untitled
|
|
|
- えみ やがい
- 7 years ago
- Views:
Transcription
1 BELLE B J/ψ + K 12
2
3 1 1 2 BELLE BELLE CP CKM B CP KEKB BELLE SVD CDC ACC TOF CsI ECL KL /µ KLM KL/µ KLM Registive Plate Counter (RPC) KL /µ i
4 J/ψ K J/ψ K KS π K B A B B ii
5 V ub /V uc,b B K ε ρ η B + π K + (a) (b) B B KEKB BELLE SVD CDC ACC ACC TOF ECL BELLE KLM Barrel KLM Endcap KLM e + e µ + µ cos θ cos θ µ φ cos θ Efficiency of BKLM-FS-L Efficiency of BKLM-BS-L Efficiency of EKLM-F-L iii
6 3.14 Efficiency of EKLM-B-L Denominator of BKLM-FS-L Denominator of BKLM-BS-L Denominator of EKLM-F-L Denominator of EKLM-B-L efficiency vs day of BKLM-FS efficiency vs day of BKLM-FS efficiency vs day of BKLM-FS efficiency vs day of BKLM-FS efficiency vs day of BKLM-FS efficiency vs day of BKLM-FS efficiency vs day of BKLM-FS efficiency vs day of BKLM-FS efficiency vs day of BKLM-BS efficiency vs day of BKLM-BS efficiency vs day of BKLM-BS efficiency vs day of BKLM-BS efficiency vs day of BKLM-BS efficiency vs day of BKLM-BS efficiency vs day of BKLM-BS efficiency vs day of BKLM-BS efficiency vs day of EKLM-FS efficiency vs day of EKLM-FS efficiency vs day of EKLM-FS efficiency vs day of EKLM-FS efficiency vs day of EKLM-BS efficiency vs day of EKLM-BS efficiency vs day of EKLM-BS efficiency vs day of EKLM-BS EKLM-FS-L EKLM-FS-L µ CDC θ =17 µ + µ J/ψ K iv
7 4.2 B J/ψ e ± µ ± K KS π π ± γ Generic MC EID GenericMC µid MC EID MC µid M e + e EID.1 & EID M µ + µ µid.1 & µid M e + e EID.9 & EID M µ + µ µid.8 & µid M e + e EID.9 & EID M µ + µ µid.8 & µid γ M e + e γ M e + e J/ψ M π + π dφ dφ dφ dφ SN dr dr dr SN z dist z dist z dist SN M π + π M π + π v
8 4.37 M γγ M γγ E γ E γ M γγ M K S π P KS π 4.42 E vs M bc M e + e M µ + µ EID µid M π + π M γγ E vs M bc vi
9 2.1 CP CKM ρ, τ KEKB BELLE ECL KLM KLM B J/ψ K J/ψ l + l A ID J/ψ KS ππ KS vii
10
11 1 1 9 CP CP CP CP CP Charge Parity C P CP CP 1964 K CP K CP K CP 1973 CP KM u,d,s SLAC BNL c Fermilab b CDF t KM KM 198 KM B b CP K D B B B K CP 1
12 1 KM B B B B B B B KEK BELLE BELLE 1 5 KLM KEK KL /µ KLM KL /µ K L µ K L CP φ 1 B J/ψKL µ B B B J/ψ µ + µ µ CP B J/ψK CP CP fb 1 B J/ψK K KS + π 2 BELLE 3 KL µ KLM 4 K Lµ 5 6 2
13 2 BELLE 2.1 BELLE CP C( ) P( ) 18 T CPT C,P,T CP 1964 K CP [16] K K K CP CP K = K (2.1) ( K1 = 1 2 K + K ), CP K1 = K1 (2.2) ( K2 = 1 2 K K ), CP K2 = K2 (2.3) CP K π π K 2π CP =+1 3π CP = 1 π π KL K S CP π K2 K L π K 1 3
14 2 BELLE KS K L π CKM L L = g Ψ i {V i,j γ µ (1 γ 5 ) /2}Ψ j W µ + H.C. (2.4) 2 i,j Ψ i i V i,j i j H.C. Hermitian Conjugate V i,j CKM u, s, c u,s,c d d V ud V us V ub d s = V s = V cd V cs V cb s (2.5) c c V td V ts V tb c CKM CP n n 2n 2 n(n 1) (n 1)(n 2)2 V CP CKM Wolfenstein λ = sin θ C (Cabbibo θ C ) λ A, ρ, η 1 λ2 λ λ 3 A(ρ iη) 2 V = λ 1 λ2 λ 2 A 2 + O(λ 4 ) (2.6) λ 3 A(1 ρ iη) λ 2 A 1 λ, A ρ, η 4
15 2.1. BELLE ( ) (A 2 λ 6 η/ ) s s u K K +,K,K, K λ 2 A 2 λ 4 η c c s u D D +,D,D, D 1 A 2 λ 6 η 1 4 b b c s B B +,B,Bd, B d, A2 λ 4 λ 2 η.5 u Bs, B s 2.1: CP u, d, s, c λ 1 V cs 3 A, ρ, η 3 t, b 2.1 b s, c 2.1 A 2,λ 6,η CKM Wolfenstein λ β λ = sin θ C =.221 ±.2 (2.7) A V cb V cb B B τ B A =.839 ±.41 ±.82 (2.8) b u b c V ub /V cb =.8 ±.3 (2.9) ρ2 + η 2.36 ±.14 (2.1) ρ, η K 5
16 2 BELLE Quantity V cb.41 ±.2 ±.4 S.Stone, B Decays, Singapole, 1991 V ub /V cb.85 ±.35 Includes recent CLEO result M t 132 ± 31 ± 19 GeV LEP Collab., Phys. Lett. B276, 247(1992) B K.8 ±.2 Harris and Rosneer, Phys. Rev. D45, 946 (1992) ɛ K (2.268 ±.23) 1 3 PDG Re(ɛ /ɛ) (14.5 ± 5) 1 4 average of E731 and NA31 x d.677 ±.14 CLEO, 1993 Report to the PAC, Jan f B BB unconstrained τ B 1.4 ±.4 psec E.Loci, UNK B-Factory Workship, Jan : CKM ρ, τ CKM Vi,jV i,k = δ jk (2.11) i 2.11 V ub V td V td V tb + V cd V cb + V ud V ub = (2.12) 2.1 ( ) ( ) V φ 1 arg cd V cb Vtd V = tan 1 η (2.13) tb ρ(ρ 1) + η ( ) ( ) 2 V φ 2 arg ud V ub η Vtd V = tan 1 (2.14) tb 1 ρ ( ) ( ) V φ 3 arg cd V cb η Vud V = tan 1 (2.15) ub ρ 6
17 2.1. BELLE η CP(B d ππ) V ud V ub Aλ3 (ρ + iη) φ 1 V td V tb Aλ3 (1 ρ iη) φ 2 CP(B s ρk s ) φ 3 V cd V cb Aλ3 2.1: CP(B d J/ψ K s ) ρ BELLE η.8.6 from B mixing d.4.2 from ε allowed area from V ud Vcb ρ : V ub /V uc,b B K ε ρ η 7
18 2 BELLE B CP B CP B, B CP Γ(B f) Γ ( B f ) B f CP B f CP CP CP K B B pm π K ± s W u b u u u (a) b W s u u u (b) u 2.3: B + π K + (a) (b) A ( B + π K +) = A t e i(φt+δt) + A p e i(φp+δp) (2.16) A ( B π K ) = A t e i(φt+δt) + A p e i( φp+δp) (2.17) A, φ, δ t, p tree penguin A i (i = φ, δ) φ 8
19 2.1. BELLE δ Γ ( B + π K +) A ( B + π K +) 2 = A t 2 + A 2 p +2 A t A p cos ( φ + δ) (2.18) Γ ( B π K ) A ( B π K ) 2 = A t 2 + A 2 p +2 A t A p cos ( φ + δ) (2.19) φ φ t φ p, δ δ t δ p Γ ( B + π K +) Γ ( B π K ) 2 A t A p sin ( φ) sin ( δ) (2.2) CP A t, A p, sin ( δ) CP CP K B B, B CP CP CP BELLE 2.4 b u,c,t d b W d B W W B B u,c,t u,c,t B d u,c,t b d W b 2.4: B B B, B A CP CP f CP A CP f CP B, Ā CP f CP B (2.21) 9
20 2 BELLE r fcp q Ā CP (2.22) p A CP B B K K 2.4 B B B Γ B B p, q B phys(t) = e i(m i 2 Γ)t {cos ( Mt/2) B (2.23) +i q p sin ( Mt/2) B } B phys (t) = ei(m i 2 Γ)t {i q p sin ( Mt/2) B (2.24) + cos ( Mt/2) B } M M B M H,M L M = M H + M L (2.25) 2 M = M H M L (2.26) f CP Bphys(t) = A CP [g + (t)+r fcp g (t)] (2.27) ( ) p f CP B phys (t) = A CP [g (t)+r fcp g + (t)] (2.28) q Γ ( [ ) Bphys(t) f CP = ACP 2 e Γt 1+ rfcp r ] f CP 2 cos( Mt) Im(r fcp sin( Mt)) 2 2 (2.29) Γ ( [ B phys (t) f ) CP = ACP 2 e Γt 1+ rfcp r ] f CP 2 cos( Mt)+Im(r fcp sin( Mt)) 2 2 (2.3) B f CP A fcp (t) A fcp (t) Γ(B phys (t) f CP) Γ( B phys (t) f CP) Γ(B phys (t) f CP)+Γ( B phys f CP) (2.31) 1
21 2.1. BELLE A fcp (t) = (1 r f CP 2 ) cos( Mt) 2Im(r fcp sin( Mt)) 1+ r fcp 2 (2.32) B d 12 M 12 q/p q p = m 12 i 12/2 m 12 i 12 /2 m 12 m 12 = V tb V td V tb V td e 2iφ M (2.33) M 12 KM m 12 (Vtb Vtd φ )2 M φ 1 CP A CP ACP = η f e 2iφ D (2.34) η f f CP η f = ±1 A CP = η f Im(r fcp ) sin( Mt) = nf sin 2(φ M + φ D ) sin( Mt) (2.35) A f (t) φ CP M B A fcp (t) = sin 2φ CP sin( M t) (2.36) φ i BELLE φ 3 φ 1 : B J/ψ KS B J/ψ KL (2.37) φ 2 : B π + π (2.38) φ 3 : B D K (2.39) 11
22 2 BELLE B J/ψ K B J/ψ KS,L φ 1 Υ(4S) 1.59 GeV/c 2 B B 5.28 GeV/c GeV/c 2 B B B Υ(4S) B Υ(4S) B.34 GeV/c B 8. GeV/c 3.5 GeV/c B 12
23 2.2. KEKB 2.2 KEKB 2.5: KEKB 2.5 KEKB KEKB (βγ =.42) ( 1 34 cm 2 s 1 ) (±11 mrad) 2.3 KEKB B B KEKB 3.5 GeV/c 8. GeV/c 13
24 2 BELLE γ γ BELLE γ =.42 E = 8. GeV E + = 3.5 GeV (2.4) 2.3 GeV B CP B φ 1 B J/ψ KS (K L ) 3 1 fb 1 KEKB 1 fb 1 L =1 34 cm 2 s 1 B KEKB HER LER E 8. GeV/c 3.5 GeV/c σe/e I 1.1 A 2.6 A C 318 m θ x ±11 mrad IP β βx /βy.33 m/.1 m L cm 2 sec σz.4 cm sb.6 m 5 2.3: KEKB 14
25 2.2. KEKB L σ R R = Lσ ( ) 2 ( ) 1 cm 2 s 1 L 2.41 E (GeV) I ( ) ξ 2 βy (y ) L = ξ(1 + r)( EI ) βy ± (2.41) KEKB 8. GeV HER (High-Energy-Ring) 3.5 GeV LER (Low-Energy-Ring) 2 3km KEKB BELLE (LINAC) LER HER LER RF HER B-factory 1 fb 1 4 GeV 5 LER 2.6 A HER 1.1 A 6 cm(2 ns) (x, y, z) = (2 µm, 4 µm, 1cm) 2 15
26 2 BELLE 2.3 BELLE SVD CDC PID (Aerogel) TOF CsI KLM Superconducting Solenoid 2.6: BELLE B CP B J/ψ KS B J/ψ KS B B B J/ψ KS CP 16
27 2.3. BELLE KEKB 2.6 BELLE (IP) (+Z ) 47 cm Υ(4S) B BELLE B 1/2 (KEKB 95 µm ) π ±, π, KS, K L,e±,K ±,µ ± γ B BELLE Be ( ) (SVD) (CDC) SVD CDC (ACC) (TOF) CDC de/dx TOF γ CsI (ECL) 1.5 T KL µ K L /µ (KLM) 2.6 BELLE 8m 1, 5 z y x ( Interaction Point : IP ) θ z φ x BELLE 17
28 2 BELLE 2.4: BELLE 3 µm, 3 σ rφ 1 µm SVD r = mm σ z =7 4 µm 23 θ 14 φ : 496 σ z 8 µm z : 496 :5 σ rφ = 13 µm CDC :3 σ z = 2 14 µm r = cm A :8.4 K σ pt /p t =.3% p 2 t +1 n θ 15 C :1.7 K σ de/dx =6% cm 3 blocks ACC 96/228 (Barrel/Endcap) N p.e. 6 FM-PMT readout < 2188 K/π 1.2 <p<3.5 GeV/c TOF 128φ σ t = 1 ps r = 12 cm, 2.5 m-long Towered structure K/π 1.2 GeV/c σ E /E= ECL CsI(Tl) cm 3 crystals 1.3%/ E Barrel: r = cm 6624 σ pos =.5 cm/ E Endcap: z = 1152(f) E in GeV 12and cm 96(b) 15/14 (Barrel/Endcap) φ = θ = 3 mrad for K L KLM (47mm Fe + 44mm ) σ t = ns 2 RPC 1% hadron fakes Barrel: z and φ strips Endcap: θ and φ strips
29 BELLE SVD 3 3 d=13mm R=58mm d=8mm R=43.5mmR=3mm d=8mm R=2mm mm -15mm -1mm -5mm IP +5mm +1mm +15mm +2mm +25mm +3mm 2.7: SVD B CP B B 2.42 BELLE B B KEKB B 2 µm 1 µm SVD t t z cβγ = z z cβγ z, z B, B z (2.42) BELLE (DSSD : Double-sided Silicon Strip Detector) 19
30 2 BELLE SVD 3 8 r φ 5 µm r z 84 µm z δz 15 µm θ 23 <θ< CDC 2.8: CDC SVD (CDC : Central Drift Chamber) ( ) BELLE 1.5 T CDC (de/dx) 2
31 2.3. BELLE (β = v/c) CDC 8cm 88 cm 25 cm 3 5 axial 4 75 mrad stereo stereo z CDC de/dx = <θ<15 CDC 143 µm (2.43) σ pt p t =.25%p t.39% (2.44) de dx = 5.2% (2.45) ACC ACC (Si 2 O) 1.2 GeV/c π/k c = c/n (n : ) n> 1 β = 1+ ( ) 2 m (2.46) p ACC 1.2 GeV/c π/k π K 21
32 2 BELLE n cm cm 3 fine-mesh(fm)pmt n θ FM-PMT ( ) 33.7 <θ< <θ< : Angle Index PMT diameter in Barrel in in Endcap in 22
33 2.3. BELLE 2.9: ACC 2.1: ACC 23
34 2 BELLE TOF Barrel TOF+TSC Forward Endcap TSC 2.11: TOF TOF CDC p T L T = L ( ) 2 m 1+ (2.47) c p m BELLE TOF 2 TOF TSC (Thin Scintilation Counter) TOF cm 3 2 FM-PMT (Frequency Mode - Photo Multiplier Tube) TSC CsI CDC 24
35 2.3. BELLE cm 3 2 FM-PMT 1 64 ACC ECL 1.2 m TOF 33.7 <θ< CsI ECL 2.12: ECL ECL (γ) (e) γ e B γ 2 MeV 3 GeV 25
36 2 BELLE 2.6: ECL θ coverage θ secg. φ seg. # ofcrystals Forward Endcap Barrel Backward Endcap Bhabha 8 GeV ECL CsI (Tl) cm cm 2 3 cm 1 IP( ) 2.5 9, m IP z =2. m z = 1. m 17. <θ< BELLE 2.7 BELLE 1.5 T 26
37 2.3. BELLE Cryostat Inner Radius min 1.7 m Outer Radius max 2.9 m Total Length max 4.44 m Nominal Magnetic Field 1.5 T Cool Down Time 6 day Quench Recover Time 1 day 2.7: KL /µ KLM KLM BELLE KL µ 47 mm 44 mm /14 K L ECL KLM KL µ π CDC KLM µ KLM 1 2cm K L/µ BELLE 1 34 cm 2 s 1 BELLE B Hz 1 Hz 27
38 2 BELLE Belle Trigger System SVD Rφ Z Rφ Track Z Track Cathod Pads Combined Track CDC Stereo Wires Z Finder Z Track TSC ECL Axial Wires Hit 4x4 Sum Track Segment TSC Trigger Low Threshold High Threshold E Sum Rφ Track Cluster Count Cluster Count Threshold Topology Timing Global Decision Logic EFC Amp. Low Threshold Bhabha Logic High Threshold Two γ Logic KLM Hit µ hit Trigger Signal Gate/Stop > 2.2 µsec after event crossing Beam Crossing 2.13: BELLE 2.13 Global Decision Logic (GDL) GDL 28
39 µs 15 MB/s 2.4 BELLE ( 3) 1 12 ( 5) ( 7) 1 12 ( 9) fb 1 29
40 3 KL /µ KLM : KLM Barrel KL /µ KLM BELLE K L µ KL φ 1 B J/ψ K CP µ B J/ψ µ + µ 3
41 : KLM Endcap µ KLM µ B B B µ KLM KLM RPC ( ) KL KLM KEKB 2 Hz KLM (.1 Hz/cm 2 ) e + e Hz/cm 2 KL KLM KL 5cm( 3 mrad) 31
42 3 KL /µ KLM µ CsI ( 3 cm ) KLM 14 ( 66 cm) 2 GeV/c 5cm 5 cm KLM θ 25 <θ<145 µ 17 <θ< KLM BELLE 8 47 mm 44 mm m 2 KLM RPC (Resistive Plate Counter) RPC KLM RPC RPC 2 RPC 22 cm cm ( ) 3.9 cm / 4 14 RPC / 135.5/331 cm 3.9 mm RPC 2 RPC 2 1 RPC 1 1 RPC 1 RPC RPC 5 RPC RPC 1 1 RPC RPC RPC 2 1 RPC 32
43 z φ θ φ BELLE 1 5cm 5cm Registive Plate Counter (RPC) KLM RPC RPC RPC 198 Santonico 1 mv ns BELLE 2.6 mm 1.8 mm RPC RPC 1 12 Ω cm.1 Hz/cm 2 KEK B RPC (Ar)/ / HFC134a (CH 2 FCF 3 ) 33
44 3 KL /µ KLM 3:8:62 1 (Butane-silver) z 1 2 Endcap Forward Barrel Forward Barrel Backward Endcap Backward 3.3: KLM KLM (Forward) (Backward) BELLE z e 1 7% (CH 3 CH 2 CH 2 CH 3 ) 3% ((CH 3 ) 3 CH) 34
45 RPC RPC 12 φ z 48 θ 48 φ z 4.5 cm φ cm θ 3.6 cm φ / 1.86/4.76 cm KLM 3.1 KLM B E F B [B or E]KLM [F or B]S[Sector#]-[Layer#] (F/B) 8/8 4/4 (F/B) 15 /15 14 /14 z φ θ φ 4.5 cm cm 3.6 cm 1.86 cm 4.76 cm BS : KLM 35
46 3 KL /µ KLM 3.3 KL /µ BELLE µ KLM µ KLM µ KLM φ φ φ KLM e + e µ + µ MuPair e + e µ + µ µ KLM KLM MuPair KLM MuPair 3.4 e + e µ + µ e + e µ e + e 8. GeV 3.5 GeV µ MeV/c 2 µ + µ 36
47 3.3. KL /µ e γ µ e + µ + 3.4: e + e µ + µ GeV/c GeV/c 8. GeV/c MuPair ECL 2. GeV (e, γ ECL µ ECL e, γ ) 2 ( ) 2 θ CM 176 <θ<184 CM 4.8 GeV/c < P < 5.6 GeV/c e + e θ φ MuPair θ 3.1 KLM 37
48 3 KL /µ KLM x GeV/c GeV/c 3.5: 3.6: cosθ cosθ 3.7: cos θ 3.8: cos θ GeV/c : µ φ φ : cos θ cosθ 38
49 3.3. KL /µ CDC CsI KLM KLM / 4 4 ( )/( ) >.75 KLM ɛ N KLM N µ KLM (3.1) ɛ N N (3.2) KLM
50 3 KL /µ KLM 5 KLM cm Layer Layer1 Layer2 Layer3 Layer4 Layer5 Layer6 Layer7 Layer8 Layer9 Layer1 Layer11 Layer12 Layer13 Layer14 3.2: BKLMB-S1-L12 BKLMB-S2-L1 BKLMB-S2-L4 BKLMB-S6-L EKLMF-S-L : KLM 4
51 3.3. KL /µ 3.11: Efficiency of BKLM-FS-L5 3.12: Efficiency of BKLM-BS-L5 3.13: Efficiency of EKLM-F-L5 3.14: Efficiency of EKLM-B-L5 41
52 3 KL /µ KLM 3.15: Denominator of BKLM-FS-L5 3.16: Denominator of BKLM-BS-L5 3.17: Denominator of EKLM-F-L5 3.18: Denominator of EKLM-B-L5 42
53 3.3. KL /µ Efficiency 1.9 Efficiency day day 3.19: efficiency vs day of BKLM-FS 3.2: efficiency vs day of BKLM-FS1 Efficiency 1.9 Efficiency day day 3.21: efficiency vs day of BKLM-FS2 3.22: efficiency vs day of BKLM-FS3 43
54 3 KL /µ KLM Efficiency 1.9 Efficiency day day 3.23: efficiency vs day of BKLM-FS4 3.24: efficiency vs day of BKLM-FS5 Efficiency 1.9 Efficiency day day 3.25: efficiency vs day of BKLM-FS6 3.26: efficiency vs day of BKLM-FS7 44
55 3.3. KL /µ Efficiency 1.9 Efficiency day day 3.27: efficiency vs day of BKLM-BS 3.28: efficiency vs day of BKLM-BS1 Efficiency 1.9 Efficiency day day 3.29: efficiency vs day of BKLM-BS2 3.3: efficiency vs day of BKLM-BS3 45
56 3 KL /µ KLM Efficiency 1.9 Efficiency day day 3.31: efficiency vs day of BKLM-BS4 3.32: efficiency vs day of BKLM-BS5 Efficiency 1.9 Efficiency day day 3.33: efficiency vs day of BKLM-BS6 3.34: efficiency vs day of BKLM-BS7 46
57 3.3. KL /µ Efficiency 1.9 Efficiency day day 3.35: efficiency vs day of EKLM-FS 3.36: efficiency vs day of EKLM-FS1 Efficiency 1.9 Efficiency day day 3.37: efficiency vs day of EKLM-FS2 3.38: efficiency vs day of EKLM-FS3 47
58 3 KL /µ KLM Efficiency 1.9 Efficiency day day 3.39: efficiency vs day of EKLM-BS 3.4: efficiency vs day of EKLM-BS1 Efficiency 1.9 Efficiency day day 3.41: efficiency vs day of EKLM-BS2 3.42: efficiency vs day of EKLM-BS3 48
59 3.3. KL /µ 3.43: 7 EKLM-FS-L12 49
60 3 KL /µ KLM 3.44: 9 EKLM-FS-L12 5
61 3.3. KL /µ 3.18 KLM θ>14 2 µ CDC θ =17 µ µ MuPair CDC 2 µ 3.45 x µ 1 µ z µ 1 µ : µ CDC θ =17 µ + µ 51
62 3 KL /µ KLM 3.3 µ KL µ 52
63 4 J/ψ K c c J/ψ V cb B b d W V cs s d K 4.1: J/ψ K B J/ψ K 4.1 B J/ψ K CP φ 1 B J/ψ K 4.1 K KS π 4.1 ( ) Clebsh-gordan K S,K L 1/2 B K B B J/ψK K KSπ 1/6 (1.5 ±.17) 1 3 B J/ψK K K + π 2/3 (1.5 ±.17) 1 3 B + J/ψK + K + KS π+ 1/3 (1.48 ±.27) 1 3 B + J/ψK + K + K + π 1/3 (1.48 ±.27) : B J/ψ K K K S π K,K S,π 53
64 4 J/ψ K 1,, K CP ( 1) l CP(K S) CP(π ) l KS π CP(K )=( 1) 1 (+1) ( 1)=+1 J/ψ K CP J/ψ K (, ), (1, 1), ( 1, 1) 3 (, ) CP CP ( 1) l CP(J/ψ) CP(K )=( 1) (+1) (+1) = +1 (1, 1), ( 1, 1) CP CP {(1, 1)+( 1, 1)}/ 2 {(1, 1) ( 1, 1)}/ 2 CP f B f Γ(B (t) phys f) = 1 τ e t τ {Γ+ (1 + a(t)) + Γ (1 a(t))} (4.1) B f Γ( B (t) phys f) = 1 τ e t τ {Γ+ (1 a(t)) + Γ (1 + a(t))} (4.2) B phys ( B phys ) B ( B ) Γ + (Γ ) CP ( ) a(t) CP CP A(t) Γ(B phys (t) f) Γ( B phys (t) f) Γ(Bphys (t) f)+γ( B phys (t) f) = a(t)γ + Γ = a(t) Γ L Γ + +Γ Γ (4.3) Γ L Γ T Γ Γ L +Γ T =Γ CP CP CP J/ψ l + l J/ψ J/ψ e + e J/ψ µ + µ J/ψ (5.93 ±.1) 1 2 (5.88 ±.1) : J/ψ l + l KS K S π+ π (68.61 ±.28)% 4.1 B 54
65 4.1. ( ) ( ( ) 1 2) (.6861) (4.4) 4.1 B J/ψ K, (J/ψ l + l,k KS π,ks π + π ) 1 1 Υ(4S) momentum of B GeV/c 4.2: B 4.2 Υ(4S) B Υ(4S) B B B.3 GeV/c 4.3 B J/ψ 4.2 B Υ(4S) K
66 4 J/ψ K momentum of J/ψ : J/ψ GeV/c 4 momentum of e ± 4 momentum of µ ± GeV/c 4.4: e ± GeV/c 4.5: µ ± J/ψ e ±,µ ± e ±,µ ± GeV/c 4.6 B K 4.2 B Υ(4S) K K KS π KS π π ± γ 56
67 4.2. momentum of K * : K GeV/c momentum of K S momentum of π GeV/c 4.7: K S GeV/c 4.8: π 4.2 BELLE B B Bhabha Mu Pair B hadron A J/ψ ψ η c c c 57
68 4 J/ψ K momentum of π ± momentum of γ GeV/c 4.9: π ± GeV/c 4.1: γ hadron A 4.3 good track IP P t >.1 GeV/c W #good track 3 E vis.4w z P z 1.W ECL.5W E ECL 1.8W 4.3: A hadron A R2 <.8 µ µid EID µid >.1 EID >.1 58
69 GeV/c 2 e + e.8 rad ECL R2 N 2 s i j φ ij k P k (cos φ ij ) k Fox-Wolfram H k 4.5 H k = 1 s N N [ P i P ] j P k (cos φ ij ) (4.5) i j R2 = H 2 H (4.6) J/ψ 4.2 l + l µ J/ψ l + l µid EID ID µid µ EID 1 1 B B q q ID 4.13, ID ID J/ψ 2 Generic MC 59
70 4 J/ψ K : Generic MC EID EID : GenericMC µid µid 1 EID.9 µ µid.8 EID.1 µid ID Entries Mean RMS ID Entries Mean RMS : MC EID EID : MC µid µid 6
71 J/ψ Generic MC EID µid J/ψ EID µid : ID J/ψ ID J/ψ 5mrad γ γ ID J/ψ ( 4.17, 4.18) σ M e + e 5σ M µ + µ 3σ M e + e J/ψ
72 4 J/ψ K GeV/c2 4.15: M e + e EID.1 & EID : M µ + µ µid.1 & µid GeV/c : M e + e EID.9 & EID GeV/c : M µ + µ µid.8 & µid GeV/c : M e + e EID.9 & EID b GeV/c 2 4.2: M µ + µ µid.8 & µid.8 62
73 GeV/c 2 GeV/c : γ M e + e 4.22: γ M e + e GeV/c GeV/c 4.23: J/ψ e + e µ + µ EID.9 µid.8 EID.1 µid.1 M e + e M J/ψ.431 GeV/c 2 M µ + µ M J/ψ.275 GeV/c 2 4.5: J/ψ 63
74 4 J/ψ K 4.3 K K S KS 4.6 2π π 4 γ π ± KS 7 KS K S KS π+ π (68.61 ±.28)% KS π π (31.39 ±.28)% 4.6: KS ππ GeV/c : M π + π K S 2 KS 4.24 dφ, dr, z dist 3 dφ IP 64
75 4.3. K IP 11 1 dφ : dφ dr 2 z dist 2 z 2 SN dφ dφ KS SN 4.26 KS SN ( )/( ) SN dφ dφ cut dφ cut 4.26: dφ 4.27: dφ 4.28: dφ SN dφ 65
76 4 J/ψ K SN dr dr cut dr cut 4.29: dr 4.3: dr 4.31: dr SN SN z-dist 4.32: z dist zdist cut 4.33: z dist zdist cut 4.34: z dist SN.2 rad dr z dist dr.2 cm z dist 3cm σ GeV/c Pπ + π 2.7 GeV/c K S π π 2γ 2 γ γ ECL IP
77 4.3. K / 92 P P E-4 P3.1858E E-4 P GeV/c P E-3 P6.457E E-3 P P : M π + π GeV/c : M π + π GeV/c dφ.2 cm dr.2 cm z dist 3cm M π + π M KS 6.4 MeV.4 GeV/c P π + π 2.7 GeV/c 4.7: K S γ MeV γ M γγ 4.39 KS 3σ = 12 MeV 4.8 Pγγ 1.3 GeV/c K KS π K 4.4, 4.41 KS π KS,π π 67
78 4 J/ψ K : M γγ GeV/c : M γγ E γ GeV / 15 P P E-4 P3.3998E E-4 P P E : E γ M γγ 4.4 M K S π 3 3σ = 12 MeV 3-68
79 / 45 P P E-2 P3.3985E E-2 P P : M K S π 4.41: P K S π B J/ψ K B B M bc Ebeam 2 P 2 B (4.7) E E beam E B (4.8) E beam (E beam =5.29 GeV) E B P B B B E =,M bc = E M bc E π γ ECL B E 5.27 M bc 5.29 M bc.1 E.2 69
80 4 J/ψ K de Count MB 7 Count E M bc 4.42: E vs M bc J/ψ KS B B B + B q q Continuum 1, B B B + B 4,, Continuum 2,, fb 1 (* B 2 ) 4.8 7
81 4.5. MC ε fb 1 J/ψ K K KSπ % 6.4 J/ψ KS J/ψK K π KS π % 3. J/ψK K π KL π B B B + B Continuum : J/ψ KS J/ψ K (KSπ ) KS B B J/ψ KS π π J/ψ KS B K 4.5 BELLE fb M ee,m µµ ID EID EID µid
82 4 J/ψ K Count 1 ID Entries Mean RMS Count 12 ID Entries Mean RMS mass J/psi(eeg) GeV mass J/psi(µµ) GeV 4.43: M e + e 4.44: M µ + µ µid MUID e ID µ ID 4.45: EID 4.46: µid 4.47 M π + π 4.48 M γγ B
83 : M π + π 4.48: M γγ de Count de vs MB ID 13 Entries 19 6 Mean RMS.275E-1 MB ID 13 Entries 45 3 Mean.67E-1 RMS.228 Count de E de MB M bc MB 4.49: E vs M bc 73
84 4 J/ψ K fb J/ψ K Br(B J/ψK ) (1.3 ±.5) 1 3 (1.5 ±.17) 1 3 (PDG) 74
85 5 KLM KLM > 95% RPC 2. EKLMF-S-L % MuPair 5 J/ψ K 4.82% J/ψ,KS fb (1.3 ±.5) 1 3 (1.5 ±.17) 1 3 (PDG) KLM 75
86 5 MuPair KLM KLM π,k J/ψ K CP K K + π 76
87 A B B B B B B Ψ B (t) = a(t) B + b(t) B (A.1) ( ) a(t) Ψ B (t) = b(t) (A.2) Schrödinger i t Ψ B(t) = H Ψ B (t) = E Ψ B (t) (A.3) a(t) 2 + b(t) 2 = 1 (A.4) H 2 2 A.3 B B ( ) ( ) H 11 H 12 B H B B H B H = = H 21 H 22 B H B B H B (A.5) Ψ(t) = Ψ()e i(m i 2 Γ)t (A.6) H = M i 2 Γ (A.7) M(mass matrix) Γ(decay matrix) 2 2 ( ) ( ) m 11 m 12 Γ 11 Γ 12 M =, Γ= (A.8) m 21 m 22 Γ 21 Γ 22 77
88 A B B M, Γ CPT m 11 = m 11,m 22 = m 22,m 12 = m 12,m 21 = m 21,m 11 = m 22 Γ 11 =Γ 11, Γ 22 =Γ 22, Γ 12 =Γ 12, Γ 21 =Γ 21, Γ 11 =Γ 22 m 11 = m 22 = m Γ 11 =Γ 22 =Γ ( ) ( ) B H B B H B m i H = B H B B H B = Γ 2 m 12 i Γ12 2 m 12 i m 12 i Γ 2 (A.9) (A.1) (A.11) ( ) (Heavy) B H B L ( B H, B L ) (λ H,λ L ) B H = B L = 1 { p B q B } p 2 + q 2 1 { p B + q B } p 2 + q 2 (A.12) (A.13) λ H = m 11 i 2 Γ 11 pq M H i 2 Γ H (A.14) λ L = m 11 i 2 Γ 11 + pq M L i 2 Γ L (A.15) p = q = ( m 12 1 ) 1 2 Γ 2 12 ( m 12 i ) Γ 12 (A.16) (A.17) M L,M H M M H + M L, M M H M L (A.18) 2 Γ/Γ 1 2 Γ H =Γ L Γ (A.19) 78
89 Schrödinger B H (t) = B H ()e i(m H i 2 Γ)t (A.2) B L (t) = B L ()e i(m L i 2 Γ)t (A.21) A.21 B, B B, B Bphys (t) t = B (B L () = B H () = 1/(2p)) t = t B phys t = B (B L () = B H ()=1/(2q)) t = t B phys = g + (t) B + q p g (t) B (A.22) B phys = p q g (t) B + g + (t) B (A.23) g + = e i(m 1 2 Γ)t cos Mt 2 g = ie i(m 1 2 Γ)t sin Mt 2 (A.24) (A.25) 79
90 [1] L.Wolfenstein, Phy.Rev.Lett. 51, (1983), 1945 [2] Belle Collaboration, Letter of Intent for A Study of CP Violation in B Mason Decays, KEK Report 94-2, (April 1994) [3], B B,, vol.46,no.7, (April 1994) [4], B,, Vol.49,No.9, (1994) [5] Y.Teramoto, 2D-readout of RPC s signals, KEK BELLE Note #18, (1994) [6] Belle Collaboration, KEKB B-Factory Design Report, KEK Report 95-7, (August 1995) [7] Belle Collaboration, BELLE Technical Design Report, KEK Report 95-1, (April 1995) [8] Belle Collaboration, BELLE Progress Report, KEK Progress Report 96-1, (March 1996) [9] K.Neichi et al., The Readout-strip width in KLM detctor, KEK BELLE Note #19, (1996) [1] K.Abe, Gas For KLM detector, KEK BELLE Note #145, (1996) [11], Belle b, Master s thesis,, (1996) [12] Belle Collaboration, BELLE Progress Report, KEK Progress Report 97-1, (March 1997) 8
91 [13], Belle KL /µ, Master s thesis,, (1997) [14], Flavor Dynamics and CP Violation,, (1998) [15], Study of Gas Mixture for Glass RPC at BELLE Experiment, Master s thesis,, (1998) [16] A.Alavi-Harati, et al., Obserbation of Direct CP Violation in K S, L ππdecays, Phy.Rev.Lett. 83,(July 1999), 22 [17], BELLE µ, Master s thesis,, (1999) [18], BELLE KL, (1999), Master s thesis, [19] BELLE Charmonium group, Event selection of B J/ψK S, KEK BELLE Note #318, (May 2) [2] R.Itoh,IPNS,KEK, Measurement of Polarization of J/ψ in B J/ψ + K and B + J/ψ + K + decays, KEK BELLE Note #344, (July 2) [21] BELLE Charmonium group, Update of Event Selection of B J/ψK S, KEK BELLE Note #346, (July 2) [22] M.Yamaga, et al., Measurement of sin 2φ 1 in B J/ψK L Decays, KEK BELLE Note #358, (October 2) 81
92 B-factory BELLE KEK BELLE
93
1 12 CP 12.1 SU(2) U(1) U(1) W ±,Z [ ] [ ] [ ] u c t d s b [ ] [ ] [ ] ν e ν µ ν τ e µ τ (12.1a) (12.1b) u d u d +W u s +W s u (udd) (Λ = uds)
1 1 CP 1.1 SU() U(1) U(1) W ±,Z 1 [ ] [ ] [ ] u c t d s b [ ] [ ] [ ] ν e ν µ ν τ e µ τ (1.1a) (1.1b) u d u d +W u s +W s u (udd) (Λ = uds) n + e + ν e d u +W u + e + ν e (1.a) Λ + e + ν e s u +W u + e
cm λ λ = h/p p ( ) λ = cm E pc [ev] 2.2 quark lepton u d c s t b e 1 3e electric charge e color charge red blue green qq
2007 2007 7 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 2007 2 4 5 6 6 2 2.1 1: KEK Web page 1 1 1 10 16 cm λ λ = h/p p ( ) λ = 10 16 cm E pc [ev] 2.2 quark lepton 2 2.2.1 u d c s t b + 2 3 e 1 3e electric charge
Mott散乱によるParity対称性の破れを検証
Mott Parity P2 Mott target Mott Parity Parity Γ = 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 t P P ),,, ( 3 2 1 0 1 γ γ γ γ γ γ ν ν µ µ = = Γ 1 : : : Γ P P P P x x P ν ν µ µ vector axial vector ν ν µ µ γ γ Γ ν γ
LHC ALICE (QGP) QGP QGP QGP QGP ω ϕ J/ψ ALICE s = ev + J/ψ
8 + J/ψ ALICE B597 : : : 9 LHC ALICE (QGP) QGP QGP QGP QGP ω ϕ J/ψ ALICE s = ev + J/ψ 6..................................... 6. (QGP)..................... 6.................................... 6.4..............................
TOP URL 1
TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................
7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±
7 7. ( ) SU() SU() 9 ( MeV) p 98.8 π + π 0 n 99.57 9.57 97.4 497.70 δm m 0.4%.% 0.% 0.8% π 9.57 4.96 Σ + Σ 0 Σ 89.6 9.46 K + K 0 49.67 (7.) p p = αp + βn, n n = γp + δn (7.a) [ ] p ψ ψ = Uψ, U = n [ α
V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H
199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)
= hυ = h c λ υ λ (ev) = 1240 λ W=NE = Nhc λ W= N 2 10-16 λ / / Φe = dqe dt J/s Φ = km Φe(λ)v(λ)dλ THBV3_0101JA Qe = Φedt (W s) Q = Φdt lm s Ee = dφe ds E = dφ ds Φ Φ THBV3_0102JA Me = dφe ds M = dφ ds
positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100
positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) 0.5 1.5MeV : thermalization 10 100 m psec 100psec nsec E total = 2mc 2 + E e + + E e Ee+ Ee-c mc
4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.
A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c
LEPS
LEPS2 2016 2 17 LEPS2 SPring-8 γ 3 GeV γ 10 Mcps LEPS2 7 120 LEPS Λ(1405) LEPS2 LEPS2 Silicon Strip Detector (SSD) SSD 100 µm 512 ch 6 cm 3 x y 2 SSD 6 3072 ch APV25-s1 APVDAQ VME APV25-s1 SSD 128 ch
v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i
1. 1 1.1 1.1.1 1.1.1.1 v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) R ij R ik = δ jk (4) δ ij Kronecker δ ij = { 1 (i = j) 0 (i j) (5) 1 1.1. v1.1 2011/04/10 1. 1 2 v i = R ij v j (6) [
医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.
医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987
K E N Z U 2012 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.2................................... 4 1.2.1..................................... 4 1.2.2.................................... 5................................
006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................
I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )
I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17
量子力学 問題
3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,
Note.tex 2008/09/19( )
1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................
1/2 ( ) 1 * 1 2/3 *2 up charm top -1/3 down strange bottom 6 (ν e, ν µ, ν τ ) -1 (e) (µ) (τ) 6 ( 2 ) 6 6 I II III u d ν e e c s ν µ µ t b ν τ τ (2a) (
August 26, 2005 1 1 1.1...................................... 1 1.2......................... 4 1.3....................... 5 1.4.............. 7 1.5.................... 8 1.6 GIM..........................
微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.
微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)
OHO.dvi
1 Coil D-shaped electrodes ( [1] ) Vacuum chamber Ion source Oscillator 1.1 m e v B F = evb (1) r m v2 = evb r v = erb (2) m r T = 2πr v = 2πm (3) eb v
Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e
7 -a 7 -a February 4, 2007 1. 2. 3. 4. 1. 2. 3. 1 Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e z
I II
I II I I 8 I I 5 I 5 9 I 6 6 I 7 7 I 8 87 I 9 96 I 7 I 8 I 9 I 7 I 95 I 5 I 6 II 7 6 II 8 II 9 59 II 67 II 76 II II 9 II 8 II 5 8 II 6 58 II 7 6 II 8 8 I.., < b, b, c, k, m. k + m + c + c b + k + m log
Γ Ec Γ V BIAS THBV3_0401JA THBV3_0402JAa THBV3_0402JAb 1000 800 600 400 50 % 25 % 200 100 80 60 40 20 10 8 6 4 10 % 2.5 % 0.5 % 0.25 % 2 1.0 0.8 0.6 0.4 0.2 0.1 200 300 400 500 600 700 800 1000 1200 14001600
(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a
1 2 2.1 (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a) L ( ) ) * 2) W Z 1/2 ( - ) d u + e + ν e 1 1 0 0
n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................
Μ粒子電子転換事象探索実験による世界最高感度での 荷電LFV探索 第3回機構シンポジューム 2009年5月11日 素粒子原子核研究所 三原 智
µ COMET LFV esys clfv (Charged Lepton Flavor Violation) J-PARC µ COMET ( ) ( ) ( ) ( ) B ( ) B ( ) B ( ) B ( ) B ( ) B ( ) B 2016 J- PARC µ KEK 3 3 3 3 3 3 3 3 3 3 3 clfv clfv clfv clfv clfv clfv clfv
1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π
. 4cm 6 cm 4cm cm 8 cm λ()=a [kg/m] A 4cm A 4cm cm h h Y a G.38h a b () y = h.38h G b h X () S() = π() a,b, h,π V = ρ M = ρv G = M h S() 3 d a,b, h 4 G = 5 h a b a b = 6 ω() s v m θ() m v () θ() ω() dθ()
meiji_resume_1.PDF
β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E
all.dvi
38 5 Cauchy.,,,,., σ.,, 3,,. 5.1 Cauchy (a) (b) (a) (b) 5.1: 5.1. Cauchy 39 F Q Newton F F F Q F Q 5.2: n n ds df n ( 5.1). df n n df(n) df n, t n. t n = df n (5.1) ds 40 5 Cauchy t l n mds df n 5.3: t
05Mar2001_tune.dvi
2001 3 5 COD 1 1.1 u d2 u + ku =0 (1) dt2 u = a exp(pt) (2) p = ± k (3) k>0k = ω 2 exp(±iωt) (4) k
2000年度『数学展望 I』講義録
2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53
TOP URL 1
TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7
(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0
1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45
( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )
( 3 7 4 ) 2 2 ) 8 2 954 2) 955 3) 5) J = σe 2 6) 955 7) 9) 955 Statistical-Mechanical Theory of Irreversible Processes 957 ) 3 4 2 A B H (t) = Ae iωt B(t) = B(ω)e iωt B(ω) = [ Φ R (ω) Φ R () ] iω Φ R (t)
m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)
2.6 2.6.1 mẍ + γẋ + ω 0 x) = ee 2.118) e iωt Pω) = χω)e = ex = e2 Eω) m ω0 2 ω2 iωγ 2.119) Z N ϵω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j 2.120) Z ω ω j γ j f j f j f j sum j f j = Z 2.120 ω ω j, γ ϵω) ϵ
80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0
79 4 4.1 4.1.1 x i (t) x j (t) O O r 0 + r r r 0 x i (0) r 0 x i (0) 4.1 L. van. Hove 1954 space-time correlation function V N 4.1 ρ 0 = N/V i t 80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t
http://www.ike-dyn.ritsumei.ac.jp/ hyoo/wave.html 1 1, 5 3 1.1 1..................................... 3 1.2 5.1................................... 4 1.3.......................... 5 1.4 5.2, 5.3....................
untitled
( 9:: 3:6: (k 3 45 k F m tan 45 k 45 k F m tan S S F m tan( 6.8k tan k F m ( + k tan 373 S S + Σ Σ 3 + Σ os( sin( + Σ sin( os( + sin( os( p z ( γ z + K pzdz γ + K γ K + γ + 9 ( 9 (+ sin( sin { 9 ( } 4
2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)
1 16 10 5 1 2 2.1 a a a 1 1 1 2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h) 4 2 3 4 2 5 2.4 x y (x,y) l a x = l cot h cos a, (3) y = l cot h sin a (4) h a
Electron Ion Collider と ILC-N 宮地義之 山形大学
Electron Ion Collider と ILC-N 宮地義之 山形大学 ILC-N ILC-N Ee Ee == 250, 250, 500 500 GeV GeV Fixed Fixed target: target: p, p, d, d, A A 33-34 cm-2 LL ~~ 10 1033-34 cm-2 ss-1-1 s s == 22, 22, 32 32 GeV GeV
1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x
. P (, (0, 0 R {(,, R}, R P (, O (0, 0 OP OP, v v P (, ( (, (, { R, R} v (, (, (,, z 3 w z R 3,, z R z n R n.,..., n R n n w, t w ( z z Ke Words:. A P 3 0 B P 0 a. A P b B P 3. A π/90 B a + b c π/ 3. +
ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +
2.6 2.6.1 ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.121) Z ω ω j γ j f j
6 6.1 L r p hl = r p (6.1) 1, 2, 3 r =(x, y, z )=(r 1,r 2,r 3 ), p =(p x,p y,p z )=(p 1,p 2,p 3 ) (6.2) hl i = jk ɛ ijk r j p k (6.3) ɛ ijk Levi Civit
6 6.1 L r p hl = r p (6.1) 1, 2, 3 r =(x, y, z )=(r 1,r 2,r 3 ), p =(p x,p y,p z )=(p 1,p 2,p 3 ) (6.2) hl i = jk ɛ ijk r j p k (6.3) ɛ ijk Levi Civita ɛ 123 =1 0 r p = 2 2 = (6.4) Planck h L p = h ( h
( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1
2009 1 ( ) ( 40 )+( 60 ) 1 1. 2. Schrödinger 3. (a) (b) (c) http://goofy.phys.nara-wu.ac.jp/ yoshioka/education-09.html pdf 1 1. ( photon) ν λ = c ν (c = 3.0 108 /m : ) ɛ = hν (1) p = hν/c = h/λ (2) h
untitled
SPring-8 RFgun JASRI/SPring-8 6..7 Contents.. 3.. 5. 6. 7. 8. . 3 cavity γ E A = er 3 πε γ vb r B = v E c r c A B A ( ) F = e E + v B A A A A B dp e( v B+ E) = = m d dt dt ( γ v) dv e ( ) dt v B E v E
215 11 13 1 2 1.1....................... 2 1.2.................... 2 1.3..................... 2 1.4...................... 3 1.5............... 3 1.6........................... 4 1.7.................. 4
note4.dvi
10 016 6 0 4 (quantum wire) 4.1 4.1.1.6.1, 4.1(a) V Q N dep ( ) 4.1(b) w σ E z (d) E z (d) = σ [ ( ) ( )] x w/ x+w/ π+arctan arctan πǫǫ 0 d d (4.1) à ƒq [ƒg w ó R w d V( x) QŽŸŒ³ džq x (a) (b) 4.1 (a)
Bethe-Bloch Bethe-Bloch (stopping range) Bethe-Bloch FNAL (Fermi National Accelerator Laboratory) - (SciBooNE ) SciBooNE Bethe-Bloch FNAL - (SciBooNE
21 2 27 Bethe-Bloch Bethe-Bloch (stopping range) Bethe-Bloch FNAL (Fermi National Accelerator Laboratory) - (SciBooNE ) SciBooNE Bethe-Bloch FNAL - (SciBooNE ) Bethe-Bloch 1 0.1..............................
: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =
72 Maxwell. Maxwell e r ( =,,N Maxwell rot E + B t = 0 rot H D t = j dv D = ρ dv B = 0 D = ɛ 0 E H = μ 0 B ρ( r = j( r = N e δ( r r = N e r δ( r r = : 2005 ( 2006.8.22 73 207 ρ t +dv j =0 r m m r = e E(
64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k
63 3 Section 3.1 g 3.1 3.1: : 64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () 3 9.8 m/s 2 3.2 3.2: : a) b) 5 15 4 1 1. 1 3 14. 1 3 kg/m 3 2 3.3 1 3 5.8 1 3 kg/m 3 3 2.65 1 3 kg/m 3 4 6 m 3.1. 65 5
http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg
D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j
6 6.. [, b] [, d] ij P ij ξ ij, η ij f Sf,, {P ij } Sf,, {P ij } k m i j m fξ ij, η ij i i j j i j i m i j k i i j j m i i j j k i i j j kb d {P ij } lim Sf,, {P ij} kb d f, k [, b] [, d] f, d kb d 6..
II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re
II 29 7 29-7-27 ( ) (7/31) II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I Euler Navier
.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T
NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977
ELECTRONIC IMAGING IN ASTRONOMY Detectors and Instrumentation 5 Instrumentation and detectors
ELECTRONIC IMAGING IN ASTRONOMY Detectors and Instrumentation 5 Instrumentation and detectors 4 2017/5/10 Contents 5.4 Interferometers 5.4.1 The Fourier Transform Spectrometer (FTS) 5.4.2 The Fabry-Perot
Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence
Hanbury-Brown Twiss (ver. 2.) 25 4 4 1 2 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 4 3 Hanbury-Brown Twiss ( ) 5 3.1............................................
