$\mathrm{c}.\mathrm{l}$ & (Naoyuki Koike) (Science University of Tokyo) 1. $[\mathrm{l}],[\mathrm{p}],[\mathrm{s}1],[\mathrm{s}

Size: px
Start display at page:

Download "$\mathrm{c}.\mathrm{l}$ & (Naoyuki Koike) (Science University of Tokyo) 1. $[\mathrm{l}],[\mathrm{p}],[\mathrm{s}1],[\mathrm{s}"

Transcription

1 $\mathrm{c}.\mathrm{l}$ & (Naoyuki Koike) (Science University of Tokyo) 1. $[\mathrm{l}],[\mathrm{p}],[\mathrm{s}1],[\mathrm{s}2]$ 1960 ( ) 1980 Terng ([Te2]) 2 (F),(P) (F) (P) (F) $(\mathrm{p},)$ 2. parallel transport $[0, 1]\cross G$ $H^{0_{-}}$ $H^{0}([0,1], \text{ })$ ( ) $\phi$ $H^{0}([0,1], \text{ })$ $L^{2}$ Ad(G) $\mathrm{c}.\mathrm{l}$. Terng G. Thorbergsson([TeTh]) $\pi$ $N=G/K$ $G/K$ $H^{0}$ $\phi$ ([0, 1], )\rightarrow G parallel transport (parallel transport $\pi\circ\phi$ $\overline{\phi}$ 5 ) $N$ $M$ $\tilde{\phi}^{-1}(m)$ $H^{0}([0,1], \text{ })$ $M$ $\overline{\phi}^{-1}(m)$ ( (F) )

2 $\mathrm{c}.\mathrm{l}$ $\overline{hi}$ 163 $1\backslash$.Terng([KiTe]) 1993 C.King- $\leq$ \mu 1 $-/l_{2}, \leq\cdots<0<\cdots$ $\leq\lambda_{2}\leq\lambda_{1}$ $\lim_{sarrow 1-0}(\sum_{i=1}^{\infty}\lambda_{i}^{s}-\sum_{i=1}^{\infty}$ \mu ( $1\backslash$ ) ( ) D3A $i$ A $\lambda_{i}=\mu_{i}=0$ $\mathrm{t}\mathrm{r}_{\zeta}a_{v}$ $H_{\zeta}$ I $\mathrm{t}\mathrm{r}_{\zeta}a_{v}=<h_{\zeta},$ $(\forall v\in T^{[perp]}M)$ $v>$ $H_{\zeta}=0$ ( je ) $ H_{\zeta} $ $M$ $\mathrm{c}\mathrm{m}\mathrm{c}$ ( ) $M$ $M$ $\phi^{-1}(m)$ $M$ $M$ CMC $\phi^{-1}(m)$ $\phi$ CMC parallel transport ([K1]) $\{\lambda_{i} i=1,2, \cdots\}$ $ \lambda_{\mathrm{i}} > \lambda_{i+1} $ ( or ) $\lambda_{i}=-\lambda_{i+1}>0$ $\lambda_{i}$ $\sum_{i=1}^{\infty}$ m mi\lambda ( ) A Tr $i$ $\lambda_{i}=0$ ( ) $x= \lim_{karrow\infty}\sum_{\lambda\in\lambda_{k}}<x,$ $e_{\lambda}>e_{\lambda}(\{e_{\lambda}\}_{\lambda\in\lambda}$, $\Lambda_{k}=\{\lambda\in\Lambda <x, e_{\lambda}> >\frac{1}{k}.\})$ Tr $A_{v}=0$ ( ) Tr $H$ [KiTe] 1 $A_{v}=<H,$ $v>(\forall v\in T^{[perp]}M)$ $M$ CMC $ H $ $G/K$ curvature adapted $M$ $\overline{\phi}^{-1}(m)$ $M$ $G/K$ $ \backslash \mathrm{s}$ (0 ) $M$ $G/K$ $\overline{\phi}^{-1}(m)$ $M$ $\sum\infty$ (\lambda $-\mu_{i}$ ) ) $i=1$ E.Heintze-X.Liu-C Olmos([HLO]) ( \mu 1 $\leq-\mu_{2}\leq\cdots<0<\cdots\leq\lambda_{2}\leq\lambda_{1}$ ( ) A ( $D_{r}A_{v}\text{ }$ $i$ $\lambda_{i}=\mu_{i}=0$ $\mathrm{t}\mathrm{r}_{r}a_{v}$ $H_{r}$ $\mathrm{t}\mathrm{r}_{r}a_{v}=<h_{r},$ $v>(\forall v\in T^{[perp]}M)$ $H_{r}$

3 164 CMC $V$ $N$ $\psi$ $N$ $M$ $\psi^{-1}(m)$ $N$ $M$ CMC $\psi^{-1}(m)$ CMC ( ) $A$ $\mathrm{t}\mathrm{r}_{\zeta}a\neq \mathrm{t}\mathrm{r}a$ $\mathrm{t}\mathrm{r}_{\zeta}a\neq \mathrm{t}\mathrm{r}_{r}a$ $A_{v}\neq \mathrm{h}a_{v}$, $\mathrm{t}\mathrm{r}_{\zeta}a_{v}\neq \mathrm{t}\mathrm{r}_{r}a_{v}$ $\mathrm{c}.\mathrm{l}$. Terng G. Thorbergsson([TeTh]) equifocal ( 2 ) $\mathrm{a}([\mathrm{t}\mathrm{e}\mathrm{t}\mathrm{h}])$ $M$ $M$ equifocal $\tilde{\phi}^{-1}(m)$ equifocal $\mathrm{l}\mathrm{i}\mathrm{u}([\mathrm{h}\mathrm{l}2])$ E. Heintze X. ( ) 2 ( ) G. Thorbergsson 3 U. Christ([C]) 2 equifocal parallel transport Hcintze-Liu [TeTh] 1 Terng-Thorbergsson equifocal? ([K2]) $N=G/K$ parallel $[0, 1]\cross G$ $H^{0}$ ([0, 1], 9)( ) $G/K$ $\phi$ transport $\pi$ $\pi\circ\phi$ $\tilde{\phi}$ ( ) 1\

4 165 ( ) equifod ( ) [K2] $\mathrm{b}$ ([K2]) $M$ $\overline{\phi}^{-1}(m)$ $M$ equifocal $\overline{\phi}^{-1}(m)$ $N$ $N$ curvature adapted $M$ $M$ ( ) \mathrm{g}$ $\mathrm{c}$ $\not\in ([K2]) $M$ $G/K$ curvature adapted (i) $M$ $\overline{\phi}^{-1}(m)$ equifocal ( (ii) $M$ equifocal ( $gk$ ) ( $\pm\alpha(g_{*}^{-1}v)$ $\alpha$ $\alpha(g_{*}^{-1}v)\neq 0$ ) $\overline{\phi}^{-1}(m)$ ( ) extremality $G/K$ curvature adapted $M$ $\overline{\phi}^{-1}(m)$ ( )extremal equifocal ([K2] ) $V$ $V^{\mathrm{c}}$ $G/K$ $G^{\mathrm{c}}/K^{\mathrm{c}}$ $V$ $G/K$ ( ) $V^{\mathrm{c}},$ $G^{\mathrm{c}}/K^{\mathrm{c}}$ $M$ Mc( ) ( )

5 ( ) $M$ ([K2] ) $M^{\mathrm{c}}$ ( ) $M$ $M^{\mathrm{c}}$ $V$ $G/K$ $M$ $G^{\mathrm{c}}/K^{\mathrm{c}}$ equifocal $\phi^{\mathrm{c}}$ $G/K$ parallel transport Gc- $[0, 1]$ $\cross G^{\mathrm{c}}$ $H^{0}$ $H^{0}$ ([0, 1], c)( ([0, 1], ) $G^{\mathrm{c}}$ ) $\pi^{\mathrm{c}}$ $\phi^{\mathrm{c}}$ $G^{\mathrm{c}}arrow $\overline{\phi}^{\mathrm{c}}$ G^{\mathrm{c}}/K^{\mathrm{c}}$ $\mathrm{d}$ ([K3]) $M$ $G^{\mathrm{c}}/K^{\mathrm{c}}$ $G/K$ (i) $M$ $(\overline{\phi}^{\mathrm{c}})^{-1}(m)$ equifocal ( (ii) $M$ curvature adapted $M$ equifocal ( $gk^{\mathrm{c}}$ ) $\pm\alpha(g_{*}^{-1}v)(\alpha$ $\alpha(g_{*}^{-1}v)\neq 0$ $\tilde{\phi}^{\mathrm{c}-1}(m)$ ) $\mathrm{i}\sigma$ $\mathrm{e}([\mathrm{k}3])m\text{ }$ $G/K$ $M$ equifocal $\overline{\phi}^{-1}(m)$ equifocal $\mathrm{i}\mathrm{e}$ $\mathrm{f}([\mathrm{k}3])(m, J)\text{ ^{ } ^{ } $\{\lambda_{i} i\in I\}$ }$ $(V,\tilde{J})$ $E_{i}$ - $\lambda_{i}$ J- $v_{i}$ $\lambda_{i}$ J- $i$ $\lambda_{i}=0$ (i), (ii) (i) $(M, x)$ $\infty\bigcup_{i=1}(x+\lambda_{i}(x)^{-1}(1))$ (ii) $E_{i}$ $M$ ( ) $(V,\overline{J})$

6 $D_{zv}^{\mathrm{c}o}$, $\gamma_{v}$ $A_{v}^{\mathrm{c}}$ 167 REJECT}.\varphi$ $\ovalbox{\tt\small ( $M$ ) $E_{\ovalbox{\tt\small REJECT}}$ $ \lambda_{7}(v_{7}) $ ( $M$ ) 2. Equifocal equifocal $M$ $G/K$ $M$ curvature adapted $ \backslash \mathrm{s}v$ $R(\cdot, v)v$ $M$ A $R$ $G/K$ 1993 J. Berndt L. Vanhecke generic( ) curvature adapted curvature adapted ( ) curvature $\prime adapted $M$ equifocal equifocal (E-i) $\Lambda,I$ \mathrm{e}$ $M$ 2 (E-ii) $M$ $\tilde{v}_{x}(x\in M)$ $x$ ( $M$ ) 1995 ( $\mathrm{c}.\mathrm{l}$. Terng G. Thorbergsson([TeTh]) ( $M$ $x=gk$ \gamma $\gamma_{v} (\mathrm{o})=v$ $Y$ $Y(\mathrm{O})=X(\in T_{x}M),$ $Y (0)=-A_{v}X$ $Y(s)=(P_{\gamma_{v}1_{[0,s]}}\circ(D_{sv}^{co}-sD_{sv}^{si}\circ A_{v}))(X)$ $\overline{\nabla}$ $Y (0)=\overline{\nabla}_{v}Y,$ ( $G/K$ ) $P_{\gamma_{v}1_{[0,s]}}$ $\gamma_{v} [0,s]$ $D_{sv}^{co},$ $D_{sv}^{si}$ $T_{x}.M$ $D_{sv}^{\mathrm{c}o}=g_{*}\circ\cos(\sqrt{-1}\mathrm{a}\mathrm{d}(sg_{*}^{-1}v))\circ g_{*}^{-1}$ $D_{sv}^{si}=g_{*} \circ\frac{\sin(\sqrt{-1}\mathrm{a}\mathrm{d}(sg_{*}^{-1}v))-}{\sqrt{-1}\mathrm{a}\mathrm{d}(sg_{*}v)}\circ g_{*}^{-1}$ (ad ) $=\mathrm{l}\mathrm{i}\mathrm{e}g$ $\mathrm{k}\mathrm{e}\mathrm{r}(d_{sv}^{co}-sd_{sv}^{si}\circ A_{v})\neq\{0\}$ $\gamma_{v}$ $s$ $\mathrm{k}\mathrm{e}\mathrm{r}(d_{zv}^{co}-zd_{zv}^{si}\mathrm{o}a_{v}^{\mathrm{c}})\neq\{0\}$ $G/K$ $z$ ([K2]) $D_{zv}^{si}$ $(g_{*}\circ\cos(\sqrt{-1}\mathrm{a}\mathrm{d}(zg_{*}^{-1}v))\circ g_{*}^{-1}) _{T_{x}M}(T_{x}Marrow(T_{x}G/K)^{\mathrm{c}}),$ $(g_{*} \mathrm{o}\frac{\sin(\sqrt{-1}\mathrm{a}\mathrm{d}(zg_{*}^{-1}v))-}{\sqrt{-1}\mathrm{a}\mathrm{d}(zg_{*}v)}\mathrm{o}$ $g_{*}^{-1}) _{T_{x}M}$ $(T_{x}Marrow(T_{x}G/K)^{\mathrm{c}})$ $G/K$ $\mathfrak{p}=\mathrm{k}\mathrm{e}\mathrm{r}(\sigma+\mathrm{i}\mathrm{d}),$ $\mathrm{f}=$ ( $\sigma$ ) $G/K$

7 $\mathrm{k}\mathrm{e}\mathrm{r}(\sigma-\mathrm{i}\mathrm{d})$ $\tilde{v}_{x}$ 168 $\mathfrak{p}$ $T_{eK}G/K$ p=h+\mbox{\boldmath $\alpha$}\in \Sigma \triangle +p $\mathfrak{h}$ 2.1([K2]) $A_{v}X=\lambda X$ g*-1x\in p $X(\neq 0)$ $(\mathrm{i})\sim(\mathrm{i}\mathrm{i}\mathrm{i})$ (i) $ \lambda > \alpha(g_{*}^{-1}v) =0$ $\frac{1}{\lambda}$ $g_{*}^{-1}x\in \mathfrak{h}$ $\gamma_{v}$ (ii) $ \lambda > \alpha(g_{*}^{-1}v) >0$ \mathrm{a}\mathrm{r}\mathrm{c}\tanh\frac{\alpha(g_{*}^{-1}v)}{\lambda}+j\pi\sqrt{-1})(j\in \mathrm{z})$ $\gamma_{v}$ 7 $( -l) (iii) $ \lambda < \alpha(g_{*}^{-1}v) $ I-(arctanh\mbox{\boldmath $\alpha$}(g\lambda *-L)+(j+D\pi $\sqrt$ $(j\in \mathrm{z})$ $\gamma_{v}$ (E-i) (CE) equifocal (CE) $\mathit{1}1l$ $\tilde{v}_{x}(x\in M)$ $x$ ( $M$ ) 3. $M$ $V$ A $\{0\}\cup\{\lambda_{i} i=1,2, \cdots\}( \lambda_{i} > \lambda_{i+1} $ $(i=1,2, \cdots))$ ( $\lambda_{i}=-\lambda_{i+1}>0$ $\lambda_{i}$ $\lambda_{i}$ $i$ ) ( ) 0 ( $M$ $\tilde{v}_{x}$ ) $x\in M$ $i$ $x\in M$ $\tilde{v}_{x}$ $M$ $M$ $i$ 2 $M$ (I-i) $M$ (I-ii) $M$ $x\in M$ $M$ (I-ii) ( $\infty$

8 $\lambda_{i}$ $\text{ }\ovalbox{\tt\small REJECT}-\mathrm{f}\mathrm{f}\mathrm{i}^{\backslash }$ 169 (I-ii ) $M$ $A_{\overline{v}_{x}}(x\in M)$ $M$ $M$ 1 $x_{0}$ $T_{x_{0}}M=\overline{\bigoplus_{i\in I}E_{i}^{x_{0}}}$ $T_{x}^{[perp]}M)$ $A_{v}(v\in$ $T_{x_{0}}^{[perp]}M$ $\lambda_{i}^{x_{0}}(i\in I)$ $A_{v} _{E_{i}^{x_{0}}}=\lambda_{i}^{x_{0}}(v)\mathrm{i}\mathrm{d}(v\in T_{x_{0}}^{[perp]}M)$ $\lambda_{i}$ $\lambda_{i}(x_{0})=\lambda_{i}^{x_{0}}$ $T^{[perp]}M^{*}$ $M$ $x$ $T_{x}M$ $T_{x}M=\overline{\bigoplus_{i\in I}E_{i}^{x}}$ $T_{x}^{[perp]}M)$ $E_{i}(x)=E_{i}^{x}$ $\mathrm{i}\mathrm{d}$ $E_{i}^{x_{0}}$ $A_{v} _{E_{i}^{x}}=(\lambda_{i}(x))(v)\mathrm{i}\mathrm{d}(v\in$ $M$ $E_{i}$ $\lambda_{i}(i\in I)$ $M$ $E_{i}$ $M$ ( $x$ $T_{x}^{[perp]}M$ ) $\bigcup_{i\in I}(x+\lambda_{i}(x)^{-1}(1))$ $\lambda_{i}(x)^{-1}(1)$ $R_{i}^{x}(i\in I)$ $M\mathit{0}\supset \text{ }$ $\nearrow^{\text{ }}$ $\text{ }\mathrm{a}^{\mathrm{a}}$ ( $x\in M$ $\nearrow^{\text{ }}$ $U\triangleleft J\mathrm{s}\mathrm{f}\mathrm{f}\mathrm{i}^{\backslash f 77 }$) $R_{j}^{x}( \bigcup_{i\in I}\lambda_{i}(x)^{-1}(1))=\bigcup_{i\in I}\lambda_{i}(x)^{-1}(1)$ $(j\in I)$ 4. [K2] ( ) $V$ $<,$ $>$ $V$ $V$ $V=V_{-}\oplus V_{+}\text{ ^{}\backslash }\backslash <$, >lv-x $<,$ $> _{V\cross V}++$ $V$ $V$ $V=V_{-}\oplus V_{+}l-$ $V$ ( ) $<,$ $>_{V}\pm$ $<,$ $>_{V}=-\pm\pi_{V_{-}}^{*}<,$ $>+\pi_{v_{+}}^{*}<,$ $>$ $V$ $\pi v_{\pm}$ $V_{\pm}$ $V$ $V=V_{-}\oplus V_{+}\vee C_{\text{ }^{}\backslash }\backslash (V, <, >_{V_{\pm}})$ $<,$ $>_{V}\pm$ $V$ $(V, <, >)$ $M$ $(V, <, >_{V})$ $C^{k}$ $(k \geq 1)$ $M$ $x$ $T_{x}M$ $V$, $>_{V}$ $<,$ $>$ $M$ $(0, 2)$ $T^{*}M\otimes T^{*}M$ $C^{k}$ $M$ $x$ $<,$ $>_{x}$ $M$ $x$ $x$ $U$ $W_{+},$ $W_{-}$ 2 $C^{k}$ $(\Lambda/I, <, >)$ $C^{k}$ (PRH) $U$ $y$ $W_{\pm y}$ $(T_{y}M, <, >_{y})$ $(T_{?/}M, <, >_{y,w})\pm\nu$ $(V, <, >_{V})$

9 $\tilde{v}_{x}$ $\tilde{v}_{x}$ $A_{v}^{\mathrm{c}}$ $\text{ ^{}\backslash ^{\backslash }},\tau_{\text{ }J\mathrm{s}\text{ }^{}-}$ 170 $C^{\omega}$ $f$ $C^{k}$ $M$ $(V, <, >_{V})$ $C^{k}$ $(M, f^{*}<, >_{V})$ $C^{k-1}$ (ni, $f^{*}<,$ $>_{V}$ ) ( $M$ ) \text{ ^{}-}Tl2;\text{ ^{}\backslash }\mathrm{j}\underline{\wedge}\text{ }$ $f\#arrowarrow $_{arrow} $ $(V, <, >_{V})$ 0). $C^{k-1}$ $k=\infty$ codilllm $<\infty$ (F) $V=V_{-}\oplus V_{+}$ $M$ $\underline{(v,<,>_{v})\text{ }\mathit{0}\supset \text{ }}$ $(V, <, >v_{\pm})$ $M$ $f^{*}<,$ $>v_{\pm}$ $M$ $(V, <, >v)$ ( $\{0\}\cup\{\lambda_{i} i=1,2, \cdots\}( \lambda_{i} > \lambda_{i+1} $ $\lambda_{i}=-\lambda_{i+1}>0(i=1,2, \cdots))$ $A_{v}^{\mathrm{c}}$ $\lambda_{i}$ $i$ $\{0\}\cup\{\mu_{i} i=1,2, \cdots\}( \mu_{i} >$ $ \mu_{i+1} $ ( $ \mu_{i} = \mu_{i+1} $ $\arg\mu_{i}<\arg\mu_{i+1}$ $(i=1,2,$ ) $\cdots)$ $ _{\sqrt}\mathrm{a}$ $\mu_{i}$ $M$ $i$ (RI) $\Lambda I$ $M$ l $x(\in M)$ $M$ $M$ (CI) $M$ $M$ $x(\in M)$ $M$ (PCI) $M$ $T_{x}M^{\mathrm{c}}(x$ ) $T_{x}M^{\mathrm{c}}$ $T_{x}M^{\mathrm{c}}$ $\{e_{i}\}_{i=1}^{\infty}$ 1 (i) ( $i\in \mathrm{n}$ $ <f_{*}e_{i},$ $f_{*}e_{j}>_{v}^{h} =\delta_{\hat{i}j}(j=1,2, \cdots)$ $2\in \mathrm{n}$ 2 $>_{V}^{H}$ $<,$ $<,$ $>_{V}$ (ii) $\bigoplus_{i=1}^{\infty}\mathrm{s}\mathrm{p}\mathrm{a}11\{e_{i}\}=t_{x}m^{\mathrm{c}}$ $M$ $M$ 1 $x_{0}$ $A_{v}^{\mathrm{c}}(v\in T_{x}^{[perp]}M)$ $\mu_{i}^{x_{0}}(i\in I)$ $T_{x_{0}}M^{\mathrm{c}}=\overline{\bigoplus_{i\in I}E_{i}^{x_{0}}}$ $A_{v}^{\mathrm{c}} _{E_{i}^{x_{0}}}=\mu_{i}^{x_{0}}(v)\mathrm{i}\mathrm{d}(v\in T_{x_{0}}^{[perp]}M)$ $T_{x_{0}}^{[perp]}M^{\mathrm{c}}$ id

10 $E_{i}^{x_{0}}$ $(\begin{array}{lllll}g_{u}. g_{u}(0)=e k_{\mathrm{c}}^{\mathrm{y}}[\mathrm{o}^{\backslash ^{\backslash }} \epsilon_{\grave{\{}ffi 7_{\sim} Tg_{u*}^{-1}g_{u} =u}\backslash \mathrm{k}j\triangleright\wedge^{\backslash ^{\backslash }}J\triangleright \backslash J -ffl^{\backslash }H^{1}([0,1],G)\mathit{0}\supset\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT}_{\backslash }\end{array})$ $\text{ }$ 171 $\mu_{i}$ $\mu_{i}(x_{0})=\mu_{i}^{x_{0}}$ (TlMc $M$ $T_{x}M^{\mathrm{c}}$ $x$ $T_{x}M^{\mathrm{c}}=\overline{\bigoplus_{i\in I}E_{i}^{x}}$ $Aarrow _{E_{i}^{x}}=$ $(\mu_{i}(x))(v)\mathrm{i}\mathrm{d}(v\in T_{x}^{[perp]}M^{\mathrm{c}})$ $E_{i}(x)=E_{i}^{x}$ $M$ $E_{i}$ $\mu_{i}(i\in I)$ $ki$ $E_{i}$ $\mu_{i}$ 5. Parallel transport $\mathrm{a}\mathrm{d}(g)$ $\phi$ - $[0, 1]$ $\cross G$ $H^{0}-$ $H^{0}$ ([0, 1], ) $\phi(u)=g_{u}(1)$ $(u\in H^{0}([0,1], \text{ }))$ $(*)$ $e$ $g_{u} $ $\mathrm{g}$ $(t\in[0,1])$ $H^{0}([0,1], \text{ })$ $g_{u*}^{-1}g_{u} $ ( g ( $(g_{u*}^{-1}g_{u} )(t)=l_{g_{u}(t)_{*}}^{-1}(g_{u} (t))$ $\mathit{0}\supset \mathrm{p}\mathrm{a}\mathrm{r}\mathrm{a}\mathrm{l}\mathrm{l}\mathrm{e}\mathrm{l}$ $\phi$ G transport $\underline{5.1([\mathrm{k}\mathrm{i}\mathrm{t}\mathrm{e}])}\phi$ $H^{1}([0,1], G)$ ( $H^{0}$ $[0,1]$, ) $g*u=\mathrm{a}\mathrm{d}(g)u-g g_{*}^{-1}$ $(g\in H^{1}([0,1], G), u\in H^{0}([0,1], \text{ }))$ $\Omega_{e}(G)=$ $\{g\in H^{1}([0,1], G) g(0)=g(1)=e\},$ $P(G, e\cross G)=\{g\in H^{1}([0,1], G) g(0)=e\}$ $\underline{5.2([\mathrm{t}\mathrm{e}\mathrm{t}\mathrm{h}])}(\mathrm{i})h^{1}([0,1], G)$ $H^{0}([0,1], \text{ })$ (ii) $P(G, e\cross G)$ $H^{0}([0,1], \text{ })$ $u\in H^{0}$ ( $[0,1]$, ) (iii) $\phi(g*u)=g(0)\phi(u)g(1)^{-1}(g\in H^{1}([0,1], G),$ $\phi$ (iv) $H^{0}([0,1], \text{ })arrow G$ $\Omega_{e}(G)$ ( ) $\phi(u)=x_{0}\phi(v)x_{1}^{-1}$ ( $u,$ $v\in H^{0}$ ([0, 1], ), $x_{0},$ $x_{1}\in G$ ) $u=g*$ $v,$ $g(0)=x_{0}$ $g(1)=x_{1}$ $g\in H^{1}([0,1], G)$ $u\in H^{0}$ ([0, 1], ) $g\in P(G, e\cross G)$ $u=g*\hat{0}$ $\hat{0}$ 0

11 \mathfrak{p}}$ ([Kl]) $T_{u}H^{0}([0,1], \text{ })$ $\phi_{*u}(v)=(\int_{0}^{1}\mathrm{a}\mathrm{d}(g^{-1})vdt)g(1)_{*}^{-1}$ \phi * $u=g*\hat{0}$ $\#^{-}\ddagger$ $\phi$ $u$ ( $H^{0}$ ([0, 1], ) ( ) $X\in$ $\phi_{*\hat{0}}(\hat{x})=x$ $\hat{x}$ $\phi$ ( $\hat{x}$ $X$ ( $\in$ $=T_{e}G$ $\hat{0}$ ) $\hat{x}$ $X$ $T_{u}H^{0}([0,1], \text{ })$ ) ([K2]) parallel transport Ad(G)- $<,$ $>$ $=\mathrm{f}$ $(<)> _{\mathrm{f}\cross \mathrm{f}}$ $> _{\mathfrak{p}\cross $\mathfrak{p}$, $<,$ ) $\text{ }+=\mathfrak{p}$, - $<,$ $>_{9\pm}=-<,$ $=\mathrm{f}$ $> _{9-\cross \mathrm{g}-}+<,$ $> _{9+^{\mathrm{X}}9+}$ $L^{2}$ $[0, 1]$ $\text{ },$ $\text{ }+$ - $H^{0}$ ([0, 1], ), $H_{\pm}^{0}$ $H^{0}([0,1], \text{ _{}+})$ $H^{0}([0,1], \text{ _{}-})$ $H^{0}([0,1], \text{ })$ $H_{\pm}^{0}$ ( $H^{0}([0,1], \text{ _{}\pm})$ $<,$ $>_{0}$ $u,$ $v>_{0}= \int_{0}^{1}<u(t),$ $v(t)>dt$ ([0, 1], ), $H^{0}$ $<,$ $>_{0}$ ) $(H^{0}([0,1], \text{ })$, $<,$ $>_{0,H_{\pm}^{0}})$ $(H^{0}([0,1], \text{ }), <, >_{0})$ $H^{0}$ $\phi$ parallel transport ([0, 1], )\rightarrow G $(*)$ $\phi$ 5.4([K2]) 5.2, [K3] equifocal $(M, <, >)$ ( ) $M$ 2 $(M, <, >, J)$ (i) $<JX,$ $JY>=-<X,$ $Y>(\forall X, Y\in TM)$ (ii) $\nabla J=0$ ( $\nabla$ $<,$ $>$. ) $(M, <, >, J)$ $(N, <, >,\tilde{j})$ $\dim_{\mathrm{r}}m=2n$ $\overline{j}\circ f_{*}=f_{*}\circ J$ $f$ $f$ $(M, <, >, J)$ $(N, <, >,\tilde{j})$ exp $(M, <, >, J)$ $\exp^{[perp]}(av+bjv)(a, b\in \mathrm{r})$

12 $\overline{j}$ \mathrm{c}}$ $\mathfrak{p},$ 173 $(M, <, >, ])$ $a+b\sqrt{-1}$ $h$ $(M, <, >, J)$ 2 $H$ $H_{x}= \frac{1}{2n}\sum_{i=1}^{2n}<e_{i},$ $e_{i}>h(e_{i}, e_{i})$ $\{e_{i}\}_{i=1}^{2n}$ ( $T_{x}M$ ) $h(x, Y)=<X,$ $Y>H-<JX,$ $h$ $Y>\overline{J}H(\forall X, Y\in TM)$ $(\mathrm{r}^{2m},$ $(M, <, >, J)$ $<$ $>,\overline{j})$, $(\mathrm{r}^{2m}, <, >)$ $(x_{1}, \cdots, x_{2m})$ $< \frac{\partial}{\partial x_{i}}$ $\frac{\partial}{\partial x_{j}}>=(-1)^{i+1}\delta_{ij}$ $(i=1, \cdots, 2m)$, $\overline{\mathcal{j}}(\frac{\partial}{\partial x_{2i-1}})=\frac{\partial}{\partial x_{2i}}$ $\overline{\mathcal{j}}(\frac{\partial}{\partial x_{2i}})=-\frac{\partial}{\partial x_{2i-1}}(i=1, \cdots, m)$ $\mathrm{r}^{2m}$ $z_{i}=x_{2i-1}+\sqrt{-1}x_{2i}(i=1, \cdots, m)$ $z_{1}^{2}+\cdots+z_{m}^{2}=\kappa^{2}(\kappa\in \mathrm{c})$ $\kappa$ $S_{\mathrm{c}}^{m-1}(\kappa)$ $\mathrm{c}^{m}$ $(\mathrm{r}^{2m}, <, >,\tilde{j})$ $\mathrm{i}\mathrm{e}6.1$ ([K3]) $G/K$ ( ) $K^{\mathrm{c}}$ $\mathrm{f}^{\mathrm{c}},$ $\mathfrak{p}^{\mathrm{c}},$ $=\mathrm{f}$ $G^{\mathrm{c}},$ $\mathrm{f},$ $\mathfrak{p}$, $G,$ $K$ $G/K$ Ad(G) $\mathrm{a}\mathrm{d}(g^{\mathrm{c}})$, $>$ $G^{\mathrm{c}}$-, $>$ $G^{\mathrm{c}}/K^{\mathrm{c}}$ $T_{eK^{\mathrm{c}}}(G^{\mathrm{c}}/K^{\mathrm{c}})$ $\mathfrak{p}^{\mathrm{c}}(=\mathfrak{p}+\sqrt{-1}\mathfrak{p})$ $> _{\mathfrak{p}\mathrm{x}\mathfrak{p}}$ $<,$ $\mathfrak{p}$ $<,$ $> _{\sqrt{-1}\mathfrak{p}\cross\sqrt{-1}\mathfrak{p}}-$ $\sqrt{-1}\mathfrak{p}$ $<,$ $>$ Gc- $G^{\mathrm{c}}/K^{\mathrm{c}}$ $J_{eK^{\mathrm{c}}}(X+\sqrt{-1}Y)=-Y+\sqrt{-1}X(X, Y\in \mathfrak{p})$ $(G^{\mathrm{c}}/K^{\mathrm{c}}, <, >,\overline{j})$ $G^{\mathrm{c}}/K^{\mathrm{c}}$ $G/K$ \emptyset $(M, <, >, J)$ equifocal (AKE) $(M, <, >, J)$ $\tilde{v}_{x}(x\in M)$ $x$ ( $M$ ) $G^{\mathrm{c}}/K^{\mathrm{c}}$ $G/K$ $\iota$ $\iota$ $\iota(gk)=gk^{\mathrm{c}}(gk\in G/K)$ $G/K$ $M$ $M$ $M^{\mathrm{c}}$ $G^{\mathrm{c}}/K^{\mathrm{c}}$ $M=G x_{0}(g \subset$ $G)$ $G^{\prime_{\mathrm{C}}}\iota(x_{0})$ $G^{\prime ( $G $ ) $G^{\mathrm{c}}/K^{\mathrm{c}}$

13 $\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT}.\ovalbox{\tt\small REJECT}$ ( REJECT}\ovalbox{\tt\small REJECT}_{\backslash }4\mathrm{b}k\mathrm{D}^{\backslash \prime}\mp\lambda^{\backslash }\backslash _{\mathrm{o}}\backslash \simarrow(dk\doteqdot\backslash \mathit{1}^{\backslash }R\sigma)\ovalbox{\tt\small REJECT}\not\equiv\hslash\grave{\grave{>}}ffi^{\backslash }V)$ $\tilde{j}$ 174 $*\iota_{-}^{\tau}rx$ $7\ovalbox{\tt\small $\sim-\mathcal{x}\mathrm{b}km^{\mathrm{c}}k\ovalbox{\tt\small REJECT} \mathrm{b}_{\backslash }MU$ ) $\circ$ 62. (i) $M$ ( 2 $M^{\mathrm{c}}$ ) $\iota_{*}v$ ( ) $M^{\mathrm{c}}$ (ii) $M$ $M^{\mathrm{c}}$ equifocal equifocal $M^{\mathrm{c}}$ $G/K=H^{m}(-1)(=\{(x_{1}, \cdots, x_{m+1})\in \mathrm{r}_{1}^{m+1} -x_{1}^{2}+x_{2}^{2}+\cdots+x_{m+1}^{2}=$ $-1\},$ $M=S^{m-1}(1)(=\{(x_{1}, \cdots, x_{m+1}) \in H^{m}(-1) x_{1}=\sqrt{2}\}$ $G^{\mathrm{c}}/K^{\mathrm{c}}=$ $\{(z_{1}, \cdots, z_{m+1})\in \mathrm{c}^{m+1}=\mathrm{r}_{m+1}^{2m+2} -z_{1}^{2}+z_{2}^{2}+\cdots+z_{m+1}^{2}=-1\}(=h^{nl}(-1)^{\mathrm{c}})$, $M^{\mathrm{c}}=\{(z_{1}, \cdots, z_{m+1})\in \mathrm{c}^{m+1} z_{1}=\sqrt{2}, z_{2}^{2}+\cdots+z_{m+1}^{2}=1\}$ $G/K$ $G^{*}/K$ ( ) $G^{*\mathrm{c}}/K^{\mathrm{c}}$ $G^{\mathrm{c}}/K^{\mathrm{c}}$ $G^{*\mathrm{c}}/K^{\mathrm{c}}$ 7. [K3] $V$ $<,$ $>$ $V$ -id $J^{\tilde{2}}=$ $V$ $V$ $V V_{-}\oplus V_{+}$ $(V, <, >v_{\pm})$ $\tilde{j}v_{\pm}=v_{\mp}$ $(V, <, >,\tilde{j})$ $M$ $(V, <, >_{V})$ $M$ $(0, 2)$ $T^{*}M\otimes T^{*}M$ (C $M$ $x$, $>_{x}$ $M$ $(1, 1)$ $T^{*}M\otimes T\Lambda I$ (C $M$ $x$ $J_{x}$ $J_{x}^{2}=-\mathrm{i}\mathrm{d}$ $M$ $x$ $x$ $U$ 2 $(C^{\infty})$ $W_{+},$ $(M, <, >, J)$ $W_{-}$ (AKH) $U$ $(T_{l/}M, <, >_{y,w})\pm v$ $y$ $W_{\pm y}$ $(T_{y}M, <, >_{y})$ $(V, <, >_{V})$ $J_{y}W_{\pm y}=w_{\mp y}$ $f$ $M$ $(V, <, >_{V},\overline{J})$ $(C^{\infty})$ $(M, f^{*}<, >v)$ $\overline{j}(f_{*}t_{x}m)\subset f_{*}t_{x}m(x\in M)$

14 $\lambda_{i}$ $\tilde{v}_{x}$ 175 $\mathrm{c}\mathrm{o}\dim M<\infty$ $J\Leftrightarrow f_{*}\circ J=\overline{J}\circ $(M, <, >, ])$ ( $<,$ $>=f^{*}<,$ $>_{V}$, f_{*}$) $(V, <, >_{V},\overline{J})$ (AKF) $V=V_{-}\oplus V_{+}\vee C_{\text{ }^{}\backslash }\backslash (V, <, >_{V_{\pm}})$ $JV_{\pm}=V_{\mp}$ $ \backslash \mathrm{k}\mathrm{s}v$ $M$ A $f^{*}<,$ $>v_{\pm}$ $(V, <, >_{V},\overline{J})$ $(M, <, >, J)$ $(M, <, >, J)$ $A_{v}X=aX+bJX$ $X(\neq 0)$ $a+b\sqrt{-1}$ $X$ $a+b\sqrt{-1}$ 2 0 $\{\lambda_{i} i=1,2, \cdots\}$ ( $ \lambda_{i} > \lambda_{i+1} $ or $ \lambda_{i} = \lambda_{i+1} \ \arg\lambda_{i}<\arg\lambda_{i+1}$ ) $\lambda_{i}$ $ij$ $(M, <, >, J)$ (AKCI) $x\in M$ $M$ (AKPCI) $M$ A I $\Lambda I$ 1 $x_{0}$ $(M, <, >, J)$ $T_{x_{0}}M$ $A_{v}(v\in T_{x}^{[perp]}M)$ $T_{x_{0}}M=\overline{\bigoplus_{i\in I}E_{i}^{x_{0}}}$ $A_{v} _{E_{i}^{x_{0}}}={\rm Re}(\lambda_{i}^{x_{0}}(v))\mathrm{i}\mathrm{d}+{\rm Im}(\lambda_{i}^{x_{0}}(v))J(v\in T_{x_{0}}^{[perp]}M)$ $T_{x_{0}}M$ $\lambda_{i}^{x_{0}}(i\in I)$ $T_{x_{0}}M$ $\mathrm{i}\mathrm{d}$ $\lambda_{i}$ $E_{i}^{x_{0}}$ $T^{[perp]}M$ $T^{[perp]}M^{*}$ $M$ $x$ $T_{x}M$ $T_{x}M=\overline{\oplus E_{i}^{x}}$ $i\in I$ $\lambda_{i}(x_{0})=\lambda_{i}^{x_{0}}$ $A_{v} _{E_{i}^{x}}={\rm Re}((\lambda_{i}(x))(v))\mathrm{i}\mathrm{d}+$ Im((\lambda (x))(v))j $(v\in T_{x}^{[perp]}M)$ $\lambda_{i}(i\in I)$ $(M, <, >, J)$ $E_{i}(x)=E_{i}^{x}$ $M$ $l_{arrow} \text{ }\backslash \text{ }J$ $E_{i}$ \yen $\mathrm{f}\mathrm{f}\mathrm{i}^{\sigma} \neq_{j\mathrm{j}}^{t_{\underline{\backslash }}/\backslash \text{ }}$ $(M, <, >, J)$ $\mathrm{f}$ $E_{i}(i\in I)$

15 $\phi^{\mathrm{c}}$ \mathrm{c}}$ $V^{\mathrm{c}}$ $\text{ }$ $> _{\mathrm{g}_{+}^{\mathrm{c}}\cross \mathfrak{g}_{+}^{\mathrm{c}}}$ [K3] ( 5 ) parallel transport $\phi$ $H^{0}$ ( $[0,1]$, )\rightarrow G $V^{\mathrm{c}}$ $(V, <, >)$ $V$ ( $V^{\mathrm{c}}=V\oplus\sqrt{-1}V$) $> $ $<,$, $V^{\mathrm{c}}$ $>$ $\overline{j}$ $\tilde{j}x=\sqrt{-1}x(x\in V^{\mathrm{c}})$ $(V^{\mathrm{c}}, <, >,\tilde{j})$ $V_{\pm}$ $(V, <, >)$ $(V, <)>_{\pm})$ $V_{+}^{\mathrm{c}}=V_{+}+\sqrt{-1}V_{-},$ $V_{-}^{\mathrm{c}}=V_{-}+\sqrt{-1}V_{+}$ $(V^{\mathrm{c}}, <, > )$ $(V^{\mathrm{c}}, <, >_{V_{\pm}^{\mathrm{c}}} )$ $(V^{\mathrm{c}}, <, >,\tilde{j})$ $\overline{j}v_{\pm}^{\mathrm{c}}=v_{\mp}^{\mathrm{c}}$ $\underline{(v,<,,>)}$ \emptyset $(V, <, >)$ $M$ $M$ $(V^{\mathrm{c}}, <, >,\tilde{j})$ $M^{\mathrm{c}}$ $M=G u_{0}$ ( $G $ $(V,$ $<,$ $>)$ $u_{0}\in$ $V$ ) $G^{\prime \mathrm{c}}u_{0}$ $G^{\prime ( ) $(V^{\mathrm{c}}, <, >,\tilde{j})$ $M^{\mathrm{c}}$ $M$ 8.1. (i) $M$ $M^{\mathrm{c}}$ ( ) (ii) $M$ $M^{\mathrm{c}}$ $M^{\mathrm{c}}$ Ad(G) $<,$ $>$ $> _{\mathrm{f}\cross \mathrm{f}}$ ( $<,$ $> _{\mathfrak{p}\cross \mathfrak{p}}$, $<,$ ) c+ $=$ $\mathfrak{p}+\sqrt{-1}\mathrm{f},$ $\text{ _{}-}^{\mathrm{c}}=\mathrm{f}+\sqrt{-1}\mathfrak{p}$ $<,$ $>$ $> $, $<,$ $>_{\mathrm{g}_{\pm}^{\mathrm{c}}} =-<,$ $> _{9_{-^{\mathrm{X}}\mathfrak{g}_{-}^{\mathrm{c}}}^{\mathrm{c}}}+<,$ $L^{2}$ $H^{0}$ ([0, 1], $<$, > gc\pm [ $\mathrm{c}-$ $\text{ ^{}\mathrm{c}},$ $\text{ _{}+}^{\mathrm{c}}$ $[0, 1]$ $H^{0}([0,1], \text{ _{}+}^{\mathrm{c}}),$ $H^{0}([0,1], \text{ _{}-}^{\mathrm{c}})$ $H^{0}$ ), ( $[0,1]$, $H_{\pm}^{0,\mathrm{c}}$ $\mathrm{c}\pm$ ) $H^{0}([0,1], \text{ ^{}\mathrm{c}})$, $>_{0}$ $u,$ $v>_{0} = \int_{0}^{1}<u(t),$ $v(t)> dt$ $H_{\pm}^{0,\mathrm{c}}$ (7) ( ( $(H^{0}([0,1], \text{ ^{}\mathrm{c}}), <, >_{0} )$ $H^{0}$ $[0,1]$, c), $<,$ $>_{0,H_{\pm}^{0,\mathrm{c}}} )$ $(H^{0}([0,1], \text{ ^{}\mathrm{c}}), <, >_{0} )$ $H^{0}$ ([0, 1], c) $H^{0}$ ([0, 1], ( ([0, 1], c), $H^{0}$ $<,$ ) $)$ $\tilde{j}$ $\overline{j}u=\sqrt{-1}u(u\in$ $\tilde{j}$ $>_{0},\overline{J}$) ( ([0, 1], ), $H^{0}$ $<,$ $>_{0}$ ) ( 5 ) $>^{J}$ $\mathrm{a}\mathrm{d}(g^{\mathrm{c}})$ $<,$ $JX=\sqrt{-1}X(X\in \text{ ^{}\mathrm{c}})$ $G^{\mathrm{c}}$

16 $\text{ ^{}\mathrm{c}}$ $\phi^{\mathrm{c}}$ $\phi^{\mathrm{c}}$ $\mathrm{e}$ $\overline{\phi}^{\mathrm{c}}$ $\pi^{\mathrm{c}}$ 177 $G^{\mathrm{c}}$ $\mathrm{a}\mathrm{d}(g^{\mathrm{c}})$ Gi $G^{\mathrm{c}}$ parallel transport $H^{0}([0,1], \text{ ^{}\mathrm{c}})arrow G^{\mathrm{c}}$ $(*)$ ( 5 ) $G/K$ $G^{\mathrm{c}}/K^{\mathrm{c}}$ $\overline{\phi}^{\mathrm{c}}=\pi^{\mathrm{c}}\circ\phi^{\mathrm{c}}$ $\phi^{\mathrm{c}}$ $H^{0}$ ([0, 1], ) $arrow G^{\mathrm{c}}$ $G^{\mathrm{c}}arrow G^{\mathrm{c}}/K^{\mathrm{c}}$ $G^{\mathrm{c}}/K^{\mathrm{c}}$ equifocal $\mathrm{d}$ $\mathrm{d}$ 62, 8.1 $\mathrm{e}$ $M$ $G/K$ $\overline{\phi}$ $H^{0}$ ([0, 1], ) $arrow G/K$ $H^{0}$ $\tilde{\phi}^{-1}(m)^{\mathrm{c}}=\overline{\phi}^{\mathrm{c}-1}(m^{\mathrm{c}})$ ([0, 1], $arrow G^{\mathrm{c}}/K^{\mathrm{c}}$ ) $6.2,8.1,\mathrm{D}$ $\Leftrightarrow $M$ equifocal M^{\mathrm{c}}$ $l_{\backslash }2$ $(\dot{\mathrm{i}_{\mathfrak{l}}}j$ equifocal $\Leftrightarrow\tilde{\phi}^{\mathrm{c}-1}(M^{\mathrm{c}})$ $\Leftrightarrow\tilde{\phi}^{-1}(M)$ $r- \mathrm{m})^{f}=\tilde{p}^{\zeta-1}u\mathrm{t}^{t}\mathit{1}$ [BV] J. Berndt and L. Vanhecke, Curvature adapted submanifolds, Nihonkai Math. J. 3(1992) [Ch] U. Christ, Homogeneity of equifocal submanifolds, Doctoral thesis. [Co] H.S.M. Coxeter, Discrete groups generated by reflections, Ann. of Math. 35 (1934) [Hal] J. Hahn, Isoparametric hypersurfaces in the pseudo-riemannian space form, Math. Z. 187 (1984) [Ha2] J. Hahn, Isotropy representations of semi-simple symmetric spaces and hom0- geneous hypersurfaces, J. Math. Soc. Japan 40 (1988) [HL1] E. Heintze and X. Liu, A splitting theorem for isoparametric submanifolds in Hilbert space, J. Differential Geometry 45 (1997) [HL2] E. Heintze and X. Liu, Homogeneity of infinite dimensional isoparametric $su$ bmanifolds, Ann. of Math. 149 (1999) [HLO] E. Heintze, X. Liu and C. Olmos, Isoparametxic submanifolds and achevalleytype restriction theorem, in preparation.

17 [He] S. Helgason, Differential geometry, Lie groups and symmetric spaces, Academic Press, New York, $\mathrm{m}.\mathrm{c}$ [Hu]. Hughes, Complex reflection groups, Communications in Algebra 18 (1990) [L] S. Lang, Introduction to differentiable manifolds, Interscience, New York, $\mathrm{c}.\mathrm{l}$ [KiTe] C. King and Terng, Minimal submanifolds in path space, Global Analysis in Modern Mathematics (ed. K. Uhlenbeck), Publish or Perish 1993 pp [K1] N. Koike, On proper Fredholm submanifolds in ahilbert space arising from submanifolds in asymmetric space, to appear in Japan J. Math. [K2] N. Koike, Submanifold geometries in asymmetric space of non-compact type and apseudo-hilbert space, submitted for publication. [K3] N. Koike, Complex isoparametric submanifolds in the infinite dimensional anti- Kaehlerian space, submitted for publication. [MRT] Y. Maeda, S. Rosenberg and P. Tondeur, The mean curvature ofgauge orbits, Global Analysis in Modern Mathematics (ed. K. Uhlenbeck), Publish or Perish 1993 pp $\mathrm{m}.\mathrm{a}$ [Mal]. Magid, Isometric immersions of Lorentz space with parallel second fundamental forms, Tsukuba J. Math. 8(1984) $\mathrm{m}.\mathrm{a}$ [Ma2]. Magid, Lorentzian isoparametric hypersurfaces, Pacific J. Math. 118 (1985) [Mi],, 53(2001) [0] B. O Neill, Semi-Riemannian Geometry, with Applications to Relativity, Academic Press, New York, $\mathrm{r}.\mathrm{s}$ [P] Palais, Morse theory on Hilbert manifolds, Topology 2(1963) [PiTh] U. Pinkall and G. Thorbergsson, Examples of infinite dimensional isoparametric submanifolds, Math. Z. 205(1990) [S1] S. Smale, Morse theory and anon-linear generalization of the Dirichlet problem, Ann. of Math. 80(1964) [S2] S. Smale, An inhnite dimensional version of Sard s theorem, Amer. J. Math. 87(1965) $\mathrm{c}.\mathrm{l}$ [Tel] Terng, Isoparametric submanifolds and their coxeter groups, J. DiffereIltial Geometry21(1985) $\mathrm{c}.\mathrm{l}$ [Te2]. Terng, Proper Fredholm submanifolds of Hilbert space, J. Differential Geometry 29(1989) $\mathrm{c}.\mathrm{l}$ [TeTh] Terng and G. Thorbergsson, Submanifold geometry in symmetric spaces, J. Differential Geometry 42(1995)

42 1 ( ) 7 ( ) $\mathrm{s}17$ $-\supset$ 2 $(1610?\sim 1624)$ 8 (1622) (3 ), 4 (1627?) 5 (1628) ( ) 6 (1629) ( ) 8 (1631) (2 ) $\text{ }$ ( ) $\text{

42 1 ( ) 7 ( ) $\mathrm{s}17$ $-\supset$ 2 $(1610?\sim 1624)$ 8 (1622) (3 ), 4 (1627?) 5 (1628) ( ) 6 (1629) ( ) 8 (1631) (2 ) $\text{ }$ ( ) $\text{ 26 [\copyright 0 $\perp$ $\perp$ 1064 1998 41-62 41 REJECT}$ $=\underline{\not\equiv!}\xi*$ $\iota_{arrow}^{-}\approx 1,$ $\ovalbox{\tt\small ffl $\mathrm{y}

More information

compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) a, Σ a {0} a 3 1

compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) a, Σ a {0} a 3 1 014 5 4 compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) 1 1.1. a, Σ a {0} a 3 1 (1) a = span(σ). () α, β Σ s α β := β α,β α α Σ. (3) α, β

More information

, CH n. CH n, CP n,,,., CH n,,. RH n ( Cartan )., CH n., RH n CH n,,., RH n, CH n., RH n ( ), CH n ( 1.1 (v), (vi) )., RH n,, CH n,., CH n,. 1.2, CH n

, CH n. CH n, CP n,,,., CH n,,. RH n ( Cartan )., CH n., RH n CH n,,., RH n, CH n., RH n ( ), CH n ( 1.1 (v), (vi) )., RH n,, CH n,., CH n,. 1.2, CH n ( ), Jürgen Berndt,.,. 1, CH n.,,. 1.1 ([6]). CH n (n 2), : (i) CH k (k = 0,..., n 1) tube. (ii) RH n tube. (iii). (iv) ruled minimal, equidistant. (v) normally homogeneous submanifold F k tube. (vi) normally

More information

40 $\mathrm{e}\mathrm{p}\mathrm{r}$ 45

40 $\mathrm{e}\mathrm{p}\mathrm{r}$ 45 ro 980 1997 44-55 44 $\mathrm{i}\mathrm{c}\mathrm{h}\mathrm{i}$ $-$ (Ko Ma $\iota_{\mathrm{s}\mathrm{u}\mathrm{n}}0$ ) $-$. $-$ $-$ $-$ $-$ $-$ $-$ 40 $\mathrm{e}\mathrm{p}\mathrm{r}$ 45 46 $-$. $\backslash

More information

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,.

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,. R-space ( ) Version 1.1 (2012/02/29) i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,. ii 1 Lie 1 1.1 Killing................................

More information

$\mathbb{h}_{1}^{3}(-c^{2})$ 12 $([\mathrm{a}\mathrm{a}1 [\mathrm{a}\mathrm{a}3])$ CMC Kenmotsu-Bryant CMC $\mathrm{l}^{3}$ Minkowski $H(\neq 0)$ Kenm

$\mathbb{h}_{1}^{3}(-c^{2})$ 12 $([\mathrm{a}\mathrm{a}1 [\mathrm{a}\mathrm{a}3])$ CMC Kenmotsu-Bryant CMC $\mathrm{l}^{3}$ Minkowski $H(\neq 0)$ Kenm 995 1997 11-27 11 3 3 Euclid (Reiko Aiyama) (Kazuo Akutagawa) (CMC) $H$ ( ) $H=0$ ( ) Weierstrass $g$ 1 $H\neq 0$ Kenmotsu $([\mathrm{k}])$ $\mathrm{s}^{2}$ 2 $g$ CMC $P$ $([\mathrm{b}])$ $g$ Gauss Bryant

More information

Title Compactification theorems in dimens Topology and Related Problems) Author(s) 木村, 孝 Citation 数理解析研究所講究録 (1996), 953: Issue Date URL

Title Compactification theorems in dimens Topology and Related Problems) Author(s) 木村, 孝 Citation 数理解析研究所講究録 (1996), 953: Issue Date URL Title Compactification theorems in dimens Topology and Related Problems Authors 木村 孝 Citation 数理解析研究所講究録 1996 953 73-92 Issue Date 1996-06 URL http//hdlhandlenet/2433/60394 Right Type Departmental Bulletin

More information

110 $\ovalbox{\tt\small REJECT}^{\mathrm{i}}1W^{\mathrm{p}}\mathrm{n}$ 2 DDS 2 $(\mathrm{i}\mathrm{y}\mu \mathrm{i})$ $(\mathrm{m}\mathrm{i})$ 2

110 $\ovalbox{\tt\small REJECT}^{\mathrm{i}}1W^{\mathrm{p}}\mathrm{n}$ 2 DDS 2 $(\mathrm{i}\mathrm{y}\mu \mathrm{i})$ $(\mathrm{m}\mathrm{i})$ 2 1539 2007 109-119 109 DDS (Drug Deltvery System) (Osamu Sano) $\mathrm{r}^{\mathrm{a}_{w^{1}}}$ $\mathrm{i}\mathrm{h}$ 1* ] $\dot{n}$ $\mathrm{a}g\mathrm{i}$ Td (Yisaku Nag$) JST CREST 1 ( ) DDS ($\mathrm{m}_{\mathrm{u}\mathrm{g}}\propto

More information

2016 Course Description of Undergraduate Seminars (2015 12 16 ) 2016 12 16 ( ) 13:00 15:00 12 16 ( ) 1 21 ( ) 1 13 ( ) 17:00 1 14 ( ) 12:00 1 21 ( ) 15:00 1 27 ( ) 13:00 14:00 2 1 ( ) 17:00 2 3 ( ) 12

More information

1 1, 2016 D B. 1.1,.,,. (1). (2). (3) Milnor., (1) (2)., (3). 1.2,.,, ( )..,.,,. 1.3, webpage,.,,.

1 1, 2016 D B. 1.1,.,,. (1). (2). (3) Milnor., (1) (2)., (3). 1.2,.,, ( )..,.,,. 1.3, webpage,.,,. 1 1, 2016 D B. 1.1,.,,. (1). (2). (3) Milnor., (1) (2)., (3). 1.2,.,, ( )..,.,,. 1.3, 2015. webpage,.,,. 2 1 (1),, ( ). (2),,. (3),.,, : Hashinaga, T., Tamaru, H.: Three-dimensional solvsolitons and the

More information

$\lambda$ INFINITELY MANY SOLUTIONS OF NONLINEAR ELLIPTIC EQUATIONS WITH CRITICAL SOBOLEV EXPONENT (SHOICHIRO TAKAKUWA) 1. INTROD

$\lambda$ INFINITELY MANY SOLUTIONS OF NONLINEAR ELLIPTIC EQUATIONS WITH CRITICAL SOBOLEV EXPONENT (SHOICHIRO TAKAKUWA) 1. INTROD INFINITELY MANY SOLUTIONS OF NONLIN TitleELLIPTIC EQUATIONS WITH CRITICAL SO EXPONENT Author(s) 高桑, 昇一郎 Citation 数理解析研究所講究録 (1991), 770: 171-178 Issue Date 1991-11 URL http://hdl.handle.net/2433/82356

More information

$6\mathrm{V}\mathrm{I}\mathrm{I}\mathrm{I}$ (p (Kazuhiro Sakuma) Dept. of Math. and Phys., Kinki Univ.,. (,,.) \S 0. $C^{\infty

$6\mathrm{V}\mathrm{I}\mathrm{I}\mathrm{I}$ (p (Kazuhiro Sakuma) Dept. of Math. and Phys., Kinki Univ.,. (,,.) \S 0. $C^{\infty $6\mathrm{V}\mathrm{I}\mathrm{I}\mathrm{I}$ (p 1233 2001 111-121 111 (Kazuhiro Sakuma) Dept of Math and Phys Kinki Univ ( ) \S 0 $M^{n}$ $N^{p}$ $n$ $p$ $f$ $M^{n}arrow N^{p}$ $n

More information

等質空間の幾何学入門

等質空間の幾何学入門 2006/12/04 08 tamaru@math.sci.hiroshima-u.ac.jp i, 2006/12/04 08. 2006, 4.,,.,,.,.,.,,.,,,.,.,,.,,,.,. ii 1 1 1.1 :................................... 1 1.2........................................ 2 1.3......................................

More information

: ( ) (Takeo Suzuki) Kakegawa City Education Center Sizuoka Prif ] [ 18 (1943 ) $A $ ( : ),, 1 18, , 3 $A$,, $C$

: ( ) (Takeo Suzuki) Kakegawa City Education Center Sizuoka Prif ] [ 18 (1943 ) $A $ ( : ),, 1 18, , 3 $A$,, $C$ Title 九州大学所蔵 : 中国暦算書について ( 数学史の研究 ) Author(s) 鈴木, 武雄 Citation 数理解析研究所講究録 (2009), 1625: 244-253 Issue Date 2009-01 URL http://hdlhandlenet/2433/140284 Right Type Departmental Bulletin Paper Textversion

More information

14 6. $P179$ 1984 r ( 2 $arrow$ $arrow$ F 7. $P181$ 2011 f ( 1 418[? [ 8. $P243$ ( $\cdot P260$ 2824 F ( 1 151? 10. $P292

14 6. $P179$ 1984 r ( 2 $arrow$ $arrow$ F 7. $P181$ 2011 f ( 1 418[? [ 8. $P243$ ( $\cdot P260$ 2824 F ( 1 151? 10. $P292 1130 2000 13-28 13 USJC (Yasukuni Shimoura I. [ ]. ( 56 1. 78 $0753$ [ ( 1 352[ 2. 78 $0754$ [ ( 1 348 3. 88 $0880$ F ( 3 422 4. 93 $0942$ 1 ( ( 1 5. $P121$ 1281 F ( 1 278 [ 14 6. $P179$ 1984 r ( 2 $arrow$

More information

Global phase portraits of planar autonomous half-linear systems (Masakazu Onitsuka) (Aya Yamaguchi) (Jitsuro Sugie) Department of M

Global phase portraits of planar autonomous half-linear systems (Masakazu Onitsuka) (Aya Yamaguchi) (Jitsuro Sugie) Department of M 1445 2005 88-98 88 Global phase portraits of planar autonomous half-linear systems (Masakazu Onitsuka) (Aya Yamaguchi) (Jitsuro Sugie) Department of Mathematics Shimane University 1 2 $(\mathit{4}_{p}(\dot{x}))^{\circ}+\alpha\phi_{p}(\dot{x})+\beta\phi_{p}(x)=0$

More information

44 $d^{k}$ $\alpha^{k}$ $k,$ $k+1$ k $k+1$ dk $d^{k}=- \frac{1}{h^{k}}\nabla f(x)k$ (2) $H^{k}$ Hesse k $\nabla^{2}f(x^{k})$ $ff^{k+1}=h^{k}+\triangle

44 $d^{k}$ $\alpha^{k}$ $k,$ $k+1$ k $k+1$ dk $d^{k}=- \frac{1}{h^{k}}\nabla f(x)k$ (2) $H^{k}$ Hesse k $\nabla^{2}f(x^{k})$ $ff^{k+1}=h^{k}+\triangle Method) 974 1996 43-54 43 Optimization Algorithm by Use of Fuzzy Average and its Application to Flow Control Hiroshi Suito and Hideo Kawarada 1 (Steepest Descent Method) ( $\text{ }$ $\mathrm{m}\mathrm{e}\mathrm{t}\mathrm{h}_{0}\mathrm{d}$

More information

Title 疑似乱数生成器の安全性とモンテカルロ法 ( 確率数値解析に於ける諸問題,VI) Author(s) 杉田, 洋 Citation 数理解析研究所講究録 (2004), 1351: Issue Date URL

Title 疑似乱数生成器の安全性とモンテカルロ法 ( 確率数値解析に於ける諸問題,VI) Author(s) 杉田, 洋 Citation 数理解析研究所講究録 (2004), 1351: Issue Date URL Title 疑似乱数生成器の安全性とモンテカルロ法 ( 確率数値解析に於ける諸問題,VI) Author(s) 杉田, 洋 Citation 数理解析研究所講究録 (2004), 1351: 33-40 Issue Date 2004-01 URL http://hdlhandlenet/2433/64973 Right Type Departmental Bulletin Paper Textversion

More information

105 $\cdot$, $c_{0},$ $c_{1},$ $c_{2}$, $a_{0},$ $a_{1}$, $\cdot$ $a_{2}$,,,,,, $f(z)=a_{0}+a_{1}z+a_{2}z^{2}+\cdots$ (16) $z=\emptyset(w)=b_{1}w+b_{2

105 $\cdot$, $c_{0},$ $c_{1},$ $c_{2}$, $a_{0},$ $a_{1}$, $\cdot$ $a_{2}$,,,,,, $f(z)=a_{0}+a_{1}z+a_{2}z^{2}+\cdots$ (16) $z=\emptyset(w)=b_{1}w+b_{2 1155 2000 104-119 104 (Masatake Mori) 1 $=\mathrm{l}$ 1970 [2, 4, 7], $=-$, $=-$,,,, $\mathrm{a}^{\mathrm{a}}$,,, $a_{0}+a_{1}z+a_{2}z^{2}+\cdots$ (11), $z=\alpha$ $c_{0}+c_{1}(z-\alpha)+c2(z-\alpha)^{2}+\cdots$

More information

106 (2 ( (1 - ( (1 (2 (1 ( (1(2 (3 ( - 10 (2 - (4 ( 30 (? (5 ( 48 (3 (6 (

106 (2 ( (1 - ( (1 (2 (1 ( (1(2 (3 ( - 10 (2 - (4 ( 30 (? (5 ( 48 (3 (6 ( 1195 2001 105-115 105 Kinki Wasan Seminar Tatsuo Shimano, Yasukuni Shimoura, Saburo Tamura, Fumitada Hayama A 2 (1574 ( 8 7 17 8 (1622 ( 1 $(1648\text{ }$ - 77 ( 1572? (1 ( ( (1 ( (1680 1746 (6 $-$.. $\square

More information

可積分測地流を持つエルミート多様体のあるクラスについて (幾何学的力学系の新展開)

可積分測地流を持つエルミート多様体のあるクラスについて (幾何学的力学系の新展開) 1774 2012 63-77 63 Kazuyoshi Kiyoharal Department of Mathematics Okayama University 1 (Hermite-Liouville ) Hermite-Liouville (H-L) Liouville K\"ahler-Liouville (K-L $)$ Liouville Liouville ( FLiouville-St\"ackel

More information

Explicit form of the evolution oper TitleCummings model and quantum diagonal (Dynamical Systems and Differential Author(s) 鈴木, 達夫 Citation 数理解析研究所講究録

Explicit form of the evolution oper TitleCummings model and quantum diagonal (Dynamical Systems and Differential Author(s) 鈴木, 達夫 Citation 数理解析研究所講究録 Explicit form of the evolution oper TitleCummings model and quantum diagonal (Dynamical Systems and Differential Author(s) 鈴木 達夫 Citation 数理解析研究所講究録 (2004) 1408: 97-109 Issue Date 2004-12 URL http://hdlhandlenet/2433/26142

More information

(Kazuyuki Hasegawa) Department of Mathematics Faculty of Science Science University of Tokyo 1 ff ( ) ([2] [3] [4] [6]) $\nabla$

(Kazuyuki Hasegawa) Department of Mathematics Faculty of Science Science University of Tokyo 1 ff ( ) ([2] [3] [4] [6]) $\nabla$ Title 二次超曲面へのアファインはめ込みの基本定理とその応用 ( 部分多様体の幾何学 ) Author(s) 長谷川 和志 Citation 数理解析研究所講究録 (2001) 1206 107-113 Issue Date 2001-05 URL http//hdlhandlenet/2433/41034 Right Type Departmental Bulletin Paper Textversion

More information

情報教育と数学の関わり

情報教育と数学の関わり 1801 2012 68-79 68 (Hideki Yamasaki) Hitotsubashi University $*$ 1 3 [1]. 1. How To 2. 3. [2]. [3]. $*E-$ -mail:yamasaki.hideki@r.hit-u.ac.jp 2 1, ( ) AND $(\wedge)$, $OR$ $()$, NOT $(\neg)$ ( ) [4] (

More information

第86回日本感染症学会総会学術集会後抄録(II)

第86回日本感染症学会総会学術集会後抄録(II) χ μ μ μ μ β β μ μ μ μ β μ μ μ β β β α β β β λ Ι β μ μ β Δ Δ Δ Δ Δ μ μ α φ φ φ α γ φ φ γ φ φ γ γδ φ γδ γ φ φ φ φ φ φ φ φ φ φ φ φ φ α γ γ γ α α α α α γ γ γ γ γ γ γ α γ α γ γ μ μ κ κ α α α β α

More information

main.dvi

main.dvi SGC - 70 2, 3 23 ɛ-δ 2.12.8 3 2.92.13 4 2 3 1 2.1 2.102.12 [8][14] [1],[2] [4][7] 2 [4] 1 2009 8 1 1 1.1... 1 1.2... 4 1.3 1... 8 1.4 2... 9 1.5... 12 1.6 1... 16 1.7... 18 1.8... 21 1.9... 23 2 27 2.1

More information

1 M = (M, g) m Riemann N = (N, h) n Riemann M N C f : M N f df : T M T N M T M f N T N M f 1 T N T M f 1 T N C X, Y Γ(T M) M C T M f 1 T N M Levi-Civi

1 M = (M, g) m Riemann N = (N, h) n Riemann M N C f : M N f df : T M T N M T M f N T N M f 1 T N T M f 1 T N C X, Y Γ(T M) M C T M f 1 T N M Levi-Civi 1 Surveys in Geometry 1980 2 6, 7 Harmonic Map Plateau Eells-Sampson [5] Siu [19, 20] Kähler 6 Reports on Global Analysis [15] Sacks- Uhlenbeck [18] Siu-Yau [21] Frankel Siu Yau Frankel [13] 1 Surveys

More information

Title DEA ゲームの凸性 ( 数理最適化から見た 凸性の深み, 非凸性の魅惑 ) Author(s) 中林, 健 ; 刀根, 薫 Citation 数理解析研究所講究録 (2004), 1349: Issue Date URL

Title DEA ゲームの凸性 ( 数理最適化から見た 凸性の深み, 非凸性の魅惑 ) Author(s) 中林, 健 ; 刀根, 薫 Citation 数理解析研究所講究録 (2004), 1349: Issue Date URL Title DEA ゲームの凸性 ( 数理最適化から見た 凸性の深み 非凸性の魅惑 ) Author(s) 中林 健 ; 刀根 薫 Citation 数理解析研究所講究録 (2004) 1349: 204-220 Issue Date 2004-01 URL http://hdl.handle.net/2433/24871 Right Type Departmental Bulletin Paper

More information

( $?^{-\mathrm{b}}$ 17 ( C 152) km ( ) 14 ( ) 5 ( ) $(?^{-}219)$ $\mathrm{m}$ 247 ( ) 6 1 5km

( $?^{-\mathrm{b}}$ 17 ( C 152) km ( ) 14 ( ) 5 ( ) $(?^{-}219)$ $\mathrm{m}$ 247 ( ) 6 1 5km 1257 2002 150-162 150 Abstract When was the Suanshushu edited? * JOCHI Shigeru The oldest mathematical book in China whose name is the Suanshushu was unearthed in the Zhangjiashan ruins, Jiangsha City,

More information

Connection problem for Birkhoff-Okubo equations (Yoshishige Haraoka) Department of Mathematics Kumamoto University 50. $\Lambda$ $n\c

Connection problem for Birkhoff-Okubo equations (Yoshishige Haraoka) Department of Mathematics Kumamoto University 50. $\Lambda$ $n\c Title Connection problem for Birkhoff-Oku systems and hypergeometric systems) Author(s) 原岡 喜重 Citation 数理解析研究所講究録 (2001) 1239: 1-10 Issue Date 2001-11 URL http://hdl.handle.net/2433/41585 Right Type Departmental

More information

数理解析研究所講究録 第1908巻

数理解析研究所講究録 第1908巻 1908 2014 78-85 78 1 D3 1 [20] Born [18, 21] () () RIMS ( 1834) [19] ( [16] ) [1, 23, 24] 2 $\Vert A\Vert^{2}$ $c*$ - $*:\mathcal{x}\ni A\mapsto A^{*}\in \mathcal{x}$ $\Vert A^{*}A\Vert=$ $\Vert\cdot\Vert$

More information

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,,

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,, 2012 10 13 1,,,.,,.,.,,. 2?.,,. 1,, 1. (θ, φ), θ, φ (0, π),, (0, 2π). 1 0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ).

More information

時間遅れをもつ常微分方程式の基礎理論入門 (マクロ経済動学の非線形数理)

時間遅れをもつ常微分方程式の基礎理論入門 (マクロ経済動学の非線形数理) 1713 2010 72-87 72 Introduction to the theory of delay differential equations (Rinko Miyazaki) Shizuoka University 1 $\frac{dx(t)}{dt}=ax(t)$ (11), $(a$ : $a\neq 0)$ 11 ( ) $t$ (11) $x$ 12 $t$ $x$ $x$

More information

CAPELLI (T\^o $\mathrm{r}\mathrm{u}$ UMEDA) MATHEMATICS, KYOTO UNIVERSITY DEPARTMENT $\mathrm{o}\mathrm{p}$ $0$:, Cape i,.,.,,,,.,,,.

CAPELLI (T\^o $\mathrm{r}\mathrm{u}$ UMEDA) MATHEMATICS, KYOTO UNIVERSITY DEPARTMENT $\mathrm{o}\mathrm{p}$ $0$:, Cape i,.,.,,,,.,,,. 1508 2006 1-11 1 CAPELLI (T\^o $\mathrm{r}\mathrm{u}$ UMEDA) MATHEMATICS KYOTO UNIVERSITY DEPARTMENT $\mathrm{o}\mathrm{p}$ $0$: Cape i Capelli 1991 ( ) (1994 ; 1998 ) 100 Capelli Capelli Capelli ( ) (

More information

76 20 ( ) (Matteo Ricci ) Clavius 34 (1606) 1607 Clavius (1720) ( ) 4 ( ) \sim... ( 2 (1855) $-$ 6 (1917)) 2 (1866) $-4$ (1868)

76 20 ( ) (Matteo Ricci ) Clavius 34 (1606) 1607 Clavius (1720) ( ) 4 ( ) \sim... ( 2 (1855) $-$ 6 (1917)) 2 (1866) $-4$ (1868) $\mathrm{p}_{\mathrm{r}\mathrm{o}\mathrm{g}\mathrm{r}\mathrm{a}}\mathrm{m}\dagger 1$ 1064 1998 75-91 75 $-$ $\text{ }$ (Osamu Kota) ( ) (1) (2) (3) 1. 5 (1872) 5 $ \mathrm{e}t\mathrm{l}\mathrm{a}\mathrm{n}\mathrm{g}\mathrm{e}\mathrm{r}$

More information

3 de Sitter CMC 1 (Shoichi Fujimori) Department of Mathematics, Kobe University 3 de Sitter S (CMC 1), 1 ( [AA]). 3 H 3 CMC 1 Bryant ([B, UY1]).

3 de Sitter CMC 1 (Shoichi Fujimori) Department of Mathematics, Kobe University 3 de Sitter S (CMC 1), 1 ( [AA]). 3 H 3 CMC 1 Bryant ([B, UY1]). 3 de Sitter CMC 1 (Shoichi Fujimori) Department of Mathematics, Kobe University 3 de Sitter S 3 1 1 (CMC 1), 1 ( [AA]) 3 H 3 CMC 1 Bryant ([B, UY1]) H 3 CMC 1, Bryant ([CHR, RUY1, RUY2, UY1, UY2, UY3,

More information

60 1: (a) Navier-Stokes (21) kl) Fourier 2 $\tilde{u}(k_{1})$ $\tilde{u}(k_{4})$ $\tilde{u}(-k_{1}-k_{4})$ 2 (b) (a) 2 $C_{ijk}$ 2 $\tilde{u}(k_{1})$

60 1: (a) Navier-Stokes (21) kl) Fourier 2 $\tilde{u}(k_{1})$ $\tilde{u}(k_{4})$ $\tilde{u}(-k_{1}-k_{4})$ 2 (b) (a) 2 $C_{ijk}$ 2 $\tilde{u}(k_{1})$ 1051 1998 59-69 59 Reynolds (SUSUMU GOTO) (SHIGEO KIDA) Navier-Stokes $\langle$ Reynolds 2 1 (direct-interaction approximation DIA) Kraichnan [1] (\S 31 ) Navier-Stokes Navier-Stokes [2] 2 Navier-Stokes

More information

(Kazuo Iida) (Youichi Murakami) 1,.,. ( ).,,,.,.,.. ( ) ( ),,.. (Taylor $)$ [1].,.., $\mathrm{a}1[2]$ Fermigier et $56\mathrm{m}

(Kazuo Iida) (Youichi Murakami) 1,.,. ( ).,,,.,.,.. ( ) ( ),,.. (Taylor $)$ [1].,.., $\mathrm{a}1[2]$ Fermigier et $56\mathrm{m} 1209 2001 223-232 223 (Kazuo Iida) (Youichi Murakami) 1 ( ) ( ) ( ) (Taylor $)$ [1] $\mathrm{a}1[2]$ Fermigier et $56\mathrm{m}\mathrm{m}$ $02\mathrm{m}\mathrm{m}$ Whitehead and Luther[3] $\mathrm{a}1[2]$

More information

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i 1. A. M. Turing [18] 60 Turing A. Gierer H. Meinhardt [1] : (GM) ) a t = D a a xx µa + ρ (c a2 h + ρ 0 (0 < x < l, t > 0) h t = D h h xx νh + c ρ a 2 (0 < x < l, t > 0) a x = h x = 0 (x = 0, l) a = a(x,

More information

$2_{\text{ }}$ weight Duke-Imamogle weight Saito-Kurokawa lifting ( ) weight $2k-2$ ( : ) Siegel $k$ $k$ Hecke compatible liftin

$2_{\text{ }}$ weight Duke-Imamogle weight Saito-Kurokawa lifting ( ) weight $2k-2$ ( : ) Siegel $k$ $k$ Hecke compatible liftin $2_{\text{ }}$ weight 1103 1999 187-199 187 Duke-Imamogle weight Saito-Kurokawa lifting ( ) weight $2k-2$ ( : ) Siegel $k$ $k$ Hecke compatible lifting $([\mathrm{k}\mathrm{u}])$ 1980 Maass [Ma2], Andrianov

More information

(Osamu Ogurisu) V. V. Semenov [1] :2 $\mu$ 1/2 ; $N-1$ $N$ $\mu$ $Q$ $ \mu Q $ ( $2(N-1)$ Corollary $3.5_{\text{ }}$ Remark 3

(Osamu Ogurisu) V. V. Semenov [1] :2 $\mu$ 1/2 ; $N-1$ $N$ $\mu$ $Q$ $ \mu Q $ ( $2(N-1)$ Corollary $3.5_{\text{ }}$ Remark 3 Title 異常磁気能率を伴うディラック方程式 ( 量子情報理論と開放系 ) Author(s) 小栗栖, 修 Citation 数理解析研究所講究録 (1997), 982: 41-51 Issue Date 1997-03 URL http://hdl.handle.net/2433/60922 Right Type Departmental Bulletin Paper Textversion

More information

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c GL 2 1 Lie SL(2, R) GL(2, A) Gelbart [Ge] 1 3 [Ge] Jacquet-Langlands [JL] Bump [Bu] Borel([Bo]) ([Ko]) ([Mo]) [Mo] 2 2.1 H = {z C Im(z) > 0} Γ SL(2, Z) Γ N N Γ (N) = {γ SL(2, Z) γ = 1 2 mod N} g SL(2,

More information

Hierarchical model and triviality of $\phi_{4}^{4}$ abstract (Takashi Hara) (Tetsuya Hattori) $\mathrm{w}\mathrm{a}\mathrm{t}\mat

Hierarchical model and triviality of $\phi_{4}^{4}$ abstract (Takashi Hara) (Tetsuya Hattori) $\mathrm{w}\mathrm{a}\mathrm{t}\mat 1134 2000 70-80 70 Hierarchical model and triviality of $\phi_{4}^{4}$ abstract (Takashi Hara) (Tetsuya Hattori) $\mathrm{w}\mathrm{a}\mathrm{t}\mathrm{a}\mathrm{n}\mathrm{a}\mathrm{b}\mathrm{e}$ (Hiroshi

More information

数学月間活動から見た教育数学

数学月間活動から見た教育数学 1801 2012 48-64 48 () (Katsuhiko Tani) 1 1.1 1.2 2 2.1 2. 2 MAM $-$ 2. 3 MMP 2. 3. 1 $MMP$ 2. 3. 2 Plus 37 (2005 12 ) 3 3.1 3.2 ( ) 4 1 3 $\sim$ 1 1.1 [1] 5000 $x$ 19 49 100 [2]. : (1676 2 5 ) 1.2 [3]

More information

ADM-Hamiltonian Cheeger-Gromov 3. Penrose

ADM-Hamiltonian Cheeger-Gromov 3. Penrose ADM-Hamiltonian 1. 2. Cheeger-Gromov 3. Penrose 0. ADM-Hamiltonian (M 4, h) Einstein-Hilbert M 4 R h hdx L h = R h h δl h = 0 (Ric h ) αβ 1 2 R hg αβ = 0 (Σ 3, g ij ) (M 4, h ij ) g ij, k ij Σ π ij = g(k

More information

Variational methods in Orlicz-Sobolev spaces to quasilinear elliptic equations*, (Nobuyoshi FUKAGAI) Department of Mathematics, Fac

Variational methods in Orlicz-Sobolev spaces to quasilinear elliptic equations*, (Nobuyoshi FUKAGAI) Department of Mathematics, Fac 1405 2004 14-30 14 Variational methods in Orlicz-Sobolev spaces to quasilinear elliptic equations*, (Nobuyoshi FUKAGAI) Department of Mathematics, Faculty of Engineering Tokushima University (Masayuki

More information

$\hat{\grave{\grave{\lambda}}}$ $\grave{\neg}\backslash \backslash ^{}4$ $\approx \mathrm{t}\triangleleft\wedge$ $10^{4}$ $10^{\backslash }$ $4^{\math

$\hat{\grave{\grave{\lambda}}}$ $\grave{\neg}\backslash \backslash ^{}4$ $\approx \mathrm{t}\triangleleft\wedge$ $10^{4}$ $10^{\backslash }$ $4^{\math $\mathrm{r}\mathrm{m}\mathrm{s}$ 1226 2001 76-85 76 1 (Mamoru Tanahashi) (Shiki Iwase) (Toru Ymagawa) (Toshio Miyauchi) Department of Mechanical and Aerospaoe Engineering Tokyo Institute of Technology

More information

133 $M$ $M$ expanding horosphere $g$ $N,$ $M $ $M,$ $M $ expanding horosphere $M,$ $M $ Theorem. $\varphi$ : $Marrow M $ $M$ expanding horosphere $M $

133 $M$ $M$ expanding horosphere $g$ $N,$ $M $ $M,$ $M $ expanding horosphere $M,$ $M $ Theorem. $\varphi$ : $Marrow M $ $M$ expanding horosphere $M $ 863 1994 132-142 132 Horocycle Rigidity (Ryuji Abe) 1 Introductjon Horosphere horocycle v horocycle horocycle flow $\circ$ M. Ratner [Rl horocycle flow N 2 Riemann $M_{c}$ $N_{c},$ $M_{c} $ Ratner $M$

More information

$\sim 22$ *) 1 $(2R)_{\text{}}$ $(2r)_{\text{}}$ 1 1 $(a)$ $(S)_{\text{}}$ $(L)$ 1 ( ) ( 2:1712 ) 3 ( ) 1) 2 18 ( 13 :

$\sim 22$ *) 1 $(2R)_{\text{}}$ $(2r)_{\text{}}$ 1 1 $(a)$ $(S)_{\text{}}$ $(L)$ 1 ( ) ( 2:1712 ) 3 ( ) 1) 2 18 ( 13 : Title 角術への三角法の応用について ( 数学史の研究 ) Author(s) 小林, 龍彦 Citation 数理解析研究所講究録 (2001), 1195: 165-175 Issue Date 2001-04 URL http://hdl.handle.net/2433/64832 Right Type Departmental Bulletin Paper Textversion publisher

More information

(Masatake MORI) 1., $I= \int_{-1}^{1}\frac{dx}{\mathrm{r}_{2-x})(1-\mathcal{i}1}.$ (1.1) $\overline{(2-x)(1-\mathcal{i})^{1}/4(1

(Masatake MORI) 1., $I= \int_{-1}^{1}\frac{dx}{\mathrm{r}_{2-x})(1-\mathcal{i}1}.$ (1.1) $\overline{(2-x)(1-\mathcal{i})^{1}/4(1 1040 1998 143-153 143 (Masatake MORI) 1 $I= \int_{-1}^{1}\frac{dx}{\mathrm{r}_{2-x})(1-\mathcal{i}1}$ (11) $\overline{(2-x)(1-\mathcal{i})^{1}/4(1+x)3/4}$ 1974 [31 8 10 11] $I= \int_{a}^{b}f(\mathcal{i})d_{x}$

More information

FA - : (FA) FA [3] [4] [5] 1.1 () 25 1:

FA - : (FA) FA [3] [4] [5] 1.1 () 25 1: 得点圏打率 盗塁 併殺を考慮した最適打順決定モデル Titleについて : FA 打者トレード戦略の検討 ( 不確実性の下での数理モデルとその周辺 ) Author(s) 穴太, 克則 ; 高野, 健大 Citation 数理解析研究所講究録 (2015), 1939: 133-142 Issue Date 2015-04 URL http://hdl.handle.net/2433/223766

More information

Centralizers of Cantor minimal systems

Centralizers of Cantor minimal systems Centralizers of Cantor minimal systems 1 X X X φ (X, φ) (X, φ) φ φ 2 X X X Homeo(X) Homeo(X) φ Homeo(X) x X Orb φ (x) = { φ n (x) ; n Z } x φ x Orb φ (x) X Orb φ (x) x n N 1 φ n (x) = x 1. (X, φ) (i) (X,

More information

cubic zeta 1ifting (Tomoyoshi IBUKIYAMA) (Department of Math., Graduate School of Sci., Osaka Univ. 1 \Re $\Phi^{\mathrm{J}}$ 1

cubic zeta 1ifting (Tomoyoshi IBUKIYAMA) (Department of Math., Graduate School of Sci., Osaka Univ. 1 \Re $\Phi^{\mathrm{J}}$ 1 1398 2004 137-148 137 cubic zeta 1ifting (Tomoyoshi IBUKIYAMA) (Department of Math., Graduate School of Sci., Osaka Univ. 1 \Re $\Phi^{\mathrm{J}}$ 1 W. Kohnen } $SL_{2}(\mathbb{Z})$ 1 1 2 1 1 1 \sigma

More information

複数の $\delta$ 関数を初期データに持つ非線形シュレー Titleディンガー方程式について ( スペクトル 散乱理論とその周辺 ) Author(s) 北, 直泰 Citation 数理解析研究所講究録 (2006), 1479: Issue Date URL

複数の $\delta$ 関数を初期データに持つ非線形シュレー Titleディンガー方程式について ( スペクトル 散乱理論とその周辺 ) Author(s) 北, 直泰 Citation 数理解析研究所講究録 (2006), 1479: Issue Date URL 複数の $\delta$ 関数を初期データに持つ非線形シュレー Titleディンガー方程式について ( スペクトル 散乱理論とその周辺 ) Author(s) 北 直泰 Citation 数理解析研究所講究録 (2006) 1479: 142-161 Issue Date 2006-04 URL http://hdlhandlenet/2433/58020 Right Type Departmental

More information

$\mathfrak{m}$ $K/F$ the 70 4(Brinkhuis) ([1 Corollary 210] [2 Corollary 21]) $F$ $K/F$ $F$ Abel $Gal(Ic/F)$ $(2 \cdot\cdot \tau 2)$ $K/F$ NIB ( 13) N

$\mathfrak{m}$ $K/F$ the 70 4(Brinkhuis) ([1 Corollary 210] [2 Corollary 21]) $F$ $K/F$ $F$ Abel $Gal(Ic/F)$ $(2 \cdot\cdot \tau 2)$ $K/F$ NIB ( 13) N $\mathbb{q}$ 1097 1999 69-81 69 $\mathrm{m}$ 2 $\mathrm{o}\mathrm{d}\mathfrak{p}$ ray class field 2 (Fuminori Kawamoto) 1 INTRODUCTION $F$ $F$ $K/F$ Galois $G:=Ga\iota(K/F)$ Galois $\alpha\in \mathit{0}_{k}$

More information

(Keiko Harai) (Graduate School of Humanities and Sciences Ochanomizu University) $\overline{\mathrm{b} \rfloor}$ (Michie Maeda) (De

(Keiko Harai) (Graduate School of Humanities and Sciences Ochanomizu University) $\overline{\mathrm{b} \rfloor}$ (Michie Maeda) (De Title 可測ノルムに関する条件 ( 情報科学と函数解析の接点 : れまでとこれから ) こ Author(s) 原井 敬子 ; 前田 ミチヱ Citation 数理解析研究所講究録 (2004) 1396: 31-41 Issue Date 2004-10 URL http://hdlhandlenet/2433/25964 Right Type Departmental Bulletin Paper

More information

i

i 14 i ii iii iv v vi 14 13 86 13 12 28 14 16 14 15 31 (1) 13 12 28 20 (2) (3) 2 (4) (5) 14 14 50 48 3 11 11 22 14 15 10 14 20 21 20 (1) 14 (2) 14 4 (3) (4) (5) 12 12 (6) 14 15 5 6 7 8 9 10 7

More information

Archimedean Spiral 1, ( ) Archimedean Spiral Archimedean Spiral ( $\mathrm{b}.\mathrm{c}$ ) 1 P $P$ 1) Spiral S

Archimedean Spiral 1, ( ) Archimedean Spiral Archimedean Spiral ( $\mathrm{b}.\mathrm{c}$ ) 1 P $P$ 1) Spiral S Title 初期和算にみる Archimedean Spiral について ( 数学究 ) Author(s) 小林, 龍彦 Citation 数理解析研究所講究録 (2000), 1130: 220-228 Issue Date 2000-02 URL http://hdl.handle.net/2433/63667 Right Type Departmental Bulletin Paper Textversion

More information

REJECT}$ 11^{\cdot}\mathrm{v}\mathrm{e}$ virtual turning point II - - new Stokes curve - (Shunsuke SASAKI) RIMS Kyoto University 1

REJECT}$ 11^{\cdot}\mathrm{v}\mathrm{e}$ virtual turning point II - - new Stokes curve - (Shunsuke SASAKI) RIMS Kyoto University 1 高階線型常微分方程式の変形におけるvirtual turning Titlepointの役割について (II) : 野海 - 山田方程式系のnew S curveについて ( 線型微分方程式の変形と仮想的変わり点 ) Author(s) 佐々木 俊介 Citation 数理解析研究所講究録 (2005) 1433: 65-109 Issue Date 2005-05 URL http://hdlhandlenet/2433/47420

More information

離散ラプラス作用素の反復力学系による蝶の翅紋様の実現とこれに基づく進化モデルの構成 (第7回生物数学の理論とその応用)

離散ラプラス作用素の反復力学系による蝶の翅紋様の実現とこれに基づく進化モデルの構成 (第7回生物数学の理論とその応用) 1751 2011 131-139 131 ( ) (B ) ( ) ( ) (1) (2) (3) (1) 4 (1) (2) (3) (2) $\ovalbox{\tt\small REJECT}$ (1) (2) (3) (3) D $N$ A 132 2 ([1]) 1 $0$ $F$ $f\in F$ $\Delta_{t\prime},f(p)=\sum_{\epsilon(\prime},(f(q)-f(p))$

More information

Step 2 O(3) Sym 0 (R 3 ), : a + := λ 1 λ 2 λ 3 a λ 1 λ 2 λ 3. a +. X a +, O(3).X. O(3).X = O(3)/O(3) X, O(3) X. 1.7 Step 3 O(3) Sym 0 (R 3 ),

Step 2 O(3) Sym 0 (R 3 ), : a + := λ 1 λ 2 λ 3 a λ 1 λ 2 λ 3. a +. X a +, O(3).X. O(3).X = O(3)/O(3) X, O(3) X. 1.7 Step 3 O(3) Sym 0 (R 3 ), 1 1 1.1,,. 1.1 1.2 O(2) R 2 O(2).p, {0} r > 0. O(3) R 3 O(3).p, {0} r > 0.,, O(n) ( SO(n), O(n) ): Sym 0 (R n ) := {X M(n, R) t X = X, tr(x) = 0}. 1.3 O(n) Sym 0 (R n ) : g.x := gxg 1 (g O(n), X Sym 0

More information

Title ウェーブレットのリモートセンシングへの応用 ( ウェーブレットの構成法と理工学的応用 ) Author(s) 新井, 康平 Citation 数理解析研究所講究録 (2009), 1622: Issue Date URL

Title ウェーブレットのリモートセンシングへの応用 ( ウェーブレットの構成法と理工学的応用 ) Author(s) 新井, 康平 Citation 数理解析研究所講究録 (2009), 1622: Issue Date URL Title ウェーブレットのリモートセンシングへの応用 ( ウェーブレットの構成法と理工学的応用 ) Author(s) 新井, 康平 Citation 数理解析研究所講究録 (2009), 1622: 111-121 Issue Date 2009-01 URL http://hdlhandlenet/2433/140245 Right Type Departmental Bulletin Paper

More information

$\text{ ^{ } }\dot{\text{ }}$ KATSUNORI ANO, NANZAN UNIVERSITY, DERA MDERA, MDERA 1, (, ERA(Earned Run Average) ),, ERA 1,,

$\text{ ^{ } }\dot{\text{ }}$ KATSUNORI ANO, NANZAN UNIVERSITY, DERA MDERA, MDERA 1, (, ERA(Earned Run Average) ),, ERA 1,, 併殺を考慮したマルコフ連鎖に基づく投手評価指標とそ Titleの 1997 年度日本プロ野球シーズンでの考察 ( 最適化のための連続と離散数理 ) Author(s) 穴太, 克則 Citation 数理解析研究所講究録 (1999), 1114: 114-125 Issue Date 1999-11 URL http://hdlhandlenet/2433/63391 Right Type Departmental

More information

3 5 18 3 5000 1 2 7 8 120 1 9 1954 29 18 12 30 700 4km 1.5 100 50 6 13 5 99 93 34 17 2 2002 04 14 16 6000 12 57 60 1986 55 3 3 3 500 350 4 5 250 18 19 1590 1591 250 100 500 20 800 20 55 3 3 3 18 19 1590

More information

* KISHIDA Masahiro YAGIURA Mutsunori IBARAKI Toshihide 1. $\mathrm{n}\mathrm{p}$ (SCP) 1,..,,,, $[1][5][10]$, [11], [4].., Fishe

* KISHIDA Masahiro YAGIURA Mutsunori IBARAKI Toshihide 1. $\mathrm{n}\mathrm{p}$ (SCP) 1,..,,,, $[1][5][10]$, [11], [4].., Fishe 1114 1999 211-220 211 * KISHIDA Masahiro YAGIURA Mutsunori IBARAKI Toshihide 1 $\mathrm{n}\mathrm{p}$ (SCP) 1 $[1][5][10]$ [11] [4] Fisher Kedia $m=200$ $n=2000$ [8] Beasley Gomory f- $m=400$ $n=4000$

More information

128 Howarth (3) (4) 2 ( ) 3 Goldstein (5) 2 $(\theta=79\infty^{\mathrm{o}})$ : $cp_{n}=0$ : $\Omega_{m}^{2}=1$ $(_{\theta=80}62^{\mathrm{o}})$

128 Howarth (3) (4) 2 ( ) 3 Goldstein (5) 2 $(\theta=79\infty^{\mathrm{o}})$ : $cp_{n}=0$ : $\Omega_{m}^{2}=1$ $(_{\theta=80}62^{\mathrm{o}})$ 1075 1999 127-142 127 (Shintaro Yamashita) 7 (Takashi Watanabe) $\mathrm{n}\mathrm{a}\mathrm{k}\mathrm{a}\mathrm{m}\mathrm{u}\mathrm{f}\mathrm{a}\rangle$ (Ikuo 1 1 $90^{\mathrm{o}}$ ( 1 ) ( / \rangle (

More information

(SHOGO NISHIZAWA) Department of Mathematical Science, Graduate School of Science and Technology, Niigata University (TAMAKI TANAKA)

(SHOGO NISHIZAWA) Department of Mathematical Science, Graduate School of Science and Technology, Niigata University (TAMAKI TANAKA) Title 集合値写像の凸性の遺伝性について ( 不確実なモデルによる動的計画理論の課題とその展望 ) Author(s) 西澤, 正悟 ; 田中, 環 Citation 数理解析研究所講究録 (2001), 1207: 67-78 Issue Date 2001-05 URL http://hdlhandlenet/2433/41044 Right Type Departmental Bulletin

More information

1

1 1 Borel1956 Groupes linéaire algébriques, Ann. of Math. 64 (1956), 20 82. Chevalley1956/58 Sur la classification des groupes de Lie algébriques, Sém. Chevalley 1956/58, E.N.S., Paris. Tits1959 Sur la classification

More information

9 1: 12 2006 $O$,,, ( ), BT $2W6$ 22,, BT [7] BT, 12, $\xi_{1}=$ $(x_{11}, x_{12}, \ldots,x_{112}),$ $\xi_{2}=(x_{21}, x_{22}, \ldots, x_{212})$ $i$ $

9 1: 12 2006 $O$,,, ( ), BT $2W6$ 22,, BT [7] BT, 12, $\xi_{1}=$ $(x_{11}, x_{12}, \ldots,x_{112}),$ $\xi_{2}=(x_{21}, x_{22}, \ldots, x_{212})$ $i$ $ $\iota$ 1584 2008 8-20 8 1 (Kiyoto Kawai), (Kazuyuki Sekitani) Systems engineering, Shizuoka University 3 10, $2N6$ $2m7$,, 53 [1, 2, 3, 4] [9, 10, 11, 12], [8] [6],, ( ) ( ), $\ovalbox{\tt\small REJECT}\backslash

More information

$\mathfrak{u}_{1}$ $\frac{\epsilon_{1} }{1-\mathcal{E}_{1}^{J}}<\frac{\vee 1\prime}{2}$ $\frac{1}{1-\epsilon_{1} }\frac{1}{1-\epsilon_{\sim} }$ $\frac

$\mathfrak{u}_{1}$ $\frac{\epsilon_{1} }{1-\mathcal{E}_{1}^{J}}<\frac{\vee 1\prime}{2}$ $\frac{1}{1-\epsilon_{1} }\frac{1}{1-\epsilon_{\sim} }$ $\frac $\vee$ 1017 1997 92-103 92 $\cdot\mathrm{r}\backslash$ $GL_{n}(\mathbb{C}$ \S1 1995 Milnor Introduction to algebraic $\mathrm{k}$-theory $narrow \infty$ $GL_{n}(\mathbb{C}$ $\mathit{1}\mathrm{t}i_{n}(\mathbb{c}$

More information

Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, P

Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, P Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, PC ( 4 5 )., 5, Milnor Milnor., ( 6 )., (I) Z modulo

More information

Title 非線形シュレディンガー方程式に対する3 次分散項の効果 ( 流体における波動現象の数理とその応用 ) Author(s) 及川, 正行 Citation 数理解析研究所講究録 (1993), 830: Issue Date URL

Title 非線形シュレディンガー方程式に対する3 次分散項の効果 ( 流体における波動現象の数理とその応用 ) Author(s) 及川, 正行 Citation 数理解析研究所講究録 (1993), 830: Issue Date URL Title 非線形シュレディンガー方程式に対する3 次分散項の効果 ( 流体における波動現象の数理とその応用 ) Author(s) 及川 正行 Citation 数理解析研究所講究録 (1993) 830: 244-253 Issue Date 1993-04 URL http://hdlhandlenet/2433/83338 Right Type Departmental Bulletin Paper

More information

Wolfram Alpha と CDF の教育活用 (数学ソフトウェアと教育 : 数学ソフトウェアの効果的利用に関する研究)

Wolfram Alpha と CDF の教育活用 (数学ソフトウェアと教育 : 数学ソフトウェアの効果的利用に関する研究) 1780 2012 119-129 119 Wolfram Alpha CDF (Shinya OHASHI) Chiba prefectural Funabashi-Keimei Highschool 1 RIMS Wolfram Alpha Wolfram Alpha Wolfram Alpha Wolfram Alpha CDF 2 Wolfram Alpha 21 Wolfram Alpha

More information

チュートリアル:ノンパラメトリックベイズ

チュートリアル:ノンパラメトリックベイズ { x,x, L, xn} 2 p( θ, θ, θ, θ, θ, } { 2 3 4 5 θ6 p( p( { x,x, L, N} 2 x { θ, θ2, θ3, θ4, θ5, θ6} K n p( θ θ n N n θ x N + { x,x, L, N} 2 x { θ, θ2, θ3, θ4, θ5, θ6} log p( 6 n logθ F 6 log p( + λ θ F θ

More information

Shunsuke Kobayashi 1 [6] [11] [7] u t = D 2 u 1 x 2 + f(u, v) + s L u(t, x)dx, L x (0.L), t > 0, Neumann 0 v t = D 2 v 2 + g(u, v), x (0, L), t > 0. x

Shunsuke Kobayashi 1 [6] [11] [7] u t = D 2 u 1 x 2 + f(u, v) + s L u(t, x)dx, L x (0.L), t > 0, Neumann 0 v t = D 2 v 2 + g(u, v), x (0, L), t > 0. x Shunsuke Kobayashi [6] [] [7] u t = D 2 u x 2 + fu, v + s L ut, xdx, L x 0.L, t > 0, Neumann 0 v t = D 2 v 2 + gu, v, x 0, L, t > 0. x2 u u v t, 0 = t, L = 0, x x. v t, 0 = t, L = 0.2 x x ut, x R vt, x

More information

90 2 3) $D_{L} \frac{\partial^{4}w}{\mathrm{a}^{4}}+2d_{lr}\frac{\partial^{4}w}{\ ^{2}\Phi^{2}}+D_{R} \frac{\partial^{4}w}{\phi^{4}}+\phi\frac{\partia

90 2 3) $D_{L} \frac{\partial^{4}w}{\mathrm{a}^{4}}+2d_{lr}\frac{\partial^{4}w}{\ ^{2}\Phi^{2}}+D_{R} \frac{\partial^{4}w}{\phi^{4}}+\phi\frac{\partia REJECT} \mathrm{b}$ 1209 2001 89-98 89 (Teruaki ONO) 1 $LR$ $LR$ $\mathrm{f}\ovalbox{\tt\small $L$ $L$ $L$ R $LR$ (Sp) (Map) (Acr) $(105\cross 105\cross 2\mathrm{m}\mathrm{m})$ (A1) $1$) ) $2$ 90 2 3)

More information

$\mathrm{c}_{j}$ $u$ $u$ 1: (a) (b) (c) $y$ ($y=0$ ) (a) (c) $i$ (soft-sphere) ( $m$:(mj) $\sigma$:(\sigma j) $i$ $(r_{1j}.$ $j$ $r_{i}$ $r_{j}$ $=r:-

$\mathrm{c}_{j}$ $u$ $u$ 1: (a) (b) (c) $y$ ($y=0$ ) (a) (c) $i$ (soft-sphere) ( $m$:(mj) $\sigma$:(\sigma j) $i$ $(r_{1j}.$ $j$ $r_{i}$ $r_{j}$ $=r:- 1413 2005 60-69 60 (Namiko Mitarai) Frontier Research System, RIKEN (Hiizu Nakanishi) Department of Physics, Faculty of Science, Kyushu University 1 : [1] $[2, 3]$ 1 $[3, 4]$.$\text{ }$ [5] 2 (collisional

More information

$\bullet$ A Distributed Sorting Algorithm on a Line Network: Adopting the Viewpoint of Sequential and Parallel Sorting Atsushi SASA

$\bullet$ A Distributed Sorting Algorithm on a Line Network: Adopting the Viewpoint of Sequential and Parallel Sorting Atsushi SASA 1120 1999 68-77 68 $\bullet$ A Distributed Sorting Algorithm on a Line Network Adopting the Viewpoint of Sequential and Parallel Sorting Atsushi SASAKI NTT $=$ 619-0237 2-4 $\mathrm{n}\mathrm{t}\mathrm{t}\mathrm{c}\mathrm{o}$

More information

$\mathrm{v}$ ( )* $*1$ $\ovalbox{\tt\small REJECT}*2$ \searrow $\mathrm{b}$ $*3$ $*4$ ( ) [1] $*5$ $\mathrm{a}\mathrm{c}

$\mathrm{v}$ ( )* $*1$ $\ovalbox{\tt\small REJECT}*2$ \searrow $\mathrm{b}$ $*3$ $*4$ ( ) [1] $*5$ $\mathrm{a}\mathrm{c} Title 狩野本 綴術算経 について ( 数学史の研究 ) Author(s) 小川 束 Citation 数理解析研究所講究録 (2004) 1392: 60-68 Issue Date 2004-09 URL http://hdlhandlenet/2433/25859 Right Type Departmental Bulletin Paper Textversion publisher Kyoto

More information

数理解析研究所講究録 第1955巻

数理解析研究所講究録 第1955巻 1955 2015 158-167 158 Miller-Rabin IZUMI MIYAMOTO $*$ 1 Miller-Rabin base base base 2 2 $arrow$ $arrow$ $arrow$ R $SA$ $n$ Smiyamotol@gmail.com $\mathbb{z}$ : ECPP( ) AKS 159 Adleman-(Pomerance)-Rumely

More information

Title ゾウリムシの生物対流実験 ( 複雑流体の数理とその応用 ) Author(s) 狐崎, 創 ; 小森, 理絵 ; 春本, 晃江 Citation 数理解析研究所講究録 (2006), 1472: Issue Date URL

Title ゾウリムシの生物対流実験 ( 複雑流体の数理とその応用 ) Author(s) 狐崎, 創 ; 小森, 理絵 ; 春本, 晃江 Citation 数理解析研究所講究録 (2006), 1472: Issue Date URL Title ゾウリムシの生物対流実験 ( 複雑流体の数理とその応用 ) Author(s) 狐崎, 創 ; 小森, 理絵 ; 春本, 晃江 Citation 数理解析研究所講究録 (2006), 1472: 129-138 Issue Date 2006-02 URL http://hdl.handle.net/2433/48126 Right Type Departmental Bulletin

More information

教科専門科目の内容を活用する教材研究の指導方法 III : TitleTeam 2 プロジェクト ( 数学教師に必要な数学能力に関連する諸問題 ) Author(s) 青山, 陽一 ; 神, 直人 ; 曽布川, 拓也 ; 中馬, 悟朗 Citation 数理解析研究所講究録 (2013), 1828

教科専門科目の内容を活用する教材研究の指導方法 III : TitleTeam 2 プロジェクト ( 数学教師に必要な数学能力に関連する諸問題 ) Author(s) 青山, 陽一 ; 神, 直人 ; 曽布川, 拓也 ; 中馬, 悟朗 Citation 数理解析研究所講究録 (2013), 1828 教科専門科目の内容を活用する教材研究の指導方法 III : TitleTeam 2 プロジェクト ( 数学教師に必要な数学能力に関連する諸問題 Author(s 青山, 陽一 ; 神, 直人 ; 曽布川, 拓也 ; 中馬, 悟朗 Citation 数理解析研究所講究録 (2013, 1828: 61-85 Issue Date 2013-03 URL http://hdl.handle.net/2433/194795

More information

Title 二重指数関数型変数変換を用いたSinc 関数近似 ( 科学技術における数値計算の理論と応用 II) Author(s) 杉原, 正顯 Citation 数理解析研究所講究録 (1997), 990: Issue Date URL

Title 二重指数関数型変数変換を用いたSinc 関数近似 ( 科学技術における数値計算の理論と応用 II) Author(s) 杉原, 正顯 Citation 数理解析研究所講究録 (1997), 990: Issue Date URL Title 二重指数関数型変数変換を用いたSinc 関数近似 ( 科学技術における数値計算の理論と応用 II) Author(s) 杉原 正顯 Citation 数理解析研究所講究録 (1997) 990 125-134 Issue Date 1997-04 URL http//hdlhandlenet/2433/61094 Right Type Departmental Bulletin Paper

More information

Title 脳波を記述する積分方程式について ( 関数方程式の定性的理論とその現象解析への応用 ) Author(s) 鈴木, 貴 ; 久保, 明達 Citation 数理解析研究所講究録 (2001), 1216: 1-12 Issue Date URL

Title 脳波を記述する積分方程式について ( 関数方程式の定性的理論とその現象解析への応用 ) Author(s) 鈴木, 貴 ; 久保, 明達 Citation 数理解析研究所講究録 (2001), 1216: 1-12 Issue Date URL Title 脳波を記述する積分方程式について ( 関数方程式の定性的理論とその現象解析への応用 ) Author(s) 鈴木 貴 ; 久保 明達 Citation 数理解析研究所講究録 (2001) 1216: 1-12 Issue Date 2001-06 URL http://hdlhandlenet/2433/41198 Right Type Departmental Bulletin Paper

More information

$\mathrm{n}$ Interpolation solves open questions in discrete integrable system (Kinji Kimura) Graduate School of Science and Tec

$\mathrm{n}$ Interpolation solves open questions in discrete integrable system (Kinji Kimura) Graduate School of Science and Tec $\mathrm{n}$ 1381 2004 168-181 190 Interpolation solves open questions in discrete integrable system (Kinji Kimura) Graduate School of Science and Technology Kobe University 1 Introduction 2 (i) (ii) (i)

More information

}$ $q_{-1}=0$ OSTROWSKI (HASHIMOTO RYUTA) $\mathrm{d}\mathrm{c}$ ( ) ABSTRACT Ostrowski $x^{2}-$ $Dy^{2}=N$ $-$ - $Ax^{2}+Bx

}$ $q_{-1}=0$ OSTROWSKI (HASHIMOTO RYUTA) $\mathrm{d}\mathrm{c}$ ( ) ABSTRACT Ostrowski $x^{2}-$ $Dy^{2}=N$ $-$ - $Ax^{2}+Bx Title 2 元 2 次不定方程式の整数解の OSTROWSKI 表現について ( 代数的整数論とその周辺 ) Author(s) 橋本 竜太 Citation 数理解析研究所講究録 (2000) 1154 155-164 Issue Date 2000-05 URL http//hdlhandlenet/2433/64118 Right Type Departmental Bulletin Paper

More information

パソコン機能ガイド

パソコン機能ガイド PART12 ii iii iv v 1 2 3 4 5 vi vii viii ix P A R T 1 x P A R T 2 xi P A R T 3 xii xiii P A R T 1 2 3 1 4 5 1 6 1 1 2 7 1 2 8 1 9 10 1 11 12 1 13 1 2 3 4 14 1 15 1 2 3 16 4 1 1 2 3 17 18 1 19 20 1 1

More information

パソコン機能ガイド

パソコン機能ガイド PART2 iii ii iv v 1 2 3 4 5 vi vii viii ix P A R T 1 x P A R T 2 xi P A R T 3 xii xiii P A R T 1 2 1 3 4 1 5 6 1 2 1 1 2 7 8 9 1 10 1 11 12 1 13 1 2 3 14 4 1 1 2 3 15 16 1 17 1 18 1 1 2 19 20 1 21 1 22

More information

$\langle$ 1 177 $\rangle$ $\langle 4\rangle(5)\langle 6$ ) 1855 ( 2 ) (2) 10 (1877 )10 100 (The Tokyo llathematical Society) 11 ( ) ( ) 117 ( ) ( ), (

$\langle$ 1 177 $\rangle$ $\langle 4\rangle(5)\langle 6$ ) 1855 ( 2 ) (2) 10 (1877 )10 100 (The Tokyo llathematical Society) 11 ( ) ( ) 117 ( ) ( ), ( 1195 2001 176-190 176 $\mathrm{w}_{b\gamma_{\mapsto\infty}}\cdot\cdot\leftrightarrow \mathfrak{b}\infty-\mathrm{f}\mathrm{f}\mathrm{l}$ffi Facul y of Economics, Momoyama Gakuin Univ. (Hiromi Ando) (1)

More information

\mathrm{n}\circ$) (Tohru $\mathrm{o}\mathrm{k}\mathrm{u}\mathrm{z}\circ 1 $(\mathrm{f}_{\circ \mathrm{a}}\mathrm{m})$ ( ) ( ). - $\

\mathrm{n}\circ$) (Tohru $\mathrm{o}\mathrm{k}\mathrm{u}\mathrm{z}\circ 1 $(\mathrm{f}_{\circ \mathrm{a}}\mathrm{m})$ ( ) ( ). - $\ 1081 1999 84-99 84 \mathrm{n}\circ$) (Tohru $\mathrm{o}\mathrm{k}\mathrm{u}\mathrm{z}\circ 1 $(\mathrm{f}_{\circ \mathrm{a}}\mathrm{m})$ ( ) ( ) - $\text{ }$ 2 2 ( ) $\mathrm{c}$ 85 $\text{ }$ 3 ( 4 )

More information

$E$ $\tau$ $\tau$ : Yoshio Okamoto Depertment of Systems Science, Grad

$E$ $\tau$ $\tau$ : Yoshio Okamoto Depertment of Systems Science, Grad $E$ $\tau$ $\tau$ 1174 2000 179-191 179 yoshio@kleecu-tokyoacjp kashiwa@gracocu-tokyoacjp Yoshio Okamoto Depertment of Systems Science Graduate School of Arts and Sciences The University of Tokyo Kenji

More information

1... 1 2... 1 1... 1 2... 2 3... 2 4... 4 5... 4 6... 4 7... 22 8... 22 3... 22 1... 22 2... 23 3... 23 4... 24 5... 24 6... 25 7... 31 8... 32 9... 3

1... 1 2... 1 1... 1 2... 2 3... 2 4... 4 5... 4 6... 4 7... 22 8... 22 3... 22 1... 22 2... 23 3... 23 4... 24 5... 24 6... 25 7... 31 8... 32 9... 3 3 2620149 3 6 3 2 198812 21/ 198812 21 1 3 4 5 JISJIS X 0208 : 1997 JIS 4 JIS X 0213:2004 http://www.pref.hiroshima.lg.jp/site/monjokan/ 1... 1 2... 1 1... 1 2... 2 3... 2 4... 4 5... 4 6... 4 7... 22

More information