いた 3. gj も動かない 2 連立 1 次方程式の数値解法 小規模な連立 1 次方程式の解法 消去法 Gauss 消去法 Gauss-Jordan 法 ( 大規模な連立 1 次方程式の解法 ) ( 反復法 ) (Jacobi 法 ) 講義では扱わない 1 進捗状況の確認 1. gj も gjp も動いた 2. gj は動いた 3. gj も動かない 2 パターン認識入門 パターン認識 音や画像に中に隠れたパターンを認識する 音素

More information

4.6: 3 sin 5 sin θ θ t θ 2t θ 4t : sin ωt ω sin θ θ ωt sin ωt 1 ω ω [rad/sec] 1 [sec] ω[rad] [rad/sec] 5.3 ω [rad/sec] 5.7: 2t 4t sin 2t sin 4t

4.6: 3 sin 5 sin θ θ t θ 2t θ 4t : sin ωt ω sin θ θ ωt sin ωt 1 ω ω [rad/sec] 1 [sec] ω[rad] [rad/sec] 5.3 ω [rad/sec] 5.7: 2t 4t sin 2t sin 4t 1 1.1 sin 2π [rad] 3 ft 3 sin 2t π 4 3.1 2 1.1: sin θ 2.2 sin θ ft t t [sec] t sin 2t π 4 [rad] sin 3.1 3 sin θ θ t θ 2t π 4 3.2 3.1 3.4 3.4: 2.2: sin θ θ θ [rad] 2.3 0 [rad] 4 sin θ sin 2t π 4 sin 1 1

More information

また 初期化について 以下のサンプルコードのように指定すれば 定義時に値を代入できます * オマケ配列は同名で複数個の箱を用意出来ます 同名ではありますが それぞれは別々の個体であるわけです また この複数個の変数は メモリ上に連続で確保されます 2. 文字と文字列 C 言語では文字と文字列は異なる

また 初期化について 以下のサンプルコードのように指定すれば 定義時に値を代入できます * オマケ配列は同名で複数個の箱を用意出来ます 同名ではありますが それぞれは別々の個体であるわけです また この複数個の変数は メモリ上に連続で確保されます 2. 文字と文字列 C 言語では文字と文字列は異なる 第 4 回 C 言語講座 1. 配列についていままで 変数は1 個ずつ指定してました が 同名で たくさん必要なときもあるかもしれませんね 例えば 複数人の点数だけを格納するときとか このときは 配列が便利なわけです それぞれを添字によって区別しながら扱えるという便利なものです というわけで サンプルコード %.2lf で小数点以下 2 桁表示を示しています定義時は個数を指定します が その後は []

More information

(Microsoft Word - \202v\202a\202s\203G\203N\203Z\203\213.doc)

(Microsoft Word - \202v\202a\202s\203G\203N\203Z\203\213.doc) 表計算ソフトを活用した授業時間数の集計 システムの完成版はダウンロードして活用 することができます 広島県立教育センター 月別の授業時数を集計する簡易なシステムを作成してみましょう 1Excel を起動します 2 シート名を 4 月 とするために, シート見出し Sheet1 を右クリックし, 名前の変更 をクリックします 3 Sheet1 が反転するので, 4 月 と入力します

More information

i 1 2 3 2 k 1 2 3 4 / 5 http://www.kepco.co.jp/service/miruden/index.html 1310nm 1550nm 1625nm 0.6 0.4 0.2 0 4 8 12 JJAPAPLPRB x x T x x T x a T T ab c x x et al Framework. ACL 2014 System

More information

MotionBoard Ver.5 総合カタログ

MotionBoard Ver.5 総合カタログ Ver. 現場改革BI 自らの手で KAIZEN を支える 情報活用ダッシュボード 5 KAIZEN MotionBoard Ver.5 PostgreSQL HiRDB Oracle Database Oracle RAC Hitachi Advanced Data Binder Teradata Database Oracle Exadata Microsoft SQL Server Greenplum

More information

DE0087−Ö“ª…v…›

DE0087−Ö“ª…v…› 酸性雨研究センター 2 アジアで増え続けるNOxとVOCs 増え続けるNO2濃度 衛星観測結果 アジアでは 急速な経済発展に伴って オゾ ンの原因物質であるNOx排出量が著しく増え ていると考えられる これを示す証拠として 最 近 対流圏観測衛星GOMEによるNO 2の対 流圏カラム濃度分布の結果が発表された (Richterら, 2005) 図2-1は 東アジアにおけ る1996年と2002年の1月のNO2対流圏濃度

More information

<4D F736F F D208EF596BD8E8E8CB B835E82CC939D8C7689F090CD5F F30345F3130>

<4D F736F F D208EF596BD8E8E8CB B835E82CC939D8C7689F090CD5F F30345F3130> 第 4 回続高橋セミナー 寿命試験データの統計解析 015 年 4 月 10 日高橋行雄 BoStat 研究所 ( 株 ) 要約 : 工業製品の通常の環境下での寿命を予測することは, 長い時間かかるために過酷な条件下で製品が故障するまでの時間から, 通常の使用状況下での製品寿命を推定することになる. 加速 ( 過酷 ) 寿命試験では, 事前に設定した試験期間になった場合に, 対象製品が故障していなくとも試験を終了することになる.

More information

7 27 7.1........................................ 27 7.2.......................................... 28 1 ( a 3 = 3 = 3 a a > 0(a a a a < 0(a a a -1 1 6

7 27 7.1........................................ 27 7.2.......................................... 28 1 ( a 3 = 3 = 3 a a > 0(a a a a < 0(a a a -1 1 6 26 11 5 1 ( 2 2 2 3 5 3.1...................................... 5 3.2....................................... 5 3.3....................................... 6 3.4....................................... 7

More information