○松本委員
|
|
|
- らむ ふじがわ
- 7 years ago
- Views:
Transcription
1 CIRJE-J CIRJE hp://
2 Credi Risk Modeling Approaches
3 Absrac This aricle originaes from a speech given by he auhor in he seminar organized by he Securiy Analyss Associaion of Japan (SAAJ) on Sepember fifh of 2003 o commemorae he founding of he Cerified Inernaional Invesmen Analys (CIIA) qualificaion. In he firs half, I give a fairly comprehensive, non-quaniaive summary of he recen developmens of credi risk modeling approaches and echniques. In he laer half, I illusrae a new converible-bond (CB) pricing model ha we developed using he reduced-form approach o handle he credi-risk componen embedded in converible bonds. I also presen some resuls of applying our model and, for comparison, a srucural model, o Japanese CB markes. 1
4
5 CIIA 2 Journal of Fixed Income CIIA 1 1. (1) Srucural Approach 1974 Meron [1974] 1980 KMV Moody s KMV 1 3
6 4 T T Meron [1974] T 1 T T 1 (2) KMV
7 1 T (3) KMV D T 1 T D A T D µ γ γ γ σ A T survival probabiliy (1) pt (, ) 5
8 A T A T D 2 (1) () ( ut ) pt (, ) = (, ) (1) X + m( T ) ut (, ) = T log( A D) X = σ 2 σ m = µ γ σ ut (, ) u σ X disance o defaul 2 A D σ σ A T 6
9 T (4) D defaul boundary D A D T (2)D (2) { τ τ } pt (, ) = Pr > T > X + m( T ) 2mX X ( ) + m T = e T T (2) (Forward Defaul Rae) f(, T) T T + (3) 0 f(, T ) (3) pt (, ) T { τ τ } Pr < T + T (, ) p(, T + ) p T = pt (, ) pt (, ) pt (, ) f(, T) T (3) Duffie-Singleon[2003] 7
10 3 3 A A Zhou [2001] Duffie and Lando [2001] 8
11 (5) 4 A T D D 4 D D 0 D 0 D 0 D (4) ( d 1 ) D ( ) ( ) ( ) ( ) γ T r T = Ae d De d (4) γ ( T ) r( T ) log Ae De 1 d1 = + σ T σ T 2 d = d σ T (5) = A (5) 9
12 (1) pt (, ) (4) ( d 1 ) T (4)d 1 (1) ut (, ) (1) µ (4) r µ (4) µ r 2 10
13 2 (Capial Asse Pricing Model) 11
14 λ λ * 2 λ λ * λ λ * λ Moody s-kmv R&I λ * CDS Credi Defaul Swap λ λ * λ λ * 2 λ * λ λ * λ λ * λ Moody s-kmv λ * λ * 12
15 2. (1) Reduced Form Approach Defaul Inensiy Modeling Approach (2) N () N(0) 0 N () couning process N () 3 1 (independen incremens) 2 (saionary incremens) 3 Pr ( N( ) = 1 ) = λ + o( ), Pr( N( ) > 1) = o( ) (6) λ 1 13
16 Pr( N( ) = 0) = 1 λ + o( ) (7) λ inensiydefaul inensiy (1) (3) 5 5 λ Defaul 1 λ λ Defaul 1 λ λ Defaul 1 λ 2 3 λ N () τ 1 n τ n (3) N () = 1τ 1 τ 1 g() λexp ( λ), for 0 = > (8) negaive exponenial disribuion 14
17 λ λ λe d = e (9) λ 1 ( λe ) d = (10) 0 λ (9) exp( λ) τ 1 1 λ λ λ = λ = exp( 0.04) = λ { λ(): } T pt (, ) pt (, ) = E e T λ() sds (11) (4) { λ(): } Affine Inensiy (12) ( ) dλ() = k θ λ() d+ JdN() (12) Mean-Revering Inensiy 6 λ() 15
18 6 2 CIR Cox, Ingersoll, and Ross λ() ( ) dλ() = k θ λ() d+ σ λ() dw() (13) Cox-Ingersoll-Ross[1985] CIR 7 16
19 7 ( = 200bp, =0.25, (0)= ) θ κ λ θ (5) 3 8 λ() λ 5 8 1, 2, 3 17
20 8 1 e λ 1 Defaul e λ 1 1 e λ 2 Defaul e λ 2 1 e λ 3 Defaul e λ exp( λ ) T i λ() λ *( ) { λ *( ): 0} { r (): 0} T d 0 (, T) d0(, T) = E e [ ( ) *( )] T r s +λ s ds (14) δ (, T) δ (, T) = E e T r( s) ds (15) 18
21 T 1 1 (15) (14)(15) risk-adjused discoun rae R () (14) R () = r () + λ *() (16) d0(, T) = E e T R( s) ds (17) { r (): 0} { λ *( ): 0} (14) d (, T 0 ) T T r( s) ds λ*( s ) ds = E e E e = δ (, T) p*(, T) (18) p*(, T) face value (14)d 0 (, T) 19
22 100 (17) R () L*( ) R () = r () + λ *() L*() (19) 2 2 (6) 9 20
23 9 3. (1) Takahashi-Kobayashi-Nakagawa[2001] 21
24 1 (equiy risk) λ *( ) λ *( )
25 * λ 0 S (16) L*( ) = 1 23
26 { [ ] λ [ ]} ds() = r() d S(), + * S(), S() d + σs() dw () (20) () S [ (),] r () σ d S (20) λ *[ S ( ), ] (2) (20) F 1 a X { } X = max as( ), F (21) (19) R () R () R () S () V[ S(), ] V[ S ] (), as() (22) 24
27 cp() [ (),] max { cp(), as() } V S (23) (23) pp() [ ] V S(), pp() (24) σ 6 LIBOR r () 11 (calibrae) 25
28 Implied inensiy funcion (credi spread sensiiviy) 0.15 Inensiy bps 200 bps 400 bps (credi spread) bps Sock price (3)
29 Credi spread sensiiviy CB price From he upper line, credi spreads are 50 bps 100 bps 150 bps 200 bps 250 bps 300 bps Sock price CB price year 3 year 4 year 5 year Sock price (4) defaul boundary) D 14 27
30 14 Implied defaul boundary (credi spread sensiiviy) sock price credi spread 15(a)15(b) 1, (a) 110 Inensiy m odel CB pri bps 100 bps 200 bps 400 bps sock price 28
31 15(b) 110 Firs-passage model 90 CB price bps 100 bps 200 bps 400 bps sock price CB price Volailiy sensiiviy (HV=0.4969) volailiy Inensiy model Firs-passage model Marke price 29
32 Black F., and M. Scholes [1973], The Pricing of Opions and Corporae Liabiliies, Journal of Poliical Economy, 81, Cox, J.C., J. Ingersoll, and S. Ross [1985], A Theory of he Term Srucure of Ineres Raes, Economerica, 53, Duffie, D., and D. Lando [2001], Term Srucures of Credi Spreads wih Incomplee Accouning Informaion, Economerica, 69, Duffie, D, and K. J. Singleon [2003], Credi Risk: Pricing, Measuremen and Managemen, Princeon Universiy Press. Meron, R. [1974], On he Pricing of Corporae Deb: The Risk Srucure of Ineres Raes, Journal of Finance, 29, Takahashi, A., T. Kobayashi, and N. Nakagawa [2001], Pricing Converible Bonds wih Defaul Risk, Journal of Fixed Income, 11, Zhou, C., [2001], The Term Srucure of Credi Spreads wih Jump Risk, Journal of Banking and Finance, 25,
デフォルト相関係数のインプライド推計( )
,,,.,.,.,,.,,.,,.,,. :,, OU, SUR,.,.,,.,.., 62 1, BIS,.,.,,,,.,,.,.,, [33],,,.,,.,,,,.,,.,,,.. 2,. 3,. 4,,. 5. 2,,.,. 2.1,.,,.,. Giesecke [10] dependen defaul.,,,, GDP,.,,.,...,,,.,.,.,,.,,. Giesecke [10],
固定資産の減損会計へのリアル・オプション・アプローチ
NPV NPV NPV join resource NPV 1 004, 6-7 005 4 1 ( ( 1)) 1 (3) 003 176-177 1999 10-104 IASC 1998, paras. B0, B35 probabiliy crierioneconomic crierion (1) NPV ne presen value mehod NPV () join resource
IMES DISCUSSION PAPER SERIES Discussion Paper No. 99-J- 9 -J-19 INSTITUTE FOR MONETARY AND ECONOMIC STUDIES BANK OF JAPAN
IMES DISCUSSION PAPER SERIES Discussion Paper No. 99-J- 9 -J-19 INSTITUTE FOR MONETARY AND ECONOMIC STUDIES BANK OF JAPAN 100-8630 03 IMES Discussion Paper Series 99-J- 9 -J-19 1999 6 * * [1999] *(E-mail:
LIBORマーケット・モデルのインプリメンテーションについて―本邦の金利派生商品データを用いた具体例を基に―
LIBOR LIBOR LIBOR E-mal: [email protected] LIBORLIBORLondon InerBank Offered Rae BGMBrace, Gaarek and Musela LIBOR LIBOR BlackBlack and Scholes LIBOR LIBORLIBOR LIBOR LIBOR LIBOR LIBOR Brace, Gaarek
財政赤字の経済分析:中長期的視点からの考察
000 364 645 (ax smoohing (Barro(979 Barro(979 (consumpion smoohing Hall(978 Campbell(987 Barro(979 Hall(978 Campbell(987 Campbell(987 B ( r B G T ( ( r E B G T Y T/Y r ( No Ponzi Game ( [ Ω ] Y ( lim (
βdxβ r a, < E e uγ r ha d E e r dx e r γd e r βdx 3.2 a = {a} γ = {γ} max E e r dx e r γd e r βdx, 2 s.. dx = qand + σndz, 1 E e r uγ ha d, 3 a arg maxã E e r uγ hã d. 4 3.3 γ = {γ : γ, γ} a = {a : a,
1 Nelson-Siegel Nelson and Siegel(1987) 3 Nelson-Siegel 3 Nelson-Siegel 2 3 Nelson-Siegel 2 Nelson-Siegel Litterman and Scheinkman(199
Nelson-Siegel Nelson-Siegel 1992 2007 15 1 Nelson and Siegel(1987) 2 FF VAR 1996 FF B) 1 Nelson-Siegel 15 90 1 Nelson and Siegel(1987) 3 Nelson-Siegel 3 Nelson-Siegel 2 3 Nelson-Siegel 2 Nelson-Siegel
土地税制の理論的・計量的分析
54 III 1971 1988 III 1971 m 2 16,000 1988 109,000 17 6.6 4.5 1974 197173 17) 197881 198687 17 1950 III ( m 2 ) () 1971 16,470 15.53 1972 21,550 30.84 1973 26,817 24.44 1974 24,973 6.88 1975 25,549 2.31
ACLI-EBC-CLHIA Interim Proposal _J_ June Final.PDF
/ ACLI-EBC-CLHIA 2 5800 2004 3 3 1 2004 3 55 7 ACLI EBC / CLHIA 3 3 20047 CTE 3 ACLI-EBC-CLHIA 3 CTE CTE CTE60 CTE 1) CTE(60) CTE(80) CTE(90) 2) 100 3) 8) 3 Mercer Oliver Wyman Actuarial Consulting ACLI-EBC-CLHIA
IMES DISCUSSION PAPER SERIES LIBOR Discussion Paper No J- -J-2 INSTITUTE FOR MONETARY AND ECONOMIC STUDIES BANK OF JAPAN
IES DISCUSSION PAPER SERIES IBOR Dscusso Paper No. 00-J- -J- INSTITUTE FOR ONETARY AND ECONOIC STUDIES BANK OF JAPAN 03-8660 30 IES Dscusso Paper Seres 00-J- 00 IBOR * IBOR IBOR IBOR JE classfcao: C5
「国債の金利推定モデルに関する研究会」報告書
: LG 19 7 26 2 LG Quadratic Gaussian 1 30 30 3 4 2,,, E-mail: [email protected], E-mail: [email protected] 1 L G 2 1 L G r L t),r G t) L r L t) G r G t) r L t) h G t) =r G t) r L t) r L t)
all.dvi
38 5 Cauchy.,,,,., σ.,, 3,,. 5.1 Cauchy (a) (b) (a) (b) 5.1: 5.1. Cauchy 39 F Q Newton F F F Q F Q 5.2: n n ds df n ( 5.1). df n n df(n) df n, t n. t n = df n (5.1) ds 40 5 Cauchy t l n mds df n 5.3: t
SekineXu
1 19981999 1 1 1 1997 A BBB BBB BB BB bid and ask bid and ask bid and ask 2 1997 97 98 2001 Saring and Warga(1989), Amihud and Mendelson(1991), Warga(1992), Daves and Ehrhardt(1993), Kamara(1994), Elton
(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0
1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45
銀行手数料ビジネスの動向と経営安定性
* [email protected] ** [email protected] No.06-J-22 2006 12 103-8660 30 * ** * 2006 12 1990 2001 2005 2001 * BIS (Email: [email protected]) (Email: [email protected]) 1
3
00D8103005L 004 3 3 1... 1....1.......4..1...4.....5 3... 7 3.1...7 3....8 3.3...9 3.3.1...9 3.3.... 11 3.4...13 3.4.1...13 3.4....17 4... 4.1 NEEDS Financial QUEST... 4....5 4.3...30 4.4...31 4.5...34
10:30 12:00 P.G. vs vs vs 2
1 10:30 12:00 P.G. vs vs vs 2 LOGIT PROBIT TOBIT mean median mode CV 3 4 5 0.5 1000 6 45 7 P(A B) = P(A) + P(B) - P(A B) P(B A)=P(A B)/P(A) P(A B)=P(B A) P(A) P(A B) P(A) P(B A) P(B) P(A B) P(A) P(B) P(B
y = x x R = 0. 9, R = σ $ = y x w = x y x x w = x y α ε = + β + x x x y α ε = + β + γ x + x x x x' = / x y' = y/ x y' =
y x = α + β + ε =,, ε V( ε) = E( ε ) = σ α $ $ β w ( 0) σ = w σ σ y α x ε = + β + w w w w ε / w ( w y x α β ) = α$ $ W = yw βwxw $β = W ( W) ( W)( W) w x x w x x y y = = x W y W x y x y xw = y W = w w
Vol. 3 No (Mar. 2010) An Option Valuation Model Based on an Asset Pricing Model Incorporating Investors Beliefs Kentaro Tanaka, 1 Koich
Vol. 3 No. 2 51 64 (Mar. 2010 1 1 1 An Option Valuation Model Based on an Asset Pricing Model Incorporating Investors Beliefs Kentaro Tanaka, 1 Koichi Miyazaki 1 and Koji Nishiki 1 Preceding researches
モンテカルロ・フィルタを用いた金融時系列分析
9 月 26 日 CARF セミナー 状態空間モデルを用いた金融 時系列分析 佐藤整尚 ( 大学共同利用機関法人 情報 システム研究機構統計数理研究所 データ科学研究系 准教授 ) はじめに 90 年代 : 統計科学の分野で金融データに対する応用が盛んになった :ARCH GARCH をはじめとするボラティリティモデルの推定 2000 年以降 : さまざまな商品が開発される 高頻度データの解析 債券価格のモデリング
202
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 DS =+α log (Spread )+ β DSRate +γlend +δ DEx DS t Spread t 1 DSRate t Lend t DEx DS DEx Spread DS
23_02.dvi
Vol. 2 No. 2 10 21 (Mar. 2009) 1 1 1 Effect of Overconfidencial Investor to Stock Market Behaviour Ryota Inaishi, 1 Fei Zhai 1 and Eisuke Kita 1 Recently, the behavioral finance theory has been interested
1 Jensen et al.[6] GRT S&P500 GRT RT GRT Kiriu and Hibiki[8] Jensen et al.[6] GRT 3 GRT Generalized Recovery Theorem (Jensen et al.[6])
Generalized Recovery Theorem Ross[11] Recovery Theorem(RT) RT forward looking Kiriu and Hibiki[8] Generalized Recovery Theorem(GRT) Jensen et al.[6] GRT RT Kiriu and Hibiki[8] 1 backward looking forward
医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.
医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987
LLG-R8.Nisus.pdf
d M d t = γ M H + α M d M d t M γ [ 1/ ( Oe sec) ] α γ γ = gµ B h g g µ B h / π γ g = γ = 1.76 10 [ 7 1/ ( Oe sec) ] α α = λ γ λ λ λ α γ α α H α = γ H ω ω H α α H K K H K / M 1 1 > 0 α 1 M > 0 γ α γ =
text.dvi
Abstract JP Morgan CreditMetrics (1) () (3) (4) 1 3 3 4 4 5 10 6 16 1 1 BIS 1 3 1 BIS 1 BIS 1 3 ALM (1) Value at Risk () (3) RAROC (Risk Ajusted Return On Capital) (4) 3 5 6 31 99% (= p ) ~x X Prf~x Xg
わが国企業による資金調達方法の選択問題
* [email protected] ** [email protected] *** [email protected] No.05-J-3 2005 3 103-8660 30 No.05-J-3 2005 3 1990 * [email protected] ** [email protected]
財政赤字の経済分析:中長期的視点からの考察
1998 1999 1998 1999 10 10 1999 30 (1982, 1996) (1997) (1977) (1990) (1996) (1997) (1996) Ihori, Doi, and Kondo (1999) (1982) (1984) (1987) (1993) (1997) (1998) CAPM 1980 (time inconsistency) Persson, Persson
mf.dvi
21 9 29 1 2 3....................................... 3 :......................... 3....................................... 4................................ 4..................................... 5................................
50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq
49 2 I II 2.1 3 e e = 1.602 10 19 A s (2.1 50 2 I SI MKSA 2.1.1 r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = 3 10 8 m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq F = k r
磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論
email: [email protected] May 14, 2009 Outline 1. 2. 3. 4. 5. 6. 2 / 262 Today s Lecture: Mode-mode Coupling Theory 100 / 262 Part I Effects of Non-linear Mode-Mode Coupling Effects of Non-linear
合併後の交付税について
(1) (2) 1 0.9 0.7 0.5 0.3 0.1 2 3 (1) (a), 4 (b) (a), (c) (a) 0.9 0.7 0.5 0.3 0.1 (b) (d),(e) (f) (g) (h) (a) (i) (g) (h) (j) (i) 5 (2) 6 (3) (A) (B) (A)+(B) n 1,000 1,000 2,000 n+1 970 970 1,940 3.0%
福岡大学人文論叢47-3
679 pp. 1 680 2 681 pp. 3 682 4 683 5 684 pp. 6 685 7 686 8 687 9 688 pp. b 10 689 11 690 12 691 13 692 pp. 14 693 15 694 a b 16 695 a b 17 696 a 18 697 B 19 698 A B B B A B B A A 20 699 pp. 21 700 pp.
液晶の物理1:連続体理論(弾性,粘性)
The Physics of Liquid Crystals P. G. de Gennes and J. Prost (Oxford University Press, 1993) Liquid crystals are beautiful and mysterious; I am fond of them for both reasons. My hope is that some readers
Venkatram and Wyngaard, Lectures on Air Pollution Modeling, m km 6.2 Stull, An Introduction to Boundary Layer Meteorology,
65 6 6.1 No.4 1982 1 1981 J. C. Kaimal 1993 1994 Turbulence and Diffusion in the Atmosphere : Lectures in Environmental Sciences, by A. K. Blackadar, Springer, 1998 An Introduction to Boundary Layer Meteorology,
LCR e ix LC AM m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x (k > 0) k x = x(t)
338 7 7.3 LCR 2.4.3 e ix LC AM 7.3.1 7.3.1.1 m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x k > 0 k 5.3.1.1 x = xt 7.3 339 m 2 x t 2 = k x 2 x t 2 = ω 2 0 x ω0 = k m ω 0 1.4.4.3 2 +α 14.9.3.1 5.3.2.1 2 x
カルマンフィルターによるベータ推定( )
β TOPIX 1 22 β β smoothness priors (the Capital Asset Pricing Model, CAPM) CAPM 1 β β β β smoothness priors :,,. E-mail: [email protected]., 104 1 TOPIX β Z i = β i Z m + α i (1) Z i Z m α i α i β i (the
SO(2)
TOP URL http://amonphys.web.fc2.com/ 1 12 3 12.1.................................. 3 12.2.......................... 4 12.3............................. 5 12.4 SO(2).................................. 6
s = 1.15 (s = 1.07), R = 0.786, R = 0.679, DW =.03 5 Y = 0.3 (0.095) (.708) X, R = 0.786, R = 0.679, s = 1.07, DW =.03, t û Y = 0.3 (3.163) + 0
7 DW 7.1 DW u 1, u,, u (DW ) u u 1 = u 1, u,, u + + + - - - - + + - - - + + u 1, u,, u + - + - + - + - + u 1, u,, u u 1, u,, u u +1 = u 1, u,, u Y = α + βx + u, u = ρu 1 + ɛ, H 0 : ρ = 0, H 1 : ρ 0 ɛ 1,
ALM
ALM 4 60025480 1 1.1 1.1.1 1.1.2 1.2 ALM 2. 2.11 2.1.1 2.1.2 2.2 2.3 3. 3.1 3.1.1 3.1.2 3.1.3 3.1.4 3.2 3.2.1 3.2.2 4. 4.1 4.1.1 4.1.2 4.1.3 4.2 4.2.1 4.2.2 4.2.3 5. 5.1 5.1.1 5.1.2 5.2 2 6. 6.1 6.2 6.1.1
QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1
QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1 (vierbein) QCD QCD 1 1: QCD QCD Γ ρ µν A µ R σ µνρ F µν g µν A µ Lagrangian gr TrFµν F µν No. Yes. Yes. No. No! Yes! [1] Nash & Sen [2] Riemann
(2004 ) 2 (A) (B) (C) 3 (1987) (1988) Shimono and Tachibanaki(1985) (2008) , % 2 (1999) (2005) 3 (2005) (2006) (2008)
,, 23 4 30 (i) (ii) (i) (ii) Negishi (1960) 2010 (2010) ( ) ( ) (2010) E-mail:[email protected] E-mail:[email protected] E-mail:[email protected] 1 1 16 (2004 ) 2 (A) (B) (C) 3 (1987)
,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.
9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,
Microsoft Word - 11問題表紙(選択).docx
A B A.70g/cm 3 B.74g/cm 3 B C 70at% %A C B at% 80at% %B 350 C γ δ y=00 x-y ρ l S ρ C p k C p ρ C p T ρ l t l S S ξ S t = ( k T ) ξ ( ) S = ( k T) ( ) t y ξ S ξ / t S v T T / t = v T / y 00 x v S dy dx
fiúŁÄ”s‘ê‡ÌŁª”U…−…X…N…v…„…~…A…•‡Ì ”s‘ê™´›ß…−…^†[…fiŠ‚ª›Âfl’«
2016/3/11 Realized Volatility RV 1 RV 1 Implied Volatility IV Volatility Risk Premium VRP 1 (Fama and French(1988) Campbell and Shiller(1988)) (Hodrick(1992)) (Lettau and Ludvigson (2001)) VRP (Bollerslev
Auerbach and Kotlikoff(1987) (1987) (1988) 4 (2004) 5 Diamond(1965) Auerbach and Kotlikoff(1987) 1 ( ) ,
,, 2010 8 24 2010 9 14 A B C A (B Negishi(1960) (C) ( 22 3 27 ) E-mail:[email protected] E-mail:[email protected] E-mail:[email protected] 1 1 1 2 3 Auerbach and Kotlikoff(1987) (1987)
ρ ( ) sgv + ρwgv γ sv + γ wv γ s + γ w e e γ ρ g s s γ s ( ) + γ w( ) Vs + V Vs + V + e + e + e γ γ sa γ e e n( ) + e γ γ s ( n) + γ wn γ s, γ w γ γ +
σ P σ () n σ () n σ P ) σ ( σ P σ σ σ + u V e m w ρ w gv V V s m s ρ s gv s ρ ( ) sgv + ρwgv γ sv + γ wv γ s + γ w e e γ ρ g s s γ s ( ) + γ w( ) Vs + V Vs + V + e + e + e γ γ sa γ e e n( ) + e γ γ s (
変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,
変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, z + dz) Q! (x + d x + u + du, y + dy + v + dv, z +
IPSJ SIG Technical Report Pitman-Yor 1 1 Pitman-Yor n-gram A proposal of the melody generation method using hierarchical pitman-yor language model Aki
Pitman-Yor Pitman-Yor n-gram A proposal of the melody generation method using hierarchical pitman-yor language model Akira Shirai and Tadahiro Taniguchi Although a lot of melody generation method has been
shuron.dvi
01M3065 1 4 1.1........................... 4 1.2........................ 5 1.3........................ 6 2 8 2.1.......................... 8 2.2....................... 9 3 13 3.1.............................
1. 2. (Rowthorn, 2014) / 39 1
,, 43 ( ) 2015 7 18 ( ) E-mail: [email protected] 1 / 39 1. 2. (Rowthorn, 2014) 3. 4. 5. 6. 7. 2 / 39 1 ( 1). ( 2). = +. 1. g. r. r > g ( 3).. 3 / 39 2 50% Figure I.1. Income inequality in the
IA [email protected] Last updated: January,......................................................................................................................................................................................
Part () () Γ Part ,
Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35
II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3
II (Percolation) 12 9 27 ( 3-4 ) 1 [ ] 2 [ ] 3 [ ] 4 [ ] 1992 5 [ ] G Grimmett Percolation Springer-Verlag New-York 1989 6 [ ] 3 1 3 p H 2 3 2 FKG BK Russo 2 p H = p T (=: p c ) 3 2 Kesten p c =1/2 ( )
untitled
Horioka Nakagawa and Oshima u ( c ) t+ 1 E β (1 + r ) 1 = t i+ 1 u ( c ) t 0 β c t y t uc ( t ) E () t r t c E β t ct γ ( + r ) 1 0 t+ 1 1 = t+ 1 ξ ct + β ct γ c t + 1 1+ r ) E β t + 1 t ct (1
.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T
NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977
K E N Z U 2012 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.2................................... 4 1.2.1..................................... 4 1.2.2.................................... 5................................
meiji_resume_1.PDF
β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E
早稲田大学現代政治経済研究所 ダブルトラック オークションの実験研究 宇都伸之早稲田大学上條良夫高知工科大学船木由喜彦早稲田大学 No.J1401 Working Paper Series Institute for Research in Contemporary Political and Ec
早稲田大学現代政治経済研究所 ダブルトラック オークションの実験研究 宇都伸之早稲田大学上條良夫高知工科大学船木由喜彦早稲田大学 No.J1401 Working Paper Series Institute for Research in Contemporary Political and Economic Affairs Waseda University 169-8050 Tokyo,Japan
