デフォルト相関係数のインプライド推計( )

Size: px
Start display at page:

Download "デフォルト相関係数のインプライド推計( )"

Transcription

1 ,,,.,.,.,,.,,.,,.,,. :,, OU, SUR,.,.,,.,.., 62

2 1, BIS,.,.,,,,.,,.,.,, [33],,,.,,.,,,,.,,.,,,.. 2,. 3,. 4,,. 5. 2,,.,. 2.1,.,,.,. Giesecke [10] dependen defaul.,,,, GDP,.,,.,...,,,.,.,.,,.,,. Giesecke [10], 1. 63

3 1 1-(1) (,, ) 1-(2) 1-(3) 2 ( ) 2-(1) 2-(2) 2-(3) 1:.,, 2. ( ) ( ) Meron [22] Duffie and Singleon [7] Jarrow and Turnbull [15] 2:.,..,,..,, ,,. 2.,,,.,.,.,. 2,., Meron [22].. 64

4 ,.,.,,.,.,,, (Gordy [13])., JP Morgan [16] CrediMerics T M,., Jarrow-Turnbull [15], Duffie-Singleon [7].., 1.,,.,..,.,,.,,.,.,,.,. Kusuoka [21], Jeanblanc and Rukowski [25], Collin-Dufresne, Goldsein and Hugonnier [4].,, (Duffie, Pan and Singleon [6]).,, OU. OU, Aonuma and Nakagawa [1],, [29].. 2.3, (Ω, F, P).,, F, (0 )., (0 < ).,. 1 {A} : A 1, 0, : (0 < ), T : ( T < ), X(, T ) : T, X 0 (, T ) : T, τ : (0 τ < ), δ :, L() :, r 0 () :. 1.,,. 65

5 N() = 1 {τ },. lim s N() = N( ).,. G : h. H : N(s) (0 s T ).,.,. F., F G H. X(, T ), {τ T }. τ.,. Duffie and Singleon [9].., 1,.,, P - h(). P[ < τ + F ] 1 {τ>} h() = lim 0 (1), > 0., h(). h(), h() 0 h(s)ds = Y () E [exp { H(, T )} F, τ > ] 1. 2 H(, T ) = T h(s)ds. H(, T ) T., P[τ > T F ] = 1 P[τ T F ], (Duffie[5]). [ { ] T P[τ > T F ] = 1 {τ>} E exp h(s)ds} G (2),., P, r 0 (). X 0 (, T ), r 0 (). [ { ] T X 0 (, T ) = Ẽ exp r 0 (s)ds} G (3), r 0 () 0, r 0 (s)ds =. (3) (2),, {τ 0 > }, {τ 0 > T } T 1, {τ 0 T }. τ 0, r 0 3. h 0 {τ 0 > T }, T P h 0 () = r 0 () (0 T ). H 0 (, T ) = T h 0 (s)ds.,., δ τ,., P.,. 2, Y () Y () lim s Y (s), Y () = 0 a.s. 3 ([32]). 66

6 X(, T ) = 1 {τ>} Ẽ [ 1 {τ>t } exp { H 0 (, T )} + 1 {τ T } δ τ exp { H 0 (, τ)} F ]. (4),. Duffie and Singleon [7], 1 δ, 3. RMV(recovery of marke value) δ = (1 L())X(, T ) RT(recovery of reasury) δ = (1 L())X 0 (, T ) RFV(recovery of face value) δ = (1 L()) L(). RMV, X(, T ) T,,. Duffie and Singleon [7]., Jarrow and Turnbull [15] RT., Jarrow and Turnbull [15]. (4) RT, L() = L, δ 1 L,,. { } X(, T ) = 1 {τ>} X 0 (, T ) δ + (1 δ)ẽ [exp { H(, T )} G ] (5) A., (, T ),. 3 (, T ) = 1 ( ) X(, T ) T log X 0 (, T ) = 1 ( ) T log δ + (1 δ)ẽ [exp { H(, T )} G ],,.,. 3.1,,..,,.,.,.,.,.,,. 3. (6) 3.2 1,. 1,, n. i (1 i n), h i (), τ i. {τ i T }.,., T,, 67

7 A. B (h A ()) (h B ()) ( ) ( ) ({τ A T }) ({τ B T }) ( ) ( ),. 3:. A B 2.,..,.,. {τ i > } (i = 1, 2,..., n), [ { ] n P[τ 1 > 1,, τ n > n F ] = E exp H i (, i )} G. (7) (7) A. Kijima [18], Kijima and Muromachi [19]., Kijima and Muromachi [20]. 3.3,. {τ i > } (i = 1, 2,..., n)., T i j (i j) 1 {τi T }, 1 {τj T }., 4. (7), ρ(1 {τi T }, 1 {τj T } F ). 1 {τi T } 1 {τj T }. i=1 Cov(1 {τi T }, 1 {τj T } F ) = E[1 {τi T }1 {τj T } F ] E[1 {τi T } F ] E[1 {τj T } F ] = P[τ i T, τ j T F ] P[τ i T F ] P[τ j T F ] (8), (7),. 4 Giesecke [10].,,,,,.,. 68

8 1: A B. (9), A B. ρ(1 {τa T }, 1 {τb T } F ) = {(1) ((1) + (2))((1) + (3))}/{((1) + (2))((3) + (4))((1) + (3))((2) + (4))} 1/2. (1) + (2) + (3) + (4) = 1. B A A P[τ A T, τ B T F ] (1) P[τ A T, τ B > T F ] (2) P[τ A T F ] (1)+(2) P[τ A > T, τ B T F ] (3) P[τ A > T, τ B > T F ] (4) P[τ A > T F ] (3)+(4) B P[τ B T F ] (1)+(3) P[τ B > T F ] (2)+(4) 1 (1)+(2)+(3)+(4) ρ(1 {τi T }, 1 {τj T } F ) = Cov(1 {τi T }, 1 {τj T } F ), (i j) (9) V ar(1 {τi T } F )V ar(1 {τj T } F ) 1., ρ(1 {τi T }, 1 {τj T } F ) = ρ(1 {τi>t }, 1 {τj>t } F ). = T,, 0. 4 Ornsein-Uhlenbeck,. OU,.,,,.,. 4.1 OU Vasicek,., OU,. h() = (h 1 (), h 2 (), h n ()) OU. 5 dh i () = (a i b i h i ())d + σ i dw i (), 0. (10), a i /b i = h i,. dh i () = b i (h i h i ())d + σ i dw i (), 0. (11), P h i h i (), b h i, σ i. W (), ρ. ρ ii = 1. ρ ji. dw i ()dw j () = ρ ij d (12) 5 OU,, h().,. OU., CIR. dh = b(h h())d + σh() c dw (), 0. h(0) 0, c = 1,,

9 β i () i, T W i () = W i () + P. β i (), φ i (). 0 β i (u)du, 0 T (13) β i () = a i φ i () σ i, 0 T, i = 0, 1,, n. (14), β i () = β i., W i ()., φ i () = φ i, P., φ i /b i = h i, dh i () = (φ i b i h i ())d + σ i d W i (), 0 T. (15) dh i () = b i ( h i h i ())d + σ i d W i (), 0 T. (16) P, h i h i ()., β i. β i = b i σ i (h i h i ), 0 T, i = 0, 1,, n. (17) i = 0, X 0 (, T ) Vasicek [26]. 4.2,,. h i (0 T ),. h i () = h i (0) exp{ b i } + h i (1 exp{ b i }) + σ i exp{ b i ( s)}dw i (s) (18), h i (). 0 E [h i ()] = h i (0) exp{ b i } + h i (1 exp{ b i }), (19) V [h i ()] = σ2 i 2b i (1 exp{ 2b i }) (20) E [h i ()] h i, h h().,. ( T h i (s)ds = h ) T i(u) (1 exp{ b i (T )}) + h i T exp { b i (T s)} ds b i [ T, µ i (, T ) = E µ i (, T ) = h i() b i = h i() b i (1 exp{ b i (T )}) + h i (1 exp{ b i (T )}) + h i 70 + σ T i b i (1 exp{ b i (T s)}) dw i (s) (21) ] h i (s)ds G. ( T T exp { b i (T s)} ds ( T 1 ) (1 exp{ b i (T )}) b i ) (22)

10 [ ] T, v i (, T ) = V i h i (s)ds G Io s Isomery,. ( v i (, T ) = E σ T 2 i (1 exp{ b i (T s)}) dw i (s)) b i G = σ2 i b 2 i = σ2 i b 2 i T (1 exp{ b i (T s)}) 2 ds ( T + 2 (1 exp{ b i (T )}) 1 ) (1 exp{ 2b i (T )}) b i 2b i (21), OU., [ (0 T ) P[τ i > T F ] = E exp{ ] T h i (s)ds} G. { P[τ i > T F ] = exp µ i (, T ) + v } i(, T ) 2,,. 4.3,.,. OU,,, v ij (, T ) = Cov ij [ T v ij (, T ) = σ i σ j T = ρ ij σ i σ j b i b j h i (s)ds, T ] h j (s)ds G. 1 (1 exp{ b i (T )}) 1 (1 exp{ b j (T )}) ρ ij ds b i b j ( T 1 exp{ b i(t )} 1 exp{ b j(t )} + 1 exp{ (b ) i + b j )(T )} b i b j b i + b j (25) v ii (, T ) = v i (, T ). (7),,. n P[τ 1 > T,... τ n > T F ] = exp µ i (, T ) + 1 n n v ij (, T ) (26) 2 i=1 i=1 j=1 Cov(1 {τi T }, 1 {τj T } F ) Cov(1 {τi>t }, 1 {τj>t } F ), (8) Cov(1 {τi T }, 1 {τj T } F ). { Cov(1 {τi T }, 1 {τj T } F ) = exp (µ i (, T ) + µ j (, T )) + v } i(, T ) + v j (, T ) (exp {v ij (, T )} 1). 2, V ar(1 {τi T } F ) = P[τ i T F ]P[τ i > T F ], (9),. (9),. (23) (24) ρ(1 {τi T }, 1 {τi T } F ) = exp {v ij (, T )} 1 (exp {vii (, T )} 1)(exp {v jj (, T )} 1) (27) 71

11 4.4 (11) OU h i ().,., h i (). 3. RT, δ i = (1 L i ())X 0 (). L i () = L i. h i. i (i = 1,..., n), ˆr(). Kijima [17], lim T i (, T ) = ˆr i () r 0 (), (6),(24),. ˆr i () r 0 () = (1 δ i )h i () (28) δ i.,,., h i ()., 6, ( ). h i () P., OU. OU, GMM,. h(),, GMM,.,., h() SUR GLS.,,., P h i (). h i ( + ) h i () = b i ( h i h i ()) + σ ϵ i (29), ϵ i (i = 1, 2,..., n) 0, E[ϵ i ϵ j ] = ρ ij (i j). h i0 = h i (), h i1 = h i ( + ),..., h ik = h i ( + k ),..., h ik = h i ( + K ). 1/250.,. h ik+1 h ik = b i ( h i h ik ) + σ i ϵik (i = 1, 2,..., n, k = 0, 1,..., K). (30), h i., h i h i (), h i h ik (k = 0,... K).. Y ik = b i Z ik + u ik (31) Y ik = h ik+1 h ik., Z ik = ( h i h ik ). u ik 0, σi 2.., h() SUR. Y i = Z i b i + u i (i = 1,..., n) E[u ik ] = 0 (i = 1,..., n, k = 0,..., K) E[u 2 ik ] = σ2 i (i = 1,..., n, k = 0,..., K) E[u ik u jk ] = σ i σ j ρ ij (i, j = 1,..., n, k = 0,..., K) E[u ik u jl ] = 0 (if k l) 6,,. (32) 72

12 Y i = (Y i1,... Y ik ), Z i = (Z i1,... Z ik ), u i = (u i1,... u ik ). Y i Y j (i, j = 1,..., N, i j)., GLS b i, σ i, ρ ij. P h, (9) P 7. β, h i. β,, (24). 5,., Bloomberg,.,,.. δ i = 0.5 (i = 1, 2,..., n)., β i = 0 (i = 0, 1,..., n)., ( ) 8., β = 0, P h() P h().,,,.,,., (McCulloch[23]). 5.1 (11) OU. Bloomberg ,,,,. 25., 4.., h(), h = , b = , σ = , h = , b = , σ = , ρ = ,, h = , b = , σ = , 2 ρ = , BB, h = , b = , σ = , A, h = , b = , σ = ,., BB b,, h()., 5. β = 0, P.,. 7, h. P h h (9),. 8,. 73

13 新日本石油株式会社 麒麟麦酒株式会社 ) ) ( S ( ムアミレプのトーレトッポス /10/23 001/11/23 001/12/23 002/1/23 002/2/23 002/3/23 002/4/23 002/5/23 002/6/23 002/7/23 002/8/23 002/9/23 002/10/23 002/11/23 002/12/23 003/1/23 003/2/23 003/3/23 003/4/23 003/5/23 003/6/23 003/7/23 003/8/23 003/9/ : h(), h = , b = , σ = , h = , b = , σ = , ρ = S() = ˆr() r 0 (), S(). 2: Bloomberg (h) (b) (σ) A BBB BB

14 35 ( % ) 30 全体 A 以上 BBB BB 以下 ) ] T 25 [τ P ( 率 20 確トルォフ15 デ ドイラ10 プンイ 期間 ( T ) ( 年 ) 5:. Bloomberg ,., h(0) h ,,.,. 5.2,,, ( ), 10,.,. 3., 4, ,, %, (5),.,,,.,,, ρ ij ρ(1 {τi T }, 1 {τi T } F ), B. 75

15 3: Bloomberg (h) (b) (σ) (P [τ 1]) :. Bloomberg

16 5:. Bloomberg :. Bloomberg

17 6,,,.,..,,.,,.,., OU,,.,.,,.., P GLS,, h., h,.. A (5), (5). RT, (L() = L), δ 1 L,,. X(, T ) = 1 {τ>} Ẽ [ exp { H 0 (, T )} { δ + (1 δ)1 {τ>t } } F ],. X(, T ) = 1 {τ>} Ẽ [ exp { H 0 (, T )} { } ] δ + (1 δ)1 {τ>t } F = 1 {τ>} X 0 (, T ) {δ + (1 δ)ẽ [ ] } 1 {τ>t } F { = 1 {τ>} X 0 (, T ) δ + (1 δ) P } [τ > T F ] { } = 1 {τ>} X 0 (, T ) δ + (1 δ)ẽ [exp { H(, T )} G ] (A1) (7), (7)., T G T, H, G T H, h i ()., {τ i > } (i = 1, 2,..., n),. P[τ i > T G T H ] = exp { H i (, T )} [31]. (0 T ). {τ i > } (i = 1, 2,..., n), P[τ i > T F ] = E [P [τ i > T G T H ] F ] = E [exp { H i (, T )} F ] 78

18 .,. P[τ 1 > 1,, τ n > n G T H ] = n P[τ i > i G T H ], T,,., Soyanov [24].,. {τ i > } (i = 1, 2,..., n), i=1 P[τ 1 > 1,, τ n > n F ] = E [P[τ 1 > 1,, τ n > n G T H ] F ] [ n ] = E P[τ i > i G T H ] F i=1 [ n ] = E exp { H i (, i )} F i=1 [ { ] n = E exp H i (, i )} F i=1 [ { ] n = E exp H i (, i )} G. (A2), (G T H ) (G H ) = F.,. exp { n i=1 H i(, i )} H. B. i=1 B(b i, b j, σ i, σ j,, T ) σ iσ j b i b j ( T 1 exp{ b i(t )} 1 exp{ b j(t )} + 1 exp{ (b ) i + b j )(T )} b i b j b i + b j, (25),. T 1 v ij (, T ) = σ i σ j (1 exp{ b i (T )}) 1 (1 exp{ b j (T )}) ρ ij ds b i b j ( σ i σ j = ρ ij T 1 exp{ b i(t )} 1 exp{ b j(t )} + 1 exp{ (b ) i + b j )(T )} b i b j b i b j b i + b j ρ ij B(b i, b j, σ i, σ j,, T ) v ii (, T ) = v i (, T )., ρ ij ρ ij., ρ(1 {τi T }, 1 {τi T } F ) = exp {ρ ijb(b i, b j, σ i, σ j,, T )} B(b i, b j, σ i, σ j,, T ) ρ ij (exp {vii (, T )} 1)(exp {v jj (, T )} 1) (B3), ρ ij, ρ ij., B(b i, b j, σ i, σ j,, T ) ρ ij = 1. ρ ij = 1.,,.,, ρ ij 1, ρ ij 1. 79

19 [1] Aonuma, K., and Nakagawa, H., Valuaion of Credi Defaul Swap and Parameer Esimaion for Vasicek-pe Hazard Rae Model., Working paper. [2] Basel Commiiee on Banking Supervision. (1999). Credi Risk Modelling: Curren Pracice and Applicaion. [3] Basel Commiiee on Banking Supervision. (2003). The New Basel Capial Accord, Third Consulaive Paper. [4] Collin-Dufresne,P., R.S.Goldsein, and J.Hugonnier. (2003) A general formula for valuing defaulable securiies. Working paper, CMU. [5] Duffie, D. (1998) Firs-o-Defaul Valuaion. Working paper, Sanford Universiy. [6] Duffie, D., J. Pan, and Singleon, K.. (2000) Transform Analysis and Asse Pricing for Affine Jump Diffusions. Economerica, 68, [7] Duffie, D., and Singleon, K. (1999). Modeling erm srucures of defaulable bonds. Review of Financial Sudies, 12, [8] Duffie, D., and Singleon, K. (1999). Simulaing credi correlaion., Workingpaper, GSB, Sanford Universiy. [9] Duffie, D., and Singleon, K. (2003). Credi Risk: Pricing, Managemen, and Measuremen (Princeon Series in Finance), Princeon Universiy Prress. [10] Giesecke, K. (2004). Credi risk modeling and valuaion: an inroducion in Credi Risk: Models and Managemen, 2, Edied by D. Shimko, Riskbooks, London. [11] Giesecke, K., and Weber, S. (2003). Cyclical correlaions, credi conagion, and porfolio losses. o appear in Journal of Banking and Finance. [12] Giesecke, K., and Weber, S. (2003). Correlaed defaul wih imcomplee informaion. o appear in Journal of Banking and Finance. [13] Gordy, M.B. (2003). A risk-facor model foundaion for raing-based bank capial rules. Journal of Financial Inermediaion, 12, [14] Jacobson, T., and Roszbach, K. (2003). Bank lending policy, credi scoring and value-a-risk. Journal of Banking and Finance, 27, [15] Jarrow, R.A., and Turnbull, S.M. (1995). Pricing derivaives on financial securiies subjec o credi risk. Journal of Finance, 50, [16] JP Morgan. (1997). CrediMerics Technical Documen. JP Morgan, New York. [17] Kijima, M. (1999). A gaussian erm srucure model of credi risk spreads and valuaion of yield-spread opions., Workingpaper, Tokyo Meropolian Universiy. [18] Kijima, M. (2000). Valuaion of a credi swap of he baske ype. Review of Derivaives Research, 4, [19] Kijima, M., and Muromachi,Y. (2000). Credi evens and he valuaion of credi derivaives of baske ype. Review of Derivaives Research, 4, [20] Kijima, M., and Muromachi,Y. (2000). Evaluaion of credi risk of a porfolio wih sochasic ineres rae and defaul processes. Journal of Risk, 3(1),5-36. [21] Kusuoka, S., A remark on defaul risk models. Advances in Mahemaical Economics 1, 69-82, 1999 [22] Meron, R. (1974). On he pricing of corporae deb: The risk srucure of ineres raes. Journal of Finance, 29,

20 [23] McCulloch, J.H. (1971) Measuring he erm srucure of ineres raes. Journal of Business, 44, [24] Soyanov, J. (1987). Counerexamples in Probabiliy. Wiley, New York. [25] M. Jeanblanc and Rukowski, M. (2000). Modeling defaul risk: Mahemaical ools. Universie d Evry and Warsaw Universiyof Technology. [26] Vasicek, Oldrich. (1977). An Equilibrium Characerizaion of he Term Srucure, Journal of Financial Economics, 5, [27],. (1999).,. [28]. (2004).,. [29],,. (2001).,. [30]. (2002).., 50(2), [31],, 2001 [32],, 1991 [33],,. (2003)... 81

○松本委員

○松本委員 CIRJE-J-100 2003 11 CIRJE hp://www.e.u-okyo.ac.jp/cirje/research/03research02dp_j.hml Credi Risk Modeling Approaches 2003 11 17 Absrac This aricle originaes from a speech given by he auhor in he seminar

More information

IMES DISCUSSION PAPER SERIES Discussion Paper No. 99-J- 9 -J-19 INSTITUTE FOR MONETARY AND ECONOMIC STUDIES BANK OF JAPAN

IMES DISCUSSION PAPER SERIES Discussion Paper No. 99-J- 9 -J-19 INSTITUTE FOR MONETARY AND ECONOMIC STUDIES BANK OF JAPAN IMES DISCUSSION PAPER SERIES Discussion Paper No. 99-J- 9 -J-19 INSTITUTE FOR MONETARY AND ECONOMIC STUDIES BANK OF JAPAN 100-8630 03 IMES Discussion Paper Series 99-J- 9 -J-19 1999 6 * * [1999] *(E-mail:

More information

y = x x R = 0. 9, R = σ $ = y x w = x y x x w = x y α ε = + β + x x x y α ε = + β + γ x + x x x x' = / x y' = y/ x y' =

y = x x R = 0. 9, R = σ $ = y x w = x y x x w = x y α ε = + β + x x x y α ε = + β + γ x + x x x x' = / x y' = y/ x y' = y x = α + β + ε =,, ε V( ε) = E( ε ) = σ α $ $ β w ( 0) σ = w σ σ y α x ε = + β + w w w w ε / w ( w y x α β ) = α$ $ W = yw βwxw $β = W ( W) ( W)( W) w x x w x x y y = = x W y W x y x y xw = y W = w w

More information

財政赤字の経済分析:中長期的視点からの考察

財政赤字の経済分析:中長期的視点からの考察 000 364 645 (ax smoohing (Barro(979 Barro(979 (consumpion smoohing Hall(978 Campbell(987 Barro(979 Hall(978 Campbell(987 Campbell(987 B ( r B G T ( ( r E B G T Y T/Y r ( No Ponzi Game ( [ Ω ] Y ( lim (

More information

銀行手数料ビジネスの動向と経営安定性

銀行手数料ビジネスの動向と経営安定性 * [email protected] ** [email protected] No.06-J-22 2006 12 103-8660 30 * ** * 2006 12 1990 2001 2005 2001 * BIS (Email: [email protected]) (Email: [email protected]) 1

More information

text.dvi

text.dvi Abstract JP Morgan CreditMetrics (1) () (3) (4) 1 3 3 4 4 5 10 6 16 1 1 BIS 1 3 1 BIS 1 BIS 1 3 ALM (1) Value at Risk () (3) RAROC (Risk Ajusted Return On Capital) (4) 3 5 6 31 99% (= p ) ~x X Prf~x Xg

More information

1 Nelson-Siegel Nelson and Siegel(1987) 3 Nelson-Siegel 3 Nelson-Siegel 2 3 Nelson-Siegel 2 Nelson-Siegel Litterman and Scheinkman(199

1 Nelson-Siegel Nelson and Siegel(1987) 3 Nelson-Siegel 3 Nelson-Siegel 2 3 Nelson-Siegel 2 Nelson-Siegel Litterman and Scheinkman(199 Nelson-Siegel Nelson-Siegel 1992 2007 15 1 Nelson and Siegel(1987) 2 FF VAR 1996 FF B) 1 Nelson-Siegel 15 90 1 Nelson and Siegel(1987) 3 Nelson-Siegel 3 Nelson-Siegel 2 3 Nelson-Siegel 2 Nelson-Siegel

More information

「国債の金利推定モデルに関する研究会」報告書

「国債の金利推定モデルに関する研究会」報告書 : LG 19 7 26 2 LG Quadratic Gaussian 1 30 30 3 4 2,,, E-mail: [email protected], E-mail: [email protected] 1 L G 2 1 L G r L t),r G t) L r L t) G r G t) r L t) h G t) =r G t) r L t) r L t)

More information

LIBORマーケット・モデルのインプリメンテーションについて―本邦の金利派生商品データを用いた具体例を基に―

LIBORマーケット・モデルのインプリメンテーションについて―本邦の金利派生商品データを用いた具体例を基に― LIBOR LIBOR LIBOR E-mal: [email protected] LIBORLIBORLondon InerBank Offered Rae BGMBrace, Gaarek and Musela LIBOR LIBOR BlackBlack and Scholes LIBOR LIBORLIBOR LIBOR LIBOR LIBOR LIBOR Brace, Gaarek

More information

土地税制の理論的・計量的分析

土地税制の理論的・計量的分析 54 III 1971 1988 III 1971 m 2 16,000 1988 109,000 17 6.6 4.5 1974 197173 17) 197881 198687 17 1950 III ( m 2 ) () 1971 16,470 15.53 1972 21,550 30.84 1973 26,817 24.44 1974 24,973 6.88 1975 25,549 2.31

More information

固定資産の減損会計へのリアル・オプション・アプローチ

固定資産の減損会計へのリアル・オプション・アプローチ NPV NPV NPV join resource NPV 1 004, 6-7 005 4 1 ( ( 1)) 1 (3) 003 176-177 1999 10-104 IASC 1998, paras. B0, B35 probabiliy crierioneconomic crierion (1) NPV ne presen value mehod NPV () join resource

More information

(2004 ) 2 (A) (B) (C) 3 (1987) (1988) Shimono and Tachibanaki(1985) (2008) , % 2 (1999) (2005) 3 (2005) (2006) (2008)

(2004 ) 2 (A) (B) (C) 3 (1987) (1988) Shimono and Tachibanaki(1985) (2008) , % 2 (1999) (2005) 3 (2005) (2006) (2008) ,, 23 4 30 (i) (ii) (i) (ii) Negishi (1960) 2010 (2010) ( ) ( ) (2010) E-mail:[email protected] E-mail:[email protected] E-mail:[email protected] 1 1 16 (2004 ) 2 (A) (B) (C) 3 (1987)

More information

本邦国債価格データを用いたゼロ・クーポン・イールド・カーブ推定手法の比較分析

本邦国債価格データを用いたゼロ・クーポン・イールド・カーブ推定手法の比較分析 Steeley [1991]... JAFEE 35 TMU NEEDS E-mail: [email protected] / /212.7 35 1 1 1 1 2 McCulloch [1971, 1975] Steeley [1991] Tanggaard [1997] Schaefer [1981] Nelson and Siegel [1987] Svensson [1995]...

More information

IMES DISCUSSION PAPER SERIES LIBOR Discussion Paper No J- -J-2 INSTITUTE FOR MONETARY AND ECONOMIC STUDIES BANK OF JAPAN

IMES DISCUSSION PAPER SERIES LIBOR Discussion Paper No J- -J-2 INSTITUTE FOR MONETARY AND ECONOMIC STUDIES BANK OF JAPAN IES DISCUSSION PAPER SERIES IBOR Dscusso Paper No. 00-J- -J- INSTITUTE FOR ONETARY AND ECONOIC STUDIES BANK OF JAPAN 03-8660 30 IES Dscusso Paper Seres 00-J- 00 IBOR * IBOR IBOR IBOR JE classfcao: C5

More information

わが国のレポ市場について―理論的整理と実証分析―

わが国のレポ市場について―理論的整理と実証分析― GCGC SC GCSC SC SC E-mail: [email protected] E-mail: [email protected] GC general collateralscspecial collateral Griffiths and Winters GCFF Jordan and JordanDuffie matched book GC GC SC DuffieKrishnamurthy

More information

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz 1 2 (a 1, a 2, a n ) (b 1, b 2, b n ) A (1.1) A = a 1 b 1 + a 2 b 2 + + a n b n (1.1) n A = a i b i (1.2) i=1 n i 1 n i=1 a i b i n i=1 A = a i b i (1.3) (1.3) (1.3) (1.1) (ummation convention) a 11 x

More information

βdxβ r a, < E e uγ r ha d E e r dx e r γd e r βdx 3.2 a = {a} γ = {γ} max E e r dx e r γd e r βdx, 2 s.. dx = qand + σndz, 1 E e r uγ ha d, 3 a arg maxã E e r uγ hã d. 4 3.3 γ = {γ : γ, γ} a = {a : a,

More information

商品流動性リスクの計量化に関する一考察(その2)―内生的流動性リスクを考慮したストレス・テスト―

商品流動性リスクの計量化に関する一考察(その2)―内生的流動性リスクを考慮したストレス・テスト― E-mail: [email protected] E-mail: [email protected] Bangia et al. G Bangia et al. exogenous liquidity risk endogenous liquidity risk et al LTCMLong Term Capital Management Fed G G T

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

財政赤字の経済分析:中長期的視点からの考察

財政赤字の経済分析:中長期的視点からの考察 1998 1999 1998 1999 10 10 1999 30 (1982, 1996) (1997) (1977) (1990) (1996) (1997) (1996) Ihori, Doi, and Kondo (1999) (1982) (1984) (1987) (1993) (1997) (1998) CAPM 1980 (time inconsistency) Persson, Persson

More information

seminar0220a.dvi

seminar0220a.dvi 1 Hi-Stat 2 16 2 20 16:30-18:00 2 2 217 1 COE 4 COE RA E-MAIL: [email protected] 2004 2 25 S-PLUS S-PLUS S-PLUS S-code 2 [8] [8] [8] 1 2 ARFIMA(p, d, q) FI(d) φ(l)(1 L) d x t = θ(l)ε t ({ε t }

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i 1. 1 1.1 1.1.1 1.1.1.1 v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) R ij R ik = δ jk (4) δ ij Kronecker δ ij = { 1 (i = j) 0 (i j) (5) 1 1.1. v1.1 2011/04/10 1. 1 2 v i = R ij v j (6) [

More information

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,,

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,, 14 5 1 ,,,17,,,194 1 4 ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,, 1 4 1.1........................................ 4 5.1........................................ 5.........................................

More information

相互取引に伴う債権債務の依存構造を考慮した金融機関の与信評価について

相互取引に伴う債権債務の依存構造を考慮した金融機関の与信評価について IMES DISCUSSION PAPER SERIES 相互取引に伴う債権債務の依存構造を考慮した金融 機関の与信評価について にしでかつまさ 西出勝正 Discussion Paper No. 2015-J-6 INSTITUTE FOR MONETARY AND ECONOMIC STUDIES BANK OF JAPAN 日本銀行金融研究所 103-8660 東京都中央区日本橋本石町 2-1-1

More information

, 1), 2) (Markov-Switching Vector Autoregression, MSVAR), 3) 3, ,, , TOPIX, , explosive. 2,.,,,.,, 1

, 1), 2) (Markov-Switching Vector Autoregression, MSVAR), 3) 3, ,, , TOPIX, , explosive. 2,.,,,.,, 1 2016 1 12 4 1 2016 1 12, 1), 2) (Markov-Switching Vector Autoregression, MSVAR), 3) 3, 1980 1990.,, 225 1986 4 1990 6, TOPIX,1986 5 1990 2, explosive. 2,.,,,.,, 1986 Q2 1990 Q2,,. :, explosive, recursiveadf,

More information

untitled

untitled 2007 2 * (i) (ii) 2006 7 1999 2 2000 8 1 (2003) Oda and Ueda (2005) 2005 Kimura and Small(2006) Iwamura, Shiratsuka and Watanabe (2006) (2006) 3 (i) (ii) (iii) 2 2 3 4 2.1 (2003) (2005) 1) (i) (ii) (i)

More information

082_rev2_utf8.pdf

082_rev2_utf8.pdf 3 1. 2. 3. 4. 5. 1 3 3 3 2008 3 2008 2008 3 2008 2008, 1 5 Lo and MacKinlay (1990a) de Jong and Nijman (1997) Cohen et al. (1983) Lo and MacKinlay (1990a b) Cohen et al. (1983) de Jong and Nijman (1997)

More information

c:/ando/latex/デフォルト確率損実率同時推定/fsa-ando-yamashita.dvi

c:/ando/latex/デフォルト確率損実率同時推定/fsa-ando-yamashita.dvi 1 2, BIC,, 1, E-mail: [email protected] 2,, CRD E-mail: [email protected],,.. 1 1 1 2 2 2.1 : : : : : : : : : : : 2 2.2 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 3 3 5 3.1

More information

PFI

PFI PFI 23 3 3 PFI PFI 1 1 2 3 2.1................................. 3 2.2..................... 4 2.3.......................... 5 3 7 3.1................................ 7 3.2.................................

More information

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í Markov 2009 10 2 Markov 2009 10 2 1 / 25 1 (GA) 2 GA 3 4 Markov 2009 10 2 2 / 25 (GA) (GA) L ( 1) I := {0, 1} L f : I (0, ) M( 2) S := I M GA (GA) f (i) i I Markov 2009 10 2 3 / 25 (GA) ρ(i, j), i, j I

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi II (Basics of Probability Theory ad Radom Walks) (Preface),.,,,.,,,...,,.,.,,.,,. (Basics of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios, Meas).............................

More information

03.Œk’ì

03.Œk’ì HRS KG NG-HRS NG-KG AIC Fama 1965 Mandelbrot Blattberg Gonedes t t Kariya, et. al. Nagahara ARCH EngleGARCH Bollerslev EGARCH Nelson GARCH Heynen, et. al. r n r n =σ n w n logσ n =α +βlogσ n 1 + v n w

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi I (Basics of Probability Theory ad Radom Walks) 25 4 5 ( 4 ) (Preface),.,,,.,,,...,,.,.,,.,,. (,.) (Basics of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios,

More information

fiúŁÄ”s‘ê‡ÌŁª”U…−…X…N…v…„…~…A…•‡Ì ”s‘ê™´›ß…−…^†[…fiŠ‚ª›Âfl’«

fiúŁÄ”s‘ê‡ÌŁª”U…−…X…N…v…„…~…A…•‡Ì ”s‘ê™´›ß…−…^†[…fiŠ‚ª›Âfl’« 2016/3/11 Realized Volatility RV 1 RV 1 Implied Volatility IV Volatility Risk Premium VRP 1 (Fama and French(1988) Campbell and Shiller(1988)) (Hodrick(1992)) (Lettau and Ludvigson (2001)) VRP (Bollerslev

More information

SO(2)

SO(2) TOP URL http://amonphys.web.fc2.com/ 1 12 3 12.1.................................. 3 12.2.......................... 4 12.3............................. 5 12.4 SO(2).................................. 6

More information

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq 49 2 I II 2.1 3 e e = 1.602 10 19 A s (2.1 50 2 I SI MKSA 2.1.1 r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = 3 10 8 m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq F = k r

More information

43 2 PD DR Sommar and Shahnazarianka [19] Simons and Rolwes [17] GDP Figlewski, Frydman and Liang [7] GDP Bonfim [2] 3 Bhattacharjee et al. [1] 2002 [

43 2 PD DR Sommar and Shahnazarianka [19] Simons and Rolwes [17] GDP Figlewski, Frydman and Liang [7] GDP Bonfim [2] 3 Bhattacharjee et al. [1] 2002 [ Transactions of the Operations Research Society of Japan Vol. 55, 2012, pp. 42 65 c ( 2011 10 25 ; 2012 3 1 ) ( PD) ( DR) 2007 DR PD 54 PD DR 0.72% PD :,,,,, 1. 1 ( PD: Probability of Default) 10 ( DR:

More information

カルマンフィルターによるベータ推定( )

カルマンフィルターによるベータ推定( ) β TOPIX 1 22 β β smoothness priors (the Capital Asset Pricing Model, CAPM) CAPM 1 β β β β smoothness priors :,,. E-mail: [email protected]., 104 1 TOPIX β Z i = β i Z m + α i (1) Z i Z m α i α i β i (the

More information

SekineXu

SekineXu 1 19981999 1 1 1 1997 A BBB BBB BB BB bid and ask bid and ask bid and ask 2 1997 97 98 2001 Saring and Warga(1989), Amihud and Mendelson(1991), Warga(1992), Daves and Ehrhardt(1993), Kamara(1994), Elton

More information

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ SO(3) 71 5.7 5.7.1 1 ħ L k l k l k = iϵ kij x i j (5.117) l k SO(3) l z l ± = l 1 ± il = i(y z z y ) ± (z x x z ) = ( x iy) z ± z( x ± i y ) = X ± z ± z (5.118) l z = i(x y y x ) = 1 [(x + iy)( x i y )

More information

δ ij δ ij ˆx ˆx ŷ ŷ ẑ ẑ 0, ˆx ŷ ŷ ˆx ẑ, ŷ ẑ ẑ ŷ ẑ, ẑ ˆx ˆx ẑ ŷ, a b a x ˆx + a y ŷ + a z ẑ b x ˆx + b

δ ij δ ij ˆx ˆx ŷ ŷ ẑ ẑ 0, ˆx ŷ ŷ ˆx ẑ, ŷ ẑ ẑ ŷ ẑ, ẑ ˆx ˆx ẑ ŷ, a b a x ˆx + a y ŷ + a z ẑ b x ˆx + b 23 2 2.1 n n r x, y, z ˆx ŷ ẑ 1 a a x ˆx + a y ŷ + a z ẑ 2.1.1 3 a iˆx i. 2.1.2 i1 i j k e x e y e z 3 a b a i b i i 1, 2, 3 x y z ˆx i ˆx j δ ij, 2.1.3 n a b a i b i a i b i a x b x + a y b y + a z b

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

all.dvi

all.dvi 72 9 Hooke,,,. Hooke. 9.1 Hooke 1 Hooke. 1, 1 Hooke. σ, ε, Young. σ ε (9.1), Young. τ γ G τ Gγ (9.2) X 1, X 2. Poisson, Poisson ν. ν ε 22 (9.) ε 11 F F X 2 X 1 9.1: Poisson 9.1. Hooke 7 Young Poisson G

More information

Auerbach and Kotlikoff(1987) (1987) (1988) 4 (2004) 5 Diamond(1965) Auerbach and Kotlikoff(1987) 1 ( ) ,

Auerbach and Kotlikoff(1987) (1987) (1988) 4 (2004) 5 Diamond(1965) Auerbach and Kotlikoff(1987) 1 ( ) , ,, 2010 8 24 2010 9 14 A B C A (B Negishi(1960) (C) ( 22 3 27 ) E-mail:[email protected] E-mail:[email protected] E-mail:[email protected] 1 1 1 2 3 Auerbach and Kotlikoff(1987) (1987)

More information

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a = II 6 [email protected] 6.. 5.4.. f Rx = f Lx = fx fx + lim = lim x x + x x f c = f x + x < c < x x x + lim x x fx fx x x = lim x x f c = f x x < c < x cosmx cosxdx = {cosm x + cosm + x} dx = [

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3 II (Percolation) 12 9 27 ( 3-4 ) 1 [ ] 2 [ ] 3 [ ] 4 [ ] 1992 5 [ ] G Grimmett Percolation Springer-Verlag New-York 1989 6 [ ] 3 1 3 p H 2 3 2 FKG BK Russo 2 p H = p T (=: p c ) 3 2 Kesten p c =1/2 ( )

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

³ÎΨÏÀ

³ÎΨÏÀ 2017 12 12 Makoto Nakashima 2017 12 12 1 / 22 2.1. C, D π- C, D. A 1, A 2 C A 1 A 2 C A 3, A 4 D A 1 A 2 D Makoto Nakashima 2017 12 12 2 / 22 . (,, L p - ). Makoto Nakashima 2017 12 12 3 / 22 . (,, L p

More information

AHPを用いた大相撲の新しい番付編成

AHPを用いた大相撲の新しい番付編成 5304050 2008/2/15 1 2008/2/15 2 42 2008/2/15 3 2008/2/15 4 195 2008/2/15 5 2008/2/15 6 i j ij >1 ij ij1/>1 i j i 1 ji 1/ j ij 2008/2/15 7 1 =2.01/=0.5 =1.51/=0.67 2008/2/15 8 1 2008/2/15 9 () u ) i i i

More information

Microsoft Word - 表紙.docx

Microsoft Word - 表紙.docx 黒住英司 [ 著 ] サピエンティア 計量経済学 訂正および練習問題解答 (206/2/2 版 ) 訂正 練習問題解答 3 .69, 3.8 4 (X i X)U i i i (X i μ x )U i ( X μx ) U i. i E [ ] (X i μ x )U i i E[(X i μ x )]E[U i ]0. i V [ ] (X i μ x )U i i 2 i j E [(X i

More information

renshumondai-kaito.dvi

renshumondai-kaito.dvi 3 1 13 14 1.1 1 44.5 39.5 49.5 2 0.10 2 0.10 54.5 49.5 59.5 5 0.25 7 0.35 64.5 59.5 69.5 8 0.40 15 0.75 74.5 69.5 79.5 3 0.15 18 0.90 84.5 79.5 89.5 2 0.10 20 1.00 20 1.00 2 1.2 1 16.5 20.5 12.5 2 0.10

More information

1 (1997) (1997) 1974:Q3 1994:Q3 (i) (ii) ( ) ( ) 1 (iii) ( ( 1999 ) ( ) ( ) 1 ( ) ( 1995,pp ) 1

1 (1997) (1997) 1974:Q3 1994:Q3 (i) (ii) ( ) ( ) 1 (iii) ( ( 1999 ) ( ) ( ) 1 ( ) ( 1995,pp ) 1 1 (1997) (1997) 1974:Q3 1994:Q3 (i) (ii) ( ) ( ) 1 (iii) ( ( 1999 ) ( ) ( ) 1 ( ) ( 1995,pp.218 223 ) 1 2 ) (i) (ii) / (iii) ( ) (i ii) 1 2 1 ( ) 3 ( ) 2, 3 Dunning(1979) ( ) 1 2 ( ) ( ) ( ) (,p.218) (

More information

JFE.dvi

JFE.dvi ,, Department of Civil Engineering, Chuo University Kasuga 1-13-27, Bunkyo-ku, Tokyo 112 8551, JAPAN E-mail : [email protected] E-mail : [email protected] SATO KOGYO CO., LTD. 12-20, Nihonbashi-Honcho

More information

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

II ( ) (7/31) II (  [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re II 29 7 29-7-27 ( ) (7/31) II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I Euler Navier

More information

1: 3.3 1/8000 1/ m m/s v = 2kT/m = 2RT/M k R 8.31 J/(K mole) M 18 g 1 5 a v t πa 2 vt kg (

1: 3.3 1/8000 1/ m m/s v = 2kT/m = 2RT/M k R 8.31 J/(K mole) M 18 g 1 5 a v t πa 2 vt kg ( 1905 1 1.1 0.05 mm 1 µm 2 1 1 2004 21 2004 7 21 2005 web 2 [1, 2] 1 1: 3.3 1/8000 1/30 3 10 10 m 3 500 m/s 4 1 10 19 5 6 7 1.2 3 4 v = 2kT/m = 2RT/M k R 8.31 J/(K mole) M 18 g 1 5 a v t πa 2 vt 6 6 10

More information

shuron.dvi

shuron.dvi 01M3065 1 4 1.1........................... 4 1.2........................ 5 1.3........................ 6 2 8 2.1.......................... 8 2.2....................... 9 3 13 3.1.............................

More information