非可換Lubin-Tate理論の一般化に向けて

Size: px
Start display at page:

Download "非可換Lubin-Tate理論の一般化に向けて"

Transcription

1 Lubin-Tate ( ) Lubin-Tate / 27

2 ( ) Lubin-Tate / 27

3 Lubin-Tate p 1 1 ( ) Lubin-Tate / 27

4 Lubin-Tate p 1 1 Lubin-Tate GL n n 1 Lubin-Tate ( ) Lubin-Tate / 27

5 Lubin-Tate p 1 1 Lubin-Tate GL n n 1 Lubin-Tate Lubin-Tate p Rapoport-Zink ( ) Lubin-Tate / 27

6 Galois ( ) Lubin-Tate / 27

7 Galois p Γ = Gal(Q p /Q p ) Galois ( ) Lubin-Tate / 27

8 Galois p Γ = Gal(Q p /Q p ) Galois 1 I Γ ( ) Gal(F p /F p ) 1 ( ) Lubin-Tate / 27

9 Galois p Γ = Gal(Q p /Q p ) Galois 1 I Γ ( ) Gal(F p /F p ) 1 Frob Gal(F p /F p ) Frobenius x x 1/p ( ) Lubin-Tate / 27

10 Galois p Γ = Gal(Q p /Q p ) Galois 1 I Γ ( ) Gal(F p /F p ) 1 Frob Gal(F p /F p ) Frobenius x x 1/p W Γ Q p Weil Frob Z Gal(F p /F p ) ( ) ( ) Lubin-Tate / 27

11 GL n ( ) Lubin-Tate / 27

12 GL n (GL n Harris-Taylor, Henniart) 2 GL n (Q p ) Frobenius Weil-Deligne ϕ: W SL 2 (C) GL n (C) ( ) Lubin-Tate / 27

13 GL n (GL n Harris-Taylor, Henniart) 2 GL n (Q p ) Frobenius Weil-Deligne ϕ: W SL 2 (C) GL n (C) H (π, V ) x V Stab H (x) = {h H hx = x} H ( ) Lubin-Tate / 27

14 GL n (GL n Harris-Taylor, Henniart) 2 GL n (Q p ) Frobenius Weil-Deligne ϕ: W SL 2 (C) GL n (C) H (π, V ) x V Stab H (x) = {h H hx = x} H Weil-Deligne ϕ Frobenius w W ϕ(w) ( ) Lubin-Tate / 27

15 GL n (GL n Harris-Taylor, Henniart) 2 GL n (Q p ) Frobenius Weil-Deligne ϕ: W SL 2 (C) GL n (C) H (π, V ) x V Stab H (x) = {h H hx = x} H Weil-Deligne ϕ Frobenius w W ϕ(w) l p Weil-Deligne l W GL n (Q l ) Grothendieck l σ Weil-Deligne WD(σ) ( ) Lubin-Tate / 27

16 GL n ( ) Lubin-Tate / 27

17 GL n (n = 1 ) Art: Q = p W ab χ: GL 1 (Q p ) = Q p C W W ab χ Art 1 C ( ) Lubin-Tate / 27

18 GL n (n = 1 ) Art: Q = p W ab χ: GL 1 (Q p ) = Q p C W W ab χ Art 1 C ( n ) GL n (Q p ) W SL 2 (C) n ( ) Lubin-Tate / 27

19 GL n (n = 1 ) Art: Q = p W ab χ: GL 1 (Q p ) = Q p C W W ab χ Art 1 C ( n ) GL n (Q p ) W SL 2 (C) n Steinberg St n ϕ: W SL 2 (C) GL n (C) ϕ W = 1 ϕ Sp n St n Ind GL n(q p ) B 1 B ( ) Lubin-Tate / 27

20 GL n (n = 1 ) Art: Q = p W ab χ: GL 1 (Q p ) = Q p C W W ab χ Art 1 C ( n ) GL n (Q p ) W SL 2 (C) n Steinberg St n ϕ: W SL 2 (C) GL n (C) ϕ W = 1 ϕ Sp n St n Ind GL n(q p ) B 1 B ϕ: W SL 2 (C) GL n (C) ϕ SL2 (C) = 1 ( ) Lubin-Tate / 27

21 p ( ) Lubin-Tate / 27

22 p G Q p Q p Ĝ G C G ( ) Lubin-Tate / 27

23 p G Q p Q p Ĝ G C G G ( ) Lubin-Tate / 27

24 p G Q p Q p Ĝ G C G G (G ) (1) G(Q p ) L ϕ: W SL 2 (C) Ĝ(C) Ĝ(C) ϕ Π G ϕ L ( ) Lubin-Tate / 27

25 p G Q p Q p Ĝ G C G G (G ) (1) G(Q p ) L ϕ: W SL 2 (C) Ĝ(C) Ĝ(C) ϕ Π G ϕ L ( (2) S ϕ = π 0 CentĜ(C) (ϕ) ) Irr(S ϕ ) = Π G ϕ ( ) Lubin-Tate / 27

26 p G Q p Q p Ĝ G C G G (G ) (1) G(Q p ) L ϕ: W SL 2 (C) Ĝ(C) Ĝ(C) ϕ Π G ϕ L ( (2) S ϕ = π 0 CentĜ(C) (ϕ) ) Irr(S ϕ ) = Π G ϕ SL 2 U(3) Arthur ( ) Lubin-Tate / 27

27 G = GSp 4 ( ) Lubin-Tate / 27

28 G = GSp 4 G = GSp 4 Ĝ = GSpin 5 = GSp 4 Gan-Takeda ( ) Lubin-Tate / 27

29 G = GSp 4 G = GSp 4 Ĝ = GSpin 5 = GSp 4 Gan-Takeda L r : GSp 4 GL 4 ϕ: W SL 2 (C) GSp 4 (C) L r ϕ Weil-Deligne Π G ϕ G(Q p) ( ) Lubin-Tate / 27

30 G = GSp 4 G = GSp 4 Ĝ = GSpin 5 = GSp 4 Gan-Takeda L r : GSp 4 GL 4 ϕ: W SL 2 (C) GSp 4 (C) L r ϕ Weil-Deligne Π G ϕ G(Q p) (I) (r ϕ) SL2 (C) = 1 r ϕ Π G ϕ = {π} ( ) Lubin-Tate / 27

31 G = GSp 4 G = GSp 4 Ĝ = GSpin 5 = GSp 4 Gan-Takeda L r : GSp 4 GL 4 ϕ: W SL 2 (C) GSp 4 (C) L r ϕ Weil-Deligne Π G ϕ G(Q p) (I) (r ϕ) SL2 (C) = 1 r ϕ Π G ϕ = {π} (II) (r ϕ) SL2 (C) = 1 r ϕ = φ 1 φ 2 φ i φ 1 φ 2, dim φ i = 2 Π G ϕ = {π 1, π 2 } π 1, π 2 ( ) Lubin-Tate / 27

32 G = GSp 4 G = GSp 4 Ĝ = GSpin 5 = GSp 4 Gan-Takeda L r : GSp 4 GL 4 ϕ: W SL 2 (C) GSp 4 (C) L r ϕ Weil-Deligne Π G ϕ G(Q p) (I) (r ϕ) SL2 (C) = 1 r ϕ Π G ϕ = {π} (II) (r ϕ) SL2 (C) = 1 r ϕ = φ 1 φ 2 φ i φ 1 φ 2, dim φ i = 2 Π G ϕ = {π 1, π 2 } π 1, π 2 (III) r ϕ = φ (χ Sp 2 ) φ SL2 (C) = 1 φ Π G ϕ = {π 1, π 2 } π 1 π 2 ( ) Lubin-Tate / 27

33 G = GSp 4 G = GSp 4 Ĝ = GSpin 5 = GSp 4 Gan-Takeda L r : GSp 4 GL 4 ϕ: W SL 2 (C) GSp 4 (C) L r ϕ Weil-Deligne Π G ϕ G(Q p) (I) (r ϕ) SL2 (C) = 1 r ϕ Π G ϕ = {π} (II) (r ϕ) SL2 (C) = 1 r ϕ = φ 1 φ 2 φ i φ 1 φ 2, dim φ i = 2 Π G ϕ = {π 1, π 2 } π 1, π 2 (III) r ϕ = φ (χ Sp 2 ) φ SL2 (C) = 1 φ Π G ϕ = {π 1, π 2 } π 1 π 2 (IV) r ϕ = (χ 1 Sp 2 ) (χ 2 Sp 2 ) (χ 1 χ 2 ) Π G ϕ = {π 1, π 2 } π 1 π 2 ( ) Lubin-Tate / 27

34 GU(2, D) ( ) Lubin-Tate / 27

35 GU(2, D) D Q p J = GU(2, D) GSp 4 (Q p ) Gan-Tantono ( ) Lubin-Tate / 27

36 GU(2, D) D Q p J = GU(2, D) GSp 4 (Q p ) Gan-Tantono ϕ: W SL 2 (C) GSp 4 (C) Π J ϕ L Π J ϕ = ϕ ΠJ ϕ ( ) Lubin-Tate / 27

37 GU(2, D) D Q p J = GU(2, D) GSp 4 (Q p ) Gan-Tantono ϕ: W SL 2 (C) GSp 4 (C) Π J ϕ L Π J ϕ = ϕ ΠJ ϕ L ϕ: W SL 2 (C) GSp 4 (C) L Π G ϕ (I) (IV) ( ) Lubin-Tate / 27

38 GU(2, D) D Q p J = GU(2, D) GSp 4 (Q p ) Gan-Tantono ϕ: W SL 2 (C) GSp 4 (C) Π J ϕ L Π J ϕ = ϕ ΠJ ϕ L ϕ: W SL 2 (C) GSp 4 (C) L Π G ϕ (I) (IV) (I) Π J ϕ = {ρ} ρ (II) Π J ϕ = {ρ 1, ρ 2 } ρ 1, ρ 2 (III) Π J ϕ = {ρ 1, ρ 2 } ρ 1 ρ 2 (IV) Π J ϕ = {ρ 1, ρ 2 } ρ 1, ρ 2 ( ) Lubin-Tate / 27

39 ( ) Lubin-Tate / 27

40 L (I) (IV) L GL n ( ) Lubin-Tate / 27

41 GSp 2n Rapoport-Zink ( ) Lubin-Tate / 27

42 GSp 2n Rapoport-Zink X F p 1/2 n p F p E X = E[p ] n λ 0 : X = X λ 0 = λ 0 ( ) Lubin-Tate / 27

43 GSp 2n Rapoport-Zink X F p 1/2 n p F p E X = E[p ] n λ 0 : X = X λ 0 = λ 0 Nilp Ẑur p A p A ( ) Lubin-Tate / 27

44 GSp 2n Rapoport-Zink X F p 1/2 n p F p E X = E[p ] n λ 0 : X = X λ 0 = λ 0 Nilp Ẑur p A p A (Rapoport-Zink ) M: Nilp Set M(A) = {(X, λ, ρ)}/ = X A p λ X ρ: X Fp A/pA X A A/pA = p m ρ 1 (λ mod p) ρ Q p λ 0 M Ẑur p Rapoport-Zink ( ) Lubin-Tate / 27

45 GSp 2n Rapoport-Zink M deg ρ n = 2 M red P 1 ( ) Lubin-Tate / 27

46 GSp 2n Rapoport-Zink M deg ρ n = 2 M red P 1 M J = QIsog(X, λ 0 ) J = GU(n, D) M J (X, λ, ρ) h = (X, λ, ρ h) ( ) Lubin-Tate / 27

47 GSp 2n Rapoport-Zink M deg ρ n = 2 M red P 1 M J = QIsog(X, λ 0 ) J = GU(n, D) M J (X, λ, ρ) h = (X, λ, ρ h) p Sh GSp 2n n Sh ss Sh Fp Sh Sh ss Shss Sh Sh ss M Sh Sh ss = k i=1 M/Γ i (Γ i J) ( ) Lubin-Tate / 27

48 GSp 2n Rapoport-Zink M M Q ur p ( ) Lubin-Tate / 27

49 GSp 2n Rapoport-Zink M M Q ur p Rapoport-Zink {M K } K M Rapoport-Zink K GSp 2n (Z p ) p K ( ) Lubin-Tate / 27

50 GSp 2n Rapoport-Zink M M Q ur p Rapoport-Zink {M K } K M Rapoport-Zink K GSp 2n (Z p ) p K M GSp2n (Z p ) = M ( ) Lubin-Tate / 27

51 GSp 2n Rapoport-Zink M M Q ur p Rapoport-Zink {M K } K M Rapoport-Zink K GSp 2n (Z p ) p K M GSp2n (Z p ) = M K K m = Ker(GSp 2n (Z p ) GSp 2n (Z/p m Z)) K m = p m ( ) Lubin-Tate / 27

52 GSp 2n Rapoport-Zink M M Q ur p Rapoport-Zink {M K } K M Rapoport-Zink K GSp 2n (Z p ) p K M GSp2n (Z p ) = M K K m = Ker(GSp 2n (Z p ) GSp 2n (Z/p m Z)) K m = p m Rapoport-Zink J M K ( ) Lubin-Tate / 27

53 GSp 2n Rapoport-Zink M M Q ur p Rapoport-Zink {M K } K M Rapoport-Zink K GSp 2n (Z p ) p K M GSp2n (Z p ) = M K K m = Ker(GSp 2n (Z p ) GSp 2n (Z/p m Z)) K m = p m Rapoport-Zink J M K G = GSp 2n (Q p ) {M K } K g G M K M g 1 Kg Hecke ( ) Lubin-Tate / 27

54 GSp 2n Rapoport-Zink Sh [ss] Sh Qur p Sh K, Qur p K Sh [ss] K Sh [ss] K M K Sh Sh [ss] K, Q ur p ( ) Lubin-Tate / 27

55 GSp 2n Rapoport-Zink Sh [ss] Sh Qur p Sh K, Qur p K Sh [ss] K Sh [ss] K M K Rapoport-Zink l l p H i RZ := lim K Hi c(m K Qur p Q ac p, Q l ) W G J Sh Sh [ss] K, Q ur p ( ) Lubin-Tate / 27

56 GSp 2n Rapoport-Zink Sh [ss] Sh Qur p Sh K, Qur p K Sh [ss] K Sh [ss] K M K Rapoport-Zink l l p H i RZ := lim K Hi c(m K Qur p Q ac p, Q l ) W G J Sh Sh [ss] K, Q ur p HRZ i G J ( ) Lubin-Tate / 27

57 GL n ( ) Lubin-Tate / 27

58 GL n Rapoport-Zink X F p 1/n 1 p ( ) Lubin-Tate / 27

59 GL n Rapoport-Zink X F p 1/n 1 p Lubin-Tate Lubin-Tate H i LT G = GL n (Q p ), J = D n D n Q p inv D n = 1/n ( ) Lubin-Tate / 27

60 GL n Rapoport-Zink X F p 1/n 1 p Lubin-Tate Lubin-Tate HLT i G = GL n (Q p ), J = D n D n Q p inv D n = 1/n ( Lubin-Tate Harris-Taylor) π GL n (Q p ) ϕ Π GL n ϕ = {π} Weil-Deligne Π D n ϕ = {ρ} π ρ Jacquet-Langlands σ : W GL n (Q l ) WD(σ) = ϕ l { Hom GLn (Q p )(HLT i, π) = σ ( ) 1 n 2 ρ (i = n 1) 0 (i n 1) ( ) Lubin-Tate / 27

61 GSp 4 ( ) Lubin-Tate / 27

62 GSp 4 G = GSp 4 (Q p ), J = GU(2, D) ϕ: W SL 2 (C) GSp 4 (C) L Π G ϕ ρ Π J ϕ Hi RZ [ρ] := Hom J(H i RZ, ρ)g-sm W G HRZ i [ρ] cusp HRZ i [ρ] ( ) Lubin-Tate / 27

63 GSp 4 G = GSp 4 (Q p ), J = GU(2, D) ϕ: W SL 2 (C) GSp 4 (C) L Π G ϕ ρ Π J ϕ Hi RZ [ρ] := Hom J(H i RZ, ρ)g-sm W G HRZ i [ρ] cusp HRZ i [ρ] L r : GSp 4 GL 4 (I) (r ϕ) SL2 (C) = 1 r ϕ (II) (r ϕ) SL2 (C) = 1 r ϕ = φ 1 φ 2 φ i φ 1 φ 2, dim φ i = 2 (III) r ϕ = φ (χ Sp 2 ) φ SL2 (C) = 1 φ (IV) r ϕ = (χ 1 Sp 2 ) (χ 2 Sp 2 ) (χ 1 χ 2 ) ( ) Lubin-Tate / 27

64 GSp 4 ϕ SL2 (C) = 1 ϕ SL2 (C) = 1 (I), (II) ( ) Lubin-Tate / 27

65 GSp 4 ϕ SL2 (C) = 1 ϕ SL2 (C) = 1 (I), (II) A ϕ (I) (II) ρ Π J ϕ (1) i 3 H i RZ [ρ] cusp = 0 (2) HRZ 3 [ρ] cusp = π Π G σ π π ϕ σ π W l π Π G WD(σ π ) = r ϕ ϕ ϕ (II) WD(σ π ) φ 1, φ 2 i ( 1)i HRZ i Kottwitz ( ) Lubin-Tate / 27

66 GSp 4 ϕ SL2 (C) 1 ϕ SL2 (C) 1 (III), (IV) ( ) Lubin-Tate / 27

67 GSp 4 ϕ SL2 (C) 1 ϕ SL2 (C) 1 (III), (IV) A ϕ (III) r ϕ = φ (χ Sp 2 ) ρ Π J ϕ (1) i 3 H i RZ [ρ] cusp = 0 (2) HRZ 3 [ρ] cusp = σ π π π Π G π WD(σ π) = φ ( ) Lubin-Tate / 27

68 GSp 4 ϕ SL2 (C) 1 ϕ SL2 (C) 1 (III), (IV) A ϕ (III) r ϕ = φ (χ Sp 2 ) ρ Π J ϕ (1) i 3 H i RZ [ρ] cusp = 0 (2) HRZ 3 [ρ] cusp = σ π π π Π G π WD(σ π) = φ B ϕ (III) (IV) π Π G ϕ π HRZ 4 ( ) Lubin-Tate / 27

69 GSp 4 ϕ SL2 (C) 1 ϕ (III) (IV) χ Sp 2 r ϕ π Π G ϕ ρ ΠJ ϕ χ π ρ H 3 RZ χ π Zel(ρ) H 4 RZ Zel Zelevinsky Zel(ρ) H 2 RZ = 0 Π J ϕ = {ρ, ρ } {ρ, Zel(ρ) } J A ( ) Lubin-Tate / 27

70 B B ϕ (III) (IV) π Π G ϕ π HRZ 4 ( ) Lubin-Tate / 27

71 B B ϕ (III) (IV) π Π G ϕ π HRZ 4 H i RZ Sh [ss] K M K Hochschild-Serre ( ) Lubin-Tate / 27

72 B B ϕ (III) (IV) π Π G ϕ π HRZ 4 H i RZ Sh [ss] K M K Hochschild-Serre Hochschild-Serre (Harris, Fargues) E i,j 2 = Ext j J-sm (H6 j RZ A GSp 4 (A,p ) J, A)( 3) = lim H i+j (Sh [ss] K, Q l) K ( ) Lubin-Tate / 27

73 B B ϕ (III) (IV) π Π G ϕ π HRZ 4 H i RZ Sh [ss] K M K Hochschild-Serre Hochschild-Serre (Harris, Fargues) E i,j 2 = Ext j J-sm (H6 j RZ A GSp 4 (A,p ) J H i (Sh [ss] ) := lim K H i+j (Sh [ss] K, Q l), A)( 3) = lim H i+j (Sh [ss] K, Q l) K ( ) Lubin-Tate / 27

74 Sh [ss] K Sh [good] K Sh [ss] K Sh[good] K Sh K ( ) Lubin-Tate / 27

75 Sh [ss] K Sh [good] K Sh [ss] K Sh[good] K Sh K IH i (Sh ) H i (Sh ) H i (Sh [good] ) H i (Sh [ss] ) ( ) Lubin-Tate / 27

76 Sh [ss] K Sh [good] K Sh [ss] K Sh[good] K Sh K IH i (Sh ) cusp = H i (Sh ) cusp = H i (Sh [good] ) cusp = H i (Sh [ss] ) cusp ( ) Lubin-Tate / 27

77 Sh [ss] K Sh [good] K Sh [ss] K Sh[good] K Sh K IH i = (Sh ) cusp H i (Sh ) cusp = H i (Sh [good] (1) (2) ) cusp = H i (Sh [ss] (3) ) cusp ( ) Lubin-Tate / 27

78 Sh [ss] K Sh [good] K Sh [ss] K Sh[good] K Sh K IH i = (Sh ) cusp H i (Sh ) cusp = H i (Sh [good] (1) (2) ) cusp = H i (Sh [ss] (3) (1) C ) cusp ( ) Lubin-Tate / 27

79 Sh [ss] K Sh [good] K Sh [ss] K Sh[good] K Sh K IH i = (Sh ) cusp H i (Sh ) cusp = H i (Sh [good] (1) (2) ) cusp = H i (Sh [ss] (3) (1) C (2) ) cusp ( ) Lubin-Tate / 27

80 Sh [ss] K Sh [good] K Sh [ss] K Sh[good] K Sh K IH i = (Sh ) cusp H i (Sh ) cusp = H i (Sh [good] (1) (2) ) cusp = H i (Sh [ss] (3) (1) C (2) ) cusp (3) Boyer GSp 4 GSp 2n, n 3 ( ) Lubin-Tate / 27

81 ( ) ị 2, 3, 4 G H i RZ ( ) Lubin-Tate / 27

82 ( ) ị 2, 3, 4 G H i RZ dim M = 3 HRZ i 0 0 i 6 2 = 3 1 = dim M dim M red, 4 = = dim M + dim M red ( ) Lubin-Tate / 27

83 ( ) ị 2, 3, 4 G H i RZ dim M = 3 HRZ i 0 0 i 6 2 = 3 1 = dim M dim M red, 4 = = dim M + dim M red Lubin-Tate M ( ) Lubin-Tate / 27

84 ( ) ị 2, 3, 4 G H i RZ dim M = 3 HRZ i 0 0 i 6 2 = 3 1 = dim M dim M red, 4 = = dim M + dim M red Lubin-Tate M ( ) Lubin-Tate / 27

85 B ϕ (III) (IV) π Π G ϕ π HRZ 4 B ( ) Lubin-Tate / 27

86 B ϕ (III) (IV) π Π G ϕ π HRZ 4 B GSp 4 (A) Π Π IH 2 (Sh ) Π Π p = π ϕ (III) (IV) ( ) Lubin-Tate / 27

87 B ϕ (III) (IV) π Π G ϕ π HRZ 4 B GSp 4 (A) Π Π IH 2 (Sh ) Π Π p = π ϕ (III) (IV) Hochschild-Serre i + j = 2 i, j Π p Ext i J-sm (H6 j RZ, A) 6 j 5, 6 Π p Hom J (HRZ 4, A) π HRZ 4 ( ) Lubin-Tate / 27

88 A, A π, ρ ( ) Lubin-Tate / 27

89 A, A π, ρ Π GSp 4 (A) Π IH 3 (Sh ) Π Π p = π Π p 1 GSp 4 (A) Π Π p = (Π ) p Π = Π cf Arthur ( ) Lubin-Tate / 27

90 A, A π, ρ Π GSp 4 (A) Π IH 3 (Sh ) Π Π p = π Π p 1 GSp 4 (A) Π Π p = (Π ) p Π = Π cf Arthur ρ Π J Π,p = (Π J ),p Hochschild-Serre Π,p ( ) Lubin-Tate / 27

91 L Lefschetz ( ) Lubin-Tate / 27

92 L Lefschetz ( Lefschetz ) X Q ac p adic X X f : X X f : X X x X \ X x f (x) X ( 1) i Tr(f ; Hc(X i, Q l )) = # Fix(f ) i ( ) Lubin-Tate / 27

93 L Lefschetz ( Lefschetz ) X Q ac p adic X X f : X X f : X X x X \ X x f (x) X ( 1) i Tr(f ; Hc(X i, Q l )) = # Fix(f ) i M K ( ) Lubin-Tate / 27

94 ϕ: W SL 2 (C) GSp 4 (C) (I) (II) L Π G ϕ ΠJ ϕ TRSELP ρ Π J ϕ Hi RZ [ρ] G ( ) Lubin-Tate / 27

95 ϕ: W SL 2 (C) GSp 4 (C) (I) (II) L Π G ϕ ΠJ ϕ TRSELP ρ Π J ϕ Hi RZ [ρ] G g G θ HRZ [ρ](g) = 4 θ π (g) ρ Π J ϕ H RZ [ρ] = i ( 1)i H i RZ [ρ] π Π G ϕ θ HRZ [ρ], θ π G ( ) Lubin-Tate / 27

96 GL n Faltings, Strauch W H i RZ ( ) Lubin-Tate / 27

97 GL n Faltings, Strauch W H i RZ M K p p Dieudonné Hodge p Hodge L ( ) Lubin-Tate / 27

98 GL n Faltings, Strauch W H i RZ M K p p Dieudonné Hodge p Hodge L θ HRZ [ρ](g) = 4 #Π G ϕ π Π G ϕ θ π (g) ( ) Lubin-Tate / 27

99 GU(2, 1) GL 4 1/2 GU(n 1, 1) Boyer (Mantovan, Shen) H i RZ GU(2, D) GSp 4 cf Faltings ( ) Lubin-Tate / 27

wiles05.dvi

wiles05.dvi Andrew Wiles 1953, 20 Fermat.. Fermat 10,. 1 Wiles. 19 20., Fermat 1. (Fermat). p 3 x p + y p =1 xy 0 x, y 2., n- t n =1 ζ n Q Q(ζ n ). Q F,., F = Q( 5) 6=2 3 = (1 + 5)(1 5) 2. Kummer Q(ζ p ), p Fermat

More information

Langlands 1 1. Langlands p GL n Langlands [HT] The local Langlands conjecture is one of those hydra-like conjectures which seems to grow as it gets pr

Langlands 1 1. Langlands p GL n Langlands [HT] The local Langlands conjecture is one of those hydra-like conjectures which seems to grow as it gets pr Langlands 1 1. Langlands p GL n Langlands [HT] The local Langlands conjecture is one of those hydra-like conjectures which seems to grow as it gets proved. ([HT], p.1) hydra [KP] Langlands Langlands Langlands

More information

Q p G Qp Q G Q p Ramanujan 12 q- (q) : (q) = q n=1 (1 qn ) 24 S 12 (SL 2 (Z))., p (ordinary) (, q- p a p ( ) p ). p = 11 a p ( ) p. p 11 p a p

Q p G Qp Q G Q p Ramanujan 12 q- (q) : (q) = q n=1 (1 qn ) 24 S 12 (SL 2 (Z))., p (ordinary) (, q- p a p ( ) p ). p = 11 a p ( ) p. p 11 p a p .,.,.,..,, 1.. Contents 1. 1 1.1. 2 1.2. 3 1.3. 4 1.4. Eisenstein 5 1.5. 7 2. 9 2.1. e p 9 2.2. p 11 2.3. 15 2.4. 16 2.5. 18 3. 19 3.1. ( ) 19 3.2. 22 4. 23 1. p., Q Q p Q Q p Q C.,. 1. 1 Q p G Qp Q G

More information

1. Γ, R 2,, M R. M R. M M Map(M, M) 3, Aut R (M). ρ : Γ Aut R (M) Γ. M R n, R, R ρ : Γ Aut R (M) GL n (R) := {g M n (R) det(g) R } 4. ρ Γ R R M.,,.,,

1. Γ, R 2,, M R. M R. M M Map(M, M) 3, Aut R (M). ρ : Γ Aut R (M) Γ. M R n, R, R ρ : Γ Aut R (M) GL n (R) := {g M n (R) det(g) R } 4. ρ Γ R R M.,,.,, I ( ) (i) l, l, l (ii) (Q p ) l, l, l (iii) Artin (iv). (i),(ii). (iii) 1. (iv),.. [9]. [4] L-,.. Contents 1. 2 2. 4 2.1. 4 2.2. l 5 2.3. l 9 2.4. l 10 2.5. 12 2.6. Artin 13 3. 15 3.1. l, l, l 15 3.2.

More information

[Oc, Proposition 2.1, Theorem 2.4] K X (a) l (b) l (a) (b) X [M3] Huber adic 1 Huber ([Hu1], [Hu2], [Hu3]) adic 1.1 adic A I I A {I n } 0 adic 2

[Oc, Proposition 2.1, Theorem 2.4] K X (a) l (b) l (a) (b) X [M3] Huber adic 1 Huber ([Hu1], [Hu2], [Hu3]) adic 1.1 adic A I I A {I n } 0 adic 2 On the action of the Weil group on the l-adic cohomology of rigid spaces over local fields (Yoichi Mieda) Graduate School of Mathematical Sciences, The University of Tokyo 0 l Galois K F F q l q K, F K,

More information

II (No.2) 2 4,.. (1) (cm) (2) (cm) , (

II (No.2) 2 4,.. (1) (cm) (2) (cm) , ( II (No.1) 1 x 1, x 2,..., x µ = 1 V = 1 k=1 x k (x k µ) 2 k=1 σ = V. V = σ 2 = 1 x 2 k µ 2 k=1 1 µ, V σ. (1) 4, 7, 3, 1, 9, 6 (2) 14, 17, 13, 11, 19, 16 (3) 12, 21, 9, 3, 27, 18 (4) 27.2, 29.3, 29.1, 26.0,

More information

k + (1/2) S k+(1/2) (Γ 0 (N)) N p Hecke T k+(1/2) (p 2 ) S k+1/2 (Γ 0 (N)) M > 0 2k, M S 2k (Γ 0 (M)) Hecke T 2k (p) (p M) 1.1 ( ). k 2 M N M N f S k+

k + (1/2) S k+(1/2) (Γ 0 (N)) N p Hecke T k+(1/2) (p 2 ) S k+1/2 (Γ 0 (N)) M > 0 2k, M S 2k (Γ 0 (M)) Hecke T 2k (p) (p M) 1.1 ( ). k 2 M N M N f S k+ 1 SL 2 (R) γ(z) = az + b cz + d ( ) a b z h, γ = SL c d 2 (R) h 4 N Γ 0 (N) {( ) } a b Γ 0 (N) = SL c d 2 (Z) c 0 mod N θ(z) θ(z) = q n2 q = e 2π 1z, z h n Z Γ 0 (4) j(γ, z) ( ) a b θ(γ(z)) = j(γ, z)θ(z)

More information

17 Θ Hodge Θ Hodge Kummer Hodge Hodge

17 Θ Hodge Θ Hodge Kummer Hodge Hodge Teichmüller ( ) 2015 11 0 3 1 4 2 6 3 Teichmüller 8 4 Diophantus 11 5 13 6 15 7 19 8 21 9 25 10 28 11 31 12 34 13 36 14 41 15 43 16 47 1 17 Θ 50 18 55 19 57 20 Hodge 59 21 63 22 67 23 Θ Hodge 69 24 Kummer

More information

λ n numbering Num(λ) Young numbering T i j T ij Young T (content) cont T (row word) word T µ n S n µ C(µ) 0.2. Young λ, µ n Kostka K µλ K µλ def = #{T

λ n numbering Num(λ) Young numbering T i j T ij Young T (content) cont T (row word) word T µ n S n µ C(µ) 0.2. Young λ, µ n Kostka K µλ K µλ def = #{T 0 2 8 8 6 3 0 0 Young Young [F] 0.. Young λ n λ n λ = (λ,, λ l ) λ λ 2 λ l λ = ( m, 2 m 2, ) λ = n, l(λ) = l {λ n n 0} P λ = (λ, ), µ = (µ, ) n λ µ k k k λ i µ i λ µ λ = µ k i= i= i < k λ i = µ i λ k >

More information

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k II 231017 1 1.1. R n k +1 v 0,, v k k v 1 v 0,, v k v 0 1.2. v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ kσ dimσ = k 1.3. k σ {v 0,...,v k } {v i0,...,v il } l σ τ < τ τ σ 1.4.

More information

( ) 1., ([SU] ): F K k., Z p -, (cf. [Iw2], [Iw3], [Iw6]). K F F/K Z p - k /k., Weil., K., K F F p- ( 4.1).,, Z p -,., Weil..,,. Weil., F, F projectiv

( ) 1., ([SU] ): F K k., Z p -, (cf. [Iw2], [Iw3], [Iw6]). K F F/K Z p - k /k., Weil., K., K F F p- ( 4.1).,, Z p -,., Weil..,,. Weil., F, F projectiv ( ) 1 ([SU] ): F K k Z p - (cf [Iw2] [Iw3] [Iw6]) K F F/K Z p - k /k Weil K K F F p- ( 41) Z p - Weil Weil F F projective smooth C C Jac(C)/F ( ) : 2 3 4 5 Tate Weil 6 7 Z p - 2 [Iw1] 2 21 K k k 1 k K

More information

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c GL 2 1 Lie SL(2, R) GL(2, A) Gelbart [Ge] 1 3 [Ge] Jacquet-Langlands [JL] Bump [Bu] Borel([Bo]) ([Ko]) ([Mo]) [Mo] 2 2.1 H = {z C Im(z) > 0} Γ SL(2, Z) Γ N N Γ (N) = {γ SL(2, Z) γ = 1 2 mod N} g SL(2,

More information

all.dvi

all.dvi 38 5 Cauchy.,,,,., σ.,, 3,,. 5.1 Cauchy (a) (b) (a) (b) 5.1: 5.1. Cauchy 39 F Q Newton F F F Q F Q 5.2: n n ds df n ( 5.1). df n n df(n) df n, t n. t n = df n (5.1) ds 40 5 Cauchy t l n mds df n 5.3: t

More information

Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R M End R M) M R ut R M) M R R G R[G] R G Sets 1 Λ Noether Λ k Λ m Λ k C Λ

Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R M End R M) M R ut R M) M R R G R[G] R G Sets 1 Λ Noether Λ k Λ m Λ k C Λ Galois ) 0 1 1 2 2 4 3 10 4 12 5 14 16 0 Galois Galois Galois TaylorWiles Fermat [W][TW] Galois Galois Galois 1 Noether 2 1 Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R

More information

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T SAMA- SUKU-RU Contents 1. 1 2. 7.1. p-adic families of Eisenstein series 3 2.1. modular form Hecke 3 2.2. Eisenstein 5 2.3. Eisenstein p 7 3. 7.2. The projection to the ordinary part 9 3.1. The ordinary

More information

44 4 I (1) ( ) (10 15 ) ( 17 ) ( 3 1 ) (2)

44 4 I (1) ( ) (10 15 ) ( 17 ) ( 3 1 ) (2) (1) I 44 II 45 III 47 IV 52 44 4 I (1) ( ) 1945 8 9 (10 15 ) ( 17 ) ( 3 1 ) (2) 45 II 1 (3) 511 ( 451 1 ) ( ) 365 1 2 512 1 2 365 1 2 363 2 ( ) 3 ( ) ( 451 2 ( 314 1 ) ( 339 1 4 ) 337 2 3 ) 363 (4) 46

More information

i ii i iii iv 1 3 3 10 14 17 17 18 22 23 28 29 31 36 37 39 40 43 48 59 70 75 75 77 90 95 102 107 109 110 118 125 128 130 132 134 48 43 43 51 52 61 61 64 62 124 70 58 3 10 17 29 78 82 85 102 95 109 iii

More information

Siegel Hecke 1 Siege Hecke L L Fourier Dirichlet Hecke Euler L Euler Fourier Hecke [Fr] Andrianov [An2] Hecke Satake L van der Geer ([vg]) L [Na1] [Yo

Siegel Hecke 1 Siege Hecke L L Fourier Dirichlet Hecke Euler L Euler Fourier Hecke [Fr] Andrianov [An2] Hecke Satake L van der Geer ([vg]) L [Na1] [Yo Siegel Hecke 1 Siege Hecke L L Fourier Dirichlet Hecke Euler L Euler Fourier Hecke [Fr] Andrianov [An2] Hecke Satake L van der Geer ([vg]) L [Na1] [Yo] 2 Hecke ( ) 0 1n J n =, Γ = Γ n = Sp(n, Z) = {γ GL(2n,

More information

E1 (4/12)., ( )., 3,4 ( ). ( ) Allen Hatcher, Vector bundle and K-theory ( HP ) 1

E1 (4/12)., ( )., 3,4 ( ). ( ) Allen Hatcher, Vector bundle and K-theory ( HP ) 1 E1 (4/12)., ( )., 3,4 ( ). ( ) Allen Hatcher, Vector bundle and K-theory ( HP ) 1 (4/12) 1 1.. 2. F R C H P n F E n := {((x 0,..., x n ), [v 0 : : v n ]) F n+1 P n F n x i v i = 0 }. i=0 E n P n F P n

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

Dynkin Serre Weyl

Dynkin Serre Weyl Dynkin Naoya Enomoto 2003.3. paper Dynkin Introduction Dynkin Lie Lie paper 1 0 Introduction 3 I ( ) Lie Dynkin 4 1 ( ) Lie 4 1.1 Lie ( )................................ 4 1.2 Killing form...........................................

More information

16 B

16 B 16 B (1) 3 (2) (3) 5 ( ) 3 : 2 3 : 3 : () 3 19 ( ) 2 ax 2 + bx + c = 0 (a 0) x = b ± b 2 4ac 2a 3, 4 5 1824 5 Contents 1. 1 2. 7 3. 13 4. 18 5. 22 6. 25 7. 27 8. 31 9. 37 10. 46 11. 50 12. 56 i 1 1. 1.1..

More information

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π . 4cm 6 cm 4cm cm 8 cm λ()=a [kg/m] A 4cm A 4cm cm h h Y a G.38h a b () y = h.38h G b h X () S() = π() a,b, h,π V = ρ M = ρv G = M h S() 3 d a,b, h 4 G = 5 h a b a b = 6 ω() s v m θ() m v () θ() ω() dθ()

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

p-sylow :

p-sylow : p-sylow :15114075 30 2 20 1 2 1.1................................... 2 1.2.................................. 2 1.3.................................. 3 2 3 2.1................................... 3 2.2................................

More information

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,. 24(2012) (1 C106) 4 11 (2 C206) 4 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 (). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5... 6.. 7.,,. 8.,. 1. (75%)

More information

Z[i] Z[i] π 4,1 (x) π 4,3 (x) 1 x (x ) 2 log x π m,a (x) 1 x ϕ(m) log x 1.1 ( ). π(x) x (a, m) = 1 π m,a (x) x modm a 1 π m,a (x) 1 ϕ(m) π(x)

Z[i] Z[i] π 4,1 (x) π 4,3 (x) 1 x (x ) 2 log x π m,a (x) 1 x ϕ(m) log x 1.1 ( ). π(x) x (a, m) = 1 π m,a (x) x modm a 1 π m,a (x) 1 ϕ(m) π(x) 3 3 22 Z[i] Z[i] π 4, (x) π 4,3 (x) x (x ) 2 log x π m,a (x) x ϕ(m) log x. ( ). π(x) x (a, m) = π m,a (x) x modm a π m,a (x) ϕ(m) π(x) ϕ(m) x log x ϕ(m) m f(x) g(x) (x α) lim f(x)/g(x) = x α mod m (a,

More information

?

? 240-8501 79-2 Email: nakamoto@ynu.ac.jp 1 3 1.1...................................... 3 1.2?................................. 6 1.3..................................... 8 1.4.......................................

More information

2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a

More information

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k 63 3 Section 3.1 g 3.1 3.1: : 64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () 3 9.8 m/s 2 3.2 3.2: : a) b) 5 15 4 1 1. 1 3 14. 1 3 kg/m 3 2 3.3 1 3 5.8 1 3 kg/m 3 3 2.65 1 3 kg/m 3 4 6 m 3.1. 65 5

More information

t χ 2 F Q t χ 2 F 1 2 µ, σ 2 N(µ, σ 2 ) f(x µ, σ 2 ) = 1 ( exp (x ) µ)2 2πσ 2 2σ 2 0, N(0, 1) (100 α) z(α) t χ 2 *1 2.1 t (i)x N(µ, σ 2 ) x µ σ N(0, 1

t χ 2 F Q t χ 2 F 1 2 µ, σ 2 N(µ, σ 2 ) f(x µ, σ 2 ) = 1 ( exp (x ) µ)2 2πσ 2 2σ 2 0, N(0, 1) (100 α) z(α) t χ 2 *1 2.1 t (i)x N(µ, σ 2 ) x µ σ N(0, 1 t χ F Q t χ F µ, σ N(µ, σ ) f(x µ, σ ) = ( exp (x ) µ) πσ σ 0, N(0, ) (00 α) z(α) t χ *. t (i)x N(µ, σ ) x µ σ N(0, ) (ii)x,, x N(µ, σ ) x = x+ +x N(µ, σ ) (iii) (i),(ii) z = x µ N(0, ) σ N(0, ) ( 9 97.

More information

.5.1. G K O E, O E T, G K Aut OE (T ) (T, ρ). ρ, (T, ρ) T. Aut OE (T ), En OE (F ) p..5.. G K E, E V, G K GL E (V ) (V, ρ). ρ, (V, ρ) V. GL E (V ), En

.5.1. G K O E, O E T, G K Aut OE (T ) (T, ρ). ρ, (T, ρ) T. Aut OE (T ), En OE (F ) p..5.. G K E, E V, G K GL E (V ) (V, ρ). ρ, (V, ρ) V. GL E (V ), En p 1. 1.1., 01 8 3, 57,,.. 1.., Gal(Q p /Q p ), 1. Wach,,. 1.3. Part I,,. Part II, Part III. 1.4.., Paé. Part 1. p.. p p.1. p Q p p (Q p p )... E Q p, E p Z p E, O E. O E E. E Q p, O E. v p : E Q Q E, v

More information

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j 6 6.. [, b] [, d] ij P ij ξ ij, η ij f Sf,, {P ij } Sf,, {P ij } k m i j m fξ ij, η ij i i j j i j i m i j k i i j j m i i j j k i i j j kb d {P ij } lim Sf,, {P ij} kb d f, k [, b] [, d] f, d kb d 6..

More information

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,.

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,. (1 C205) 4 10 (2 C206) 4 11 (2 B202) 4 12 25(2013) http://www.math.is.tohoku.ac.jp/~obata,.,,,..,,. 1. 2. 3. 4. 5. 6. 7. 8. 1., 2007 ( ).,. 2. P. G., 1995. 3. J. C., 1988. 1... 2.,,. ii 3.,. 4. F. ( ),..

More information

1 Slodowy 005 3 9 3 1 ADE ADE (0) ADE (1) SL(, C), R 3 (), (3) ADE, II 1 (4) SL(, Z)- (5) F 4, B, M McKay E 6, E 7, E 8 4 A n 5 5 5... 5 5 5 D n 5 5 5... 5 5 5 E 6 5 5 5 5 5 5 E 7 5 5 5 5 5 5 5 E 8 5

More information

Z: Q: R: C:

Z: Q: R: C: 0 Z: Q: R: C: 3 4 4 4................................ 4 4.................................. 7 5 3 5...................... 3 5......................... 40 5.3 snz) z)........................... 4 6 46 x

More information

平成 19 年度 ( 第 29 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 19 ~8 年月 72 月日開催 30 日 ) R = T, Fermat Wiles, Taylor-Wiles R = T.,,.,. 1. Fermat Fermat,. Fermat, 17

平成 19 年度 ( 第 29 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 19 ~8 年月 72 月日開催 30 日 ) R = T, Fermat Wiles, Taylor-Wiles R = T.,,.,. 1. Fermat Fermat,. Fermat, 17 R = T, Fermat Wiles, Taylor-Wiles R = T.,,.,. 1. Fermat Fermat,. Fermat, 17, 400.. Descartes ( ) Corneille ( ), Milton ( ), Velázquez ( ), Rembrandt van Rijn ( ),,,. Fermat, Fermat, Fermat, 1995 Wiles

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s [ ]. lim e 3 IC ) s49). y = e + ) ) y = / + ).3 d 4 ) e sin d 3) sin d ) s49) s493).4 z = y z z y s494).5 + y = 4 =.6 s495) dy = 3e ) d dy d = y s496).7 lim ) lim e s49).8 y = e sin ) y = sin e 3) y =

More information

直交座標系の回転

直交座標系の回転 b T.Koama x l x, Lx i ij j j xi i i i, x L T L L, L ± x L T xax axx, ( a a ) i, j ij i j ij ji λ λ + λ + + λ i i i x L T T T x ( L) L T xax T ( T L T ) A( L) T ( LAL T ) T ( L AL) λ ii L AL Λ λi i axx

More information

0. I II I II (1) linear type: GL( ), Sp( ), O( ), (2) loop type: loop current Kac-Moody affine, hyperbolic (3) diffeo t

0. I II I II (1) linear type: GL( ), Sp( ), O( ), (2) loop type: loop current Kac-Moody affine, hyperbolic (3) diffeo t e-mail: koyama@math.keio.ac.jp 0. I II I II (1) linear type: GL( ), Sp( ), O( ), (2) loop type: loop current Kac-Moody affine, hyperbolic (3) diffeo type: diffeo universal Teichmuller modular I. I-. Weyl

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

( ),, ( [Ka93b],[FK06]).,. p Galois L, Langlands p p Galois (, ) p., Breuil, Colmez([Co10]), Q p Galois G Qp 2 p ( ) GL 2 (Q p ) p Banach ( ) (GL 2 (Q

( ),, ( [Ka93b],[FK06]).,. p Galois L, Langlands p p Galois (, ) p., Breuil, Colmez([Co10]), Q p Galois G Qp 2 p ( ) GL 2 (Q p ) p Banach ( ) (GL 2 (Q 2017 : msjmeeting-2017sep-00f006 p Langlands ( ) 1. Q, Q p Q Galois G Q p (p Galois ). p Galois ( p Galois ), L Selmer Tate-Shafarevich, Galois. Dirichlet ( Dedekind s = 0 ) Birch-Swinnerton-Dyer ( L s

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information

2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

i

i 14 i ii iii iv v vi 14 13 86 13 12 28 14 16 14 15 31 (1) 13 12 28 20 (2) (3) 2 (4) (5) 14 14 50 48 3 11 11 22 14 15 10 14 20 21 20 (1) 14 (2) 14 4 (3) (4) (5) 12 12 (6) 14 15 5 6 7 8 9 10 7

More information

(1) (2) (3) (4) 1

(1) (2) (3) (4) 1 8 3 4 3.................................... 3........................ 6.3 B [, ].......................... 8.4........................... 9........................................... 9.................................

More information

* n x 11,, x 1n N(µ 1, σ 2 ) x 21,, x 2n N(µ 2, σ 2 ) H 0 µ 1 = µ 2 (= µ ) H 1 µ 1 µ 2 H 0, H 1 *2 σ 2 σ 2 0, σ 2 1 *1 *2 H 0 H

* n x 11,, x 1n N(µ 1, σ 2 ) x 21,, x 2n N(µ 2, σ 2 ) H 0 µ 1 = µ 2 (= µ ) H 1 µ 1 µ 2 H 0, H 1 *2 σ 2 σ 2 0, σ 2 1 *1 *2 H 0 H 1 1 1.1 *1 1. 1.3.1 n x 11,, x 1n Nµ 1, σ x 1,, x n Nµ, σ H 0 µ 1 = µ = µ H 1 µ 1 µ H 0, H 1 * σ σ 0, σ 1 *1 * H 0 H 0, H 1 H 1 1 H 0 µ, σ 0 H 1 µ 1, µ, σ 1 L 0 µ, σ x L 1 µ 1, µ, σ x x H 0 L 0 µ, σ 0

More information

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C 8 ( ) 8 5 4 I II III A B C( ),,, 5 I II A B ( ),, I II A B (8 ) 6 8 I II III A B C(8 ) n ( + x) n () n C + n C + + n C n = 7 n () 7 9 C : y = x x A(, 6) () A C () C P AP Q () () () 4 A(,, ) B(,, ) C(,,

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

重力方向に基づくコントローラの向き決定方法

重力方向に基づくコントローラの向き決定方法 ( ) 2/Sep 09 1 ( ) ( ) 3 2 X w, Y w, Z w +X w = +Y w = +Z w = 1 X c, Y c, Z c X c, Y c, Z c X w, Y w, Z w Y c Z c X c 1: X c, Y c, Z c Kentaro Yamaguchi@bandainamcogames.co.jp 1 M M v 0, v 1, v 2 v 0 v

More information

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K 2 2 T c µ T c 1 1.1 1911 Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 1 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K τ 4.2K σ 58 213 email:takada@issp.u-tokyo.ac.jp 1933 Meissner Ochsenfeld λ = 1 5 cm B = χ B =

More information

ii 3.,. 4. F. (), ,,. 8.,. 1. (75% ) (25% ) =9 7, =9 8 (. ). 1.,, (). 3.,. 1. ( ).,.,.,.,.,. ( ) (1 2 )., ( ), 0. 2., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75% ) (25% ) =9 7, =9 8 (. ). 1.,, (). 3.,. 1. ( ).,.,.,.,.,. ( ) (1 2 )., ( ), 0. 2., 1., 0,. 23(2011) (1 C104) 5 11 (2 C206) 5 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 ( ). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5.. 6.. 7.,,. 8.,. 1. (75%

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

V 0 = + r pv (H) + qv (T ) = + r ps (H) + qs (T ) = S 0 X n+ (T ) = n S n+ (T ) + ( + r)(x n n S n ) = ( + r)x n + n (d r)s n = ( + r)v n + V n+(h) V

V 0 = + r pv (H) + qv (T ) = + r ps (H) + qs (T ) = S 0 X n+ (T ) = n S n+ (T ) + ( + r)(x n n S n ) = ( + r)x n + n (d r)s n = ( + r)v n + V n+(h) V I (..2) (0 < d < + r < u) X 0, X X = 0 S + ( + r)(x 0 0 S 0 ) () X 0 = 0, P (X 0) =, P (X > 0) > 0 0 H, T () X 0 = 0, X (H) = 0 us 0 ( + r) 0 S 0 = 0 S 0 (u r) X (T ) = 0 ds 0 ( + r) 0 S 0 = 0 S 0 (d r)

More information

S K(S) = T K(T ) T S K n (1.1) n {}}{ n K n (1.1) 0 K 0 0 K Q p K Z/pZ L K (1) L K L K (2) K L L K [L : K] 1.1.

S K(S) = T K(T ) T S K n (1.1) n {}}{ n K n (1.1) 0 K 0 0 K Q p K Z/pZ L K (1) L K L K (2) K L L K [L : K] 1.1. () 1.1.. 1. 1.1. (1) L K (i) 0 K 1 K (ii) x, y K x + y K, x y K (iii) x, y K xy K (iv) x K \ {0} x 1 K K L L K ( 0 L 1 L ) L K L/K (2) K M L M K L 1.1. C C 1.2. R K = {a + b 3 i a, b Q} Q( 2, 3) = Q( 2

More information

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1 1 I 1.1 ± e = = - =1.602 10 19 C C MKA [m], [Kg] [s] [A] 1C 1A 1 MKA 1C 1C +q q +q q 1 1.1 r 1,2 q 1, q 2 r 12 2 q 1, q 2 2 F 12 = k q 1q 2 r 12 2 (1.1) k 2 k 2 ( r 1 r 2 ) ( r 2 r 1 ) q 1 q 2 (q 1 q 2

More information

2

2 III ( Dirac ) ( ) ( ) 2001. 9.22 2 1 2 1.1... 3 1.2... 3 1.3 G P... 5 2 5 2.1... 6 2.2... 6 2.3 G P... 7 2.4... 7 3 8 3.1... 8 3.2... 9 3.3... 10 3.4... 11 3.5... 12 4 Dirac 13 4.1 Spin... 13 4.2 Spin

More information

第1部 一般的コメント

第1部 一般的コメント (( 2000 11 24 2003 12 31 3122 94 2332 508 26 a () () i ii iii iv (i) (ii) (i) (ii) (iii) (iv) (a) (b)(c)(d) a) / (i) (ii) (iii) (iv) 1996 7 1996 12

More information

u Θ u u u ( λ + ) v Θ v v v ( λ + ) (.) Θ ( λ + ) (.) u + + v (.),, S ( λ + ) uv,, S uv, SH (.8) (.8) S S (.9),

u Θ u u u ( λ + ) v Θ v v v ( λ + ) (.) Θ ( λ + ) (.) u + + v (.),, S ( λ + ) uv,, S uv, SH (.8) (.8) S S (.9), ML rgr ML ML ML (,, ) σ τ τ u + + τ σ τ v + + τ τ σ + + (.) uv,,,, σ, σ, σ, τ, τ, τ t (Hook) σ λθ + ε, τ γ σ λθ + ε, τ γ σ λθ + ε, τ γ λ, E ν ν λ E, E ( + ν)( ν) ( + ν) Θ Θ ε + ε + ε (.) ε, ε, ε, γ, γ,

More information

newmain.dvi

newmain.dvi 数論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/008142 このサンプルページの内容は, 第 2 版 1 刷発行当時のものです. Daniel DUVERNEY: THÉORIE DES NOMBRES c Dunod, Paris, 1998, This book is published

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

表1票4.qx4

表1票4.qx4 iii iv v 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 22 23 10 11 24 25 26 27 10 56 28 11 29 30 12 13 14 15 16 17 18 19 2010 2111 22 23 2412 2513 14 31 17 32 18 33 19 34 20 35 21 36 24 37 25 38 2614

More information

all.dvi

all.dvi 72 9 Hooke,,,. Hooke. 9.1 Hooke 1 Hooke. 1, 1 Hooke. σ, ε, Young. σ ε (9.1), Young. τ γ G τ Gγ (9.2) X 1, X 2. Poisson, Poisson ν. ν ε 22 (9.) ε 11 F F X 2 X 1 9.1: Poisson 9.1. Hooke 7 Young Poisson G

More information

1 G K C 1.1. G K V ρ : G GL(V ) (ρ, V ) G V 1.2. G 2 (ρ, V ), (τ, W ) 2 V, W T : V W τ g T = T ρ g ( g G) V ρ g T W τ g V T W 1.3. G (ρ, V ) V W ρ g W

1 G K C 1.1. G K V ρ : G GL(V ) (ρ, V ) G V 1.2. G 2 (ρ, V ), (τ, W ) 2 V, W T : V W τ g T = T ρ g ( g G) V ρ g T W τ g V T W 1.3. G (ρ, V ) V W ρ g W Naoya Enomoto 2002.9. paper 1 2 2 3 3 6 1 1 G K C 1.1. G K V ρ : G GL(V ) (ρ, V ) G V 1.2. G 2 (ρ, V ), (τ, W ) 2 V, W T : V W τ g T = T ρ g ( g G) V ρ g T W τ g V T W 1.3. G (ρ, V ) V W ρ g W W G- G W

More information

第1章 国民年金における無年金

第1章 国民年金における無年金 1 2 3 4 ILO ILO 5 i ii 6 7 8 9 10 ( ) 3 2 ( ) 3 2 2 2 11 20 60 12 1 2 3 4 5 6 7 8 9 10 11 12 13 13 14 15 16 17 14 15 8 16 2003 1 17 18 iii 19 iv 20 21 22 23 24 25 ,,, 26 27 28 29 30 (1) (2) (3) 31 1 20

More information

,2,4

,2,4 2005 12 2006 1,2,4 iii 1 Hilbert 14 1 1.............................................. 1 2............................................... 2 3............................................... 3 4.............................................

More information

untitled

untitled 1 ( 12 11 44 7 20 10 10 1 1 ( ( 2 10 46 11 10 10 5 8 3 2 6 9 47 2 3 48 4 2 2 ( 97 12 ) 97 12 -Spencer modulus moduli (modulus of elasticity) modulus (le) module modulus module 4 b θ a q φ p 1: 3 (le) module

More information

2 Riemann Im(s) > 0 ζ(s) s R(s) = 2 Riemann [Riemann]) ζ(s) ζ(2) = π2 6 *3 Kummer s = 2n, n N ζ( 2) = 2 2, ζ( 4) =.3 2 3, ζ( 6) = ζ( 8)

2 Riemann Im(s) > 0 ζ(s) s R(s) = 2 Riemann [Riemann]) ζ(s) ζ(2) = π2 6 *3 Kummer s = 2n, n N ζ( 2) = 2 2, ζ( 4) =.3 2 3, ζ( 6) = ζ( 8) (Florian Sprung) p 2 p * 9 3 p ζ Mazur Wiles 4 5 6 2 3 5 2006 http://www.icm2006.org/video/ eighth session [ ] Coates [Coates] 2 735 Euler n n 2 = p p 2 p 2 = π2 6 859 Riemann ζ(s) = n n s = p p s s ζ(s)

More information

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í Markov 2009 10 2 Markov 2009 10 2 1 / 25 1 (GA) 2 GA 3 4 Markov 2009 10 2 2 / 25 (GA) (GA) L ( 1) I := {0, 1} L f : I (0, ) M( 2) S := I M GA (GA) f (i) i I Markov 2009 10 2 3 / 25 (GA) ρ(i, j), i, j I

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d m v = mg + kv m v = mg k v v m v = mg + kv α = mg k v = α e rt + e rt m v = mg + kv v mg + kv = m v α + v = k m v (v α (v + α = k m ˆ ( v α ˆ αk v = m v + α ln v α v + α = αk m t + C v α v + α = e αk m

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

6.1 (P (P (P (P (P (P (, P (, P.

6.1 (P (P (P (P (P (P (, P (, P. (011 30 7 0 ( ( 3 ( 010 1 (P.3 1 1.1 (P.4.................. 1 1. (P.4............... 1 (P.15.1 (P.16................. (P.0............3 (P.18 3.4 (P.3............... 4 3 (P.9 4 3.1 (P.30........... 4 3.

More information

³ÎΨÏÀ

³ÎΨÏÀ 2017 12 12 Makoto Nakashima 2017 12 12 1 / 22 2.1. C, D π- C, D. A 1, A 2 C A 1 A 2 C A 3, A 4 D A 1 A 2 D Makoto Nakashima 2017 12 12 2 / 22 . (,, L p - ). Makoto Nakashima 2017 12 12 3 / 22 . (,, L p

More information

2000年度『数学展望 I』講義録

2000年度『数学展望 I』講義録 2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

I? 3 1 3 1.1?................................. 3 1.2?............................... 3 1.3!................................... 3 2 4 2.1........................................ 4 2.2.......................................

More information

20 15 14.6 15.3 14.9 15.7 16.0 15.7 13.4 14.5 13.7 14.2 10 10 13 16 19 22 1 70,000 60,000 50,000 40,000 30,000 20,000 10,000 0 2,500 59,862 56,384 2,000 42,662 44,211 40,639 37,323 1,500 33,408 34,472

More information

- 2 -

- 2 - - 2 - - 3 - (1) (2) (3) (1) - 4 - ~ - 5 - (2) - 6 - (1) (1) - 7 - - 8 - (i) (ii) (iii) (ii) (iii) (ii) 10 - 9 - (3) - 10 - (3) - 11 - - 12 - (1) - 13 - - 14 - (2) - 15 - - 16 - (3) - 17 - - 18 - (4) -

More information

2 1980 8 4 4 4 4 4 3 4 2 4 4 2 4 6 0 0 6 4 2 4 1 2 2 1 4 4 4 2 3 3 3 4 3 4 4 4 4 2 5 5 2 4 4 4 0 3 3 0 9 10 10 9 1 1

2 1980 8 4 4 4 4 4 3 4 2 4 4 2 4 6 0 0 6 4 2 4 1 2 2 1 4 4 4 2 3 3 3 4 3 4 4 4 4 2 5 5 2 4 4 4 0 3 3 0 9 10 10 9 1 1 1 1979 6 24 3 4 4 4 4 3 4 4 2 3 4 4 6 0 0 6 2 4 4 4 3 0 0 3 3 3 4 3 2 4 3? 4 3 4 3 4 4 4 4 3 3 4 4 4 4 2 1 1 2 15 4 4 15 0 1 2 1980 8 4 4 4 4 4 3 4 2 4 4 2 4 6 0 0 6 4 2 4 1 2 2 1 4 4 4 2 3 3 3 4 3 4 4

More information

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3 1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A 2 1 2 1 2 3 α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3 4 P, Q R n = {(x 1, x 2,, x n ) ; x 1, x 2,, x n R}

More information

1 (1) (2)

1 (1) (2) 1 2 (1) (2) (3) 3-78 - 1 (1) (2) - 79 - i) ii) iii) (3) (4) (5) (6) - 80 - (7) (8) (9) (10) 2 (1) (2) (3) (4) i) - 81 - ii) (a) (b) 3 (1) (2) - 82 - - 83 - - 84 - - 85 - - 86 - (1) (2) (3) (4) (5) (6)

More information

36 3 D f(z) D z f(z) z Taylor z D C f(z) z C C f (z) C f(z) f (z) f(z) D C D D z C C 3.: f(z) 3. f (z) f 2 (z) D D D D D f (z) f 2 (z) D D f (z) f 2 (

36 3 D f(z) D z f(z) z Taylor z D C f(z) z C C f (z) C f(z) f (z) f(z) D C D D z C C 3.: f(z) 3. f (z) f 2 (z) D D D D D f (z) f 2 (z) D D f (z) f 2 ( 3 3. D f(z) D D D D D D D D f(z) D f (z) f (z) f(z) D (i) (ii) (iii) f(z) = ( ) n z n = z + z 2 z 3 + n= z < z < z > f (z) = e t(+z) dt Re z> Re z> [ ] f (z) = e t(+z) = (Rez> ) +z +z t= z < f(z) Taylor

More information